草业学报 ›› 2021, Vol. 30 ›› Issue (8): 186-198.DOI: 10.11686/cyxb2020579
• 综合评述 • 上一篇
收稿日期:
2020-12-16
修回日期:
2021-01-19
出版日期:
2021-07-09
发布日期:
2021-07-09
通讯作者:
谢文刚
作者简介:
Corresponding author. E-mail: xiewg@lzu.edu.cn基金资助:
Wen-gang XIE1(), Yi-yang WAN1, Zong-yu ZHANG1, Jun-chao ZHANG2
Received:
2020-12-16
Revised:
2021-01-19
Online:
2021-07-09
Published:
2021-07-09
Contact:
Wen-gang XIE
摘要:
落粒性是野生植物为有效繁衍后代、扩大种群而形成的一种适应特性,但对种子生产可造成不利影响。离区的形成、发育和降解是植物落粒的直接原因,植物激素产生促进或抑制脱落的信号,细胞壁水解酶可引起离区细胞的降解,这些过程的发生受多个基因调控,且调控网络复杂。对于种子落粒的相关研究已在水稻、小麦等农作物中深入开展,而牧草领域则相对较少。综述禾本科植物落粒研究的最新进展,以期为禾本科牧草落粒机理深入挖掘以及品种选育提供理论参考。
谢文刚, 万依阳, 张宗瑜, 张俊超. 禾本科植物落粒机理研究进展[J]. 草业学报, 2021, 30(8): 186-198.
Wen-gang XIE, Yi-yang WAN, Zong-yu ZHANG, Jun-chao ZHANG. Research progress on the seed-shattering mechanism of Poaceae plants[J]. Acta Prataculturae Sinica, 2021, 30(8): 186-198.
物种 Species | 基因 Gene | 基因类型 Gene type | 主要功能 Functions | 参考文献Reference |
---|---|---|---|---|
水稻 O. sativa | OsGRF4 | 生长调节因子Growth-regulating factor | 调控粒型、穗长,与种子落粒相关Regulate grain type and panicle length, and it is related to seed shattering | [ |
Bh4 | 氨基酸转运蛋白Amino acid transporter | 调控稻壳颜色,与落粒相关Regulate the color of rice husk, and it is related to seed shattering | [ | |
OsLG1 | SBP结构域蛋白AQUAMOSA promoter binding protein | 调控水稻穗型,与落粒相关Regulate panicle type of rice, and it is related to seed shattering | [ | |
Spr3 | miRNA | 调控花序结构Regulate inflorescence structure | [ | |
GL4 | Myb类蛋白Myb-like protein | 控制粒长和种子落粒Regulate grain length and seed shattering | [ | |
大麦 H. vulgare | Btr1 | 膜结合蛋白Membrane binding protein | 调控小穗轴脆性Regulate the rachis brittleness | [ |
Btr2 | 可溶性蛋白Soluble protein | 调控小穗轴脆性Regulate the rachis brittleness | [ | |
小麦 T. aestivum | TaqSH1-D | BEL1类蛋白BEL1-like protein | 调控小穗轴脆性Regulate the rachis brittleness | [ |
Q | AP2家族转录因子APETALA2 transcription factor | 调控小麦颖壳硬度Regulate the glume hardness of wheat | [ | |
Tg | - | 调控小麦颖壳硬度Regulate the glume hardness of wheat | [ | |
TtBtr1 | - | 调控小穗轴脆性Regulate the rachis brittleness | [ | |
Btr1-A | - | 调控小穗轴脆性Regulate the rachis brittleness | [ |
表1 调控禾本科植物形态学特征的落粒基因信息
Table 1 Information of seed shattering genes that regulate morphological characteristics of Gramineae plants
物种 Species | 基因 Gene | 基因类型 Gene type | 主要功能 Functions | 参考文献Reference |
---|---|---|---|---|
水稻 O. sativa | OsGRF4 | 生长调节因子Growth-regulating factor | 调控粒型、穗长,与种子落粒相关Regulate grain type and panicle length, and it is related to seed shattering | [ |
Bh4 | 氨基酸转运蛋白Amino acid transporter | 调控稻壳颜色,与落粒相关Regulate the color of rice husk, and it is related to seed shattering | [ | |
OsLG1 | SBP结构域蛋白AQUAMOSA promoter binding protein | 调控水稻穗型,与落粒相关Regulate panicle type of rice, and it is related to seed shattering | [ | |
Spr3 | miRNA | 调控花序结构Regulate inflorescence structure | [ | |
GL4 | Myb类蛋白Myb-like protein | 控制粒长和种子落粒Regulate grain length and seed shattering | [ | |
大麦 H. vulgare | Btr1 | 膜结合蛋白Membrane binding protein | 调控小穗轴脆性Regulate the rachis brittleness | [ |
Btr2 | 可溶性蛋白Soluble protein | 调控小穗轴脆性Regulate the rachis brittleness | [ | |
小麦 T. aestivum | TaqSH1-D | BEL1类蛋白BEL1-like protein | 调控小穗轴脆性Regulate the rachis brittleness | [ |
Q | AP2家族转录因子APETALA2 transcription factor | 调控小麦颖壳硬度Regulate the glume hardness of wheat | [ | |
Tg | - | 调控小麦颖壳硬度Regulate the glume hardness of wheat | [ | |
TtBtr1 | - | 调控小穗轴脆性Regulate the rachis brittleness | [ | |
Btr1-A | - | 调控小穗轴脆性Regulate the rachis brittleness | [ |
物种 Species | 基因 Gene | 基因类型 Gene type | 主要功能 Functions | 参考文献 Reference |
---|---|---|---|---|
水稻 O. sativa | qSH1 | 同源异型结构域转录因子Homeodomain transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
SH5 | 同源异型结构域转录因子Homeodomain transcription factor | 调控离区发育和木质素合成Regulate the development of abscission zone and lignin biosynthesis | [ | |
OsSh1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
SSH1 | AP2转录因子APETALA2 transcription factor | 调控离区和维管束发育Regulate the development of abscission zone and vascular bundle | [ | |
ObSH3 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
SH6(t) | - | 调控离层的降解Regulate the degradation of the abscission layer | [ | |
OsCPL1 | 羧基末端结构域磷酸酶基因CTD phosphatase-like gene | 抑制离层细胞分化Inhibit the differentiation of abscission layer | [ | |
SHAT1 | AP2转录因子APETALA2 transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
qCSS3 | - | 调控离区发育Regulate the development of abscission zone | [ | |
SH4 | GT-1类三螺旋DNA结构域转录因子GT-1-like trihelix transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
qSH3 | - | 调控离区发育Regulate the development of abscission zone | [ | |
小麦 T. aestivum | TaqSH1 | BEL1类蛋白BEL1-like protein | 调控离区发育Regulate the development of abscission zone | [ |
高粱S. bicolor | Sh1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
玉米 Zea mays | ZmSh1-1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
ZmSh1-5 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
蒙古冰草 A.mongolicum | Amsh1-1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
Amsh1-2 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
狗尾草 S. viridis | SvLES1 | MYB家族转录因子MYB transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
表2 调控离区发育的落粒基因信息
Table 2 Information of seed shattering genes that regulate the development of abscission zone
物种 Species | 基因 Gene | 基因类型 Gene type | 主要功能 Functions | 参考文献 Reference |
---|---|---|---|---|
水稻 O. sativa | qSH1 | 同源异型结构域转录因子Homeodomain transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
SH5 | 同源异型结构域转录因子Homeodomain transcription factor | 调控离区发育和木质素合成Regulate the development of abscission zone and lignin biosynthesis | [ | |
OsSh1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
SSH1 | AP2转录因子APETALA2 transcription factor | 调控离区和维管束发育Regulate the development of abscission zone and vascular bundle | [ | |
ObSH3 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
SH6(t) | - | 调控离层的降解Regulate the degradation of the abscission layer | [ | |
OsCPL1 | 羧基末端结构域磷酸酶基因CTD phosphatase-like gene | 抑制离层细胞分化Inhibit the differentiation of abscission layer | [ | |
SHAT1 | AP2转录因子APETALA2 transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
qCSS3 | - | 调控离区发育Regulate the development of abscission zone | [ | |
SH4 | GT-1类三螺旋DNA结构域转录因子GT-1-like trihelix transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
qSH3 | - | 调控离区发育Regulate the development of abscission zone | [ | |
小麦 T. aestivum | TaqSH1 | BEL1类蛋白BEL1-like protein | 调控离区发育Regulate the development of abscission zone | [ |
高粱S. bicolor | Sh1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
玉米 Zea mays | ZmSh1-1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
ZmSh1-5 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
蒙古冰草 A.mongolicum | Amsh1-1 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
Amsh1-2 | YABBY家族转录因子YABBY family transcription factor | 调控离区发育Regulate the development of abscission zone | [ | |
狗尾草 S. viridis | SvLES1 | MYB家族转录因子MYB transcription factor | 调控离区发育Regulate the development of abscission zone | [ |
物种 Species | 基因 Gene | 基因类型 Gene type | 主要功能 Functions | 参考文献 Reference |
---|---|---|---|---|
水稻 O. sativa | OSH15 | KNOX蛋白KNOX protein | 调控木质素生物合成Regulate lignin biosynthesis | [ |
OsXTH8 | 木葡聚糖内转糖基酶/水解酶基因Xyloglucan endotransglucosylases/hydrolases gene | 参与细胞壁修饰Participated in the cell wall modification process | [ | |
OsCel9D | 葡聚糖内切酶基因Endo-1,4-β-D-glucanase gene | 调控节间伸长,影响细胞壁成分Regulate internode elongation and affect cell wall composition | [ | |
SHA1 | 植物三螺旋DNA结构域转录因子Plant Trihelix transcription factor | 调控离层细胞壁的降解Regulate the degradation of the abscission layer cell wall | [ | |
高粱方正汇总行S. bicolor | SpWRKY | WRKY家族转录因子WRKY family transcription factor | 调控细胞壁生物合成Regulates cell wall biosynthesis | [ |
表3 调控离区生理学过程的落粒基因信息
Table 3 Information of seed shattering genes that regulate the physiological process of abscission zone
物种 Species | 基因 Gene | 基因类型 Gene type | 主要功能 Functions | 参考文献 Reference |
---|---|---|---|---|
水稻 O. sativa | OSH15 | KNOX蛋白KNOX protein | 调控木质素生物合成Regulate lignin biosynthesis | [ |
OsXTH8 | 木葡聚糖内转糖基酶/水解酶基因Xyloglucan endotransglucosylases/hydrolases gene | 参与细胞壁修饰Participated in the cell wall modification process | [ | |
OsCel9D | 葡聚糖内切酶基因Endo-1,4-β-D-glucanase gene | 调控节间伸长,影响细胞壁成分Regulate internode elongation and affect cell wall composition | [ | |
SHA1 | 植物三螺旋DNA结构域转录因子Plant Trihelix transcription factor | 调控离层细胞壁的降解Regulate the degradation of the abscission layer cell wall | [ | |
高粱方正汇总行S. bicolor | SpWRKY | WRKY家族转录因子WRKY family transcription factor | 调控细胞壁生物合成Regulates cell wall biosynthesis | [ |
1 | Estornell L H, Agustí J, Merelo P, et al. Elucidating mechanisms underlying organ abscission. Plant Science, 2013, 199: 48-60. |
2 | Wang X, Chen X B, Li A L, et al. Advances in molecular biology study of plant organ abscission. Acta Agronomica Sinica, 2009, 35(3): 381-387. |
王翔, 陈晓博, 李爱丽, 等. 植物器官脱落分子生物学研究进展. 作物学报, 2009, 35(3): 381-387. | |
3 | Konishi S, Izawa T, Lin S Y, et al. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312(5778): 1392-1396. |
4 | Donini P, Onishi K, Takagi K, et al. Different patterns of genealogical relationships found in the two major QTLs causing reduction of seed shattering during rice domestication. Genome, 2007, 50(8): 757-766. |
5 | Qin Y, Kim S M, Zhao X H, et al. Identification for quantitative trait loci controlling grain shattering in rice. Genes & Genomics, 2010, 32: 173-180. |
6 | Lewis M W, Leslie M E, Liljegren S J. Plant separation: 50 ways to leave your mother. Current Opinion in Plant Biology, 2006, 9(1): 59-65. |
7 | Thurber C S, Hepler P K, Caicedo A L. Timing is everything: Early degradation of abscission layer is associated with increased seed shattering in US weedy rice. BMC Plant Biology, 2011, 11(1): 14. |
8 | Patterson S E. Cutting loose. Abscission and dehiscence in Arabidopsis. Plant physiology, 2001, 126(2): 494-500. |
9 | Yoon J, Cho L H, Kim S L, et al. The BEL1‐type homeobox gene SH5 induces seed shattering by enhancing abscission‐zone development and inhibiting lignin biosynthesis. The Plant Journal, 2014, 79(5): 717-728. |
10 | Zhao X H, Xie W G, Zhang J C, et al. Histological characteristics, cell wall hydrolytic enzymes activity and candidate genes expression associated with seed shattering of Elymus sibiricus accessions. Frontiers in Plant Science, 2017, 8: 606. |
11 | Liu Z J, Chen Y, Meng J, et al. Seed shattering and relevant traits of Leymus chinensis. Acta Agrestia Sinica, 2013, 21(1): 152-158. |
刘祝江, 陈延, 蒙静, 等. 羊草种子的落粒性及其相关特征的研究. 草地学报, 2013, 21(1): 152-158. | |
12 | Zhao X H, Jiang X, Zhao K, et al. Screening of germplasm with low seed shattering rate and evaluation on agronomic traits in Elymus sibiricus L. Journal of Plant Genetic Resources, 2015, 16(4): 691-699. |
赵旭红, 姜旭, 赵凯, 等. 低落粒老芒麦种质筛选及农艺性状综合评价. 植物遗传资源学报, 2015, 16(4): 691-699. | |
13 | Faris J D, Fellers J P, Brooks S A, et al. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 2003, 164(1): 311-321. |
14 | Katkout M, Sakuma S, Kawaura K, et al. TaqSH1-D, wheat ortholog of rice seed shattering gene qSH1, maps to the interval of a rachis fragility QTL on chromosome 3DL of common wheat (Triticum aestivum). Genetic Resources and Crop Evolution, 2015, 62(7): 979-984. |
15 | Lin Z W, Li X R, Shannon L M, et al. Parallel domestication of the Shattering1 genes in cereals. Nature Genetics, 2012, 44(6): 720-724. |
16 | Zhao Y Q, Zhang J C, Zhao X H, et al. Assessment of seed shattering and analysis of agronomic traits in Elymus nutans. Pratacultural Science, 2017, 34(8): 1711-1720. |
赵永强, 张俊超, 赵旭红, 等. 垂穗披碱草落粒性评价及农艺性状的相关性分析. 草业科学, 2017, 34(8): 1711-1720. | |
17 | Liu W H, Liang G L, Zhou Q P, et al. Study on shattering and growth physiological characteristics of Poa ptatensis var.anceps during the process of seed development. Seed, 2009, 28(6): 18-23. |
刘文辉, 梁国玲, 周青平, 等. 青海扁茎早熟禾种子成熟过程中落粒性与生长生理特性的研究. 种子, 2009, 28(6): 18-23. | |
18 | Cheng M M, Zhang M Y, Cai M, et al. Affect factors and controlling measures on seed shattering in forage seed production. Chinese Journal of Tropical Agriculture, 2014, 34(5): 19-24. |
成苗苗, 张美艳, 蔡明, 等. 牧草种子生产中落粒性的影响因素与防控技术. 热带农业科学, 2014, 34(5): 19-24. | |
19 | Bonin S G, Goplen B P. A histological study of seed shattering in reed canary grass. Canadian Journal of Plant Science, 1963, 43(2): 200-205. |
20 | Liang Q. Study on the resistance of seed shattering in Triticum aestivum L. Gansu Agricultural Science and Technology, 1988(6): 11-12. |
梁权. 小麦抗落粒性的研究. 甘肃农业科技, 1988(6): 11-12. | |
21 | Tanno K, Willcox G. How fast was wild wheat domesticated? Science, 2006, 311: 1886. |
22 | Watanabe N, Sugiyama K, Yamagishi Y, et al. Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas, 2002, 137(3): 180-185. |
23 | Kandemir N, Kudrna D A, Ullrich S E, et al. Molecular marker assisted genetic analysis of head shattering in six-rowed barley. Theoretical and Applied Genetics, 2000, 101(1/2): 203-210. |
24 | Bleecker A B, Patterson S E. Last exit: Senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell, 1997, 9(7): 1169-1179. |
25 | Burson B L, Correa J, Potts H C. Anatomical basis for seed shattering in kleingrass and guineagrass. Crop Science, 1983, 23(4): 747-751. |
26 | You M H, Liu J P, Bai S Q, et al. Study on relationship of seed shattering, seed development and yield traits of Elymus sibiricus L. Southwest China Journal of Agricultural Sciences, 2011, 24(4): 1256-1260. |
游明鸿, 刘金平, 白史且, 等. 老芒麦落粒性与种子发育及产量性状关系的研究. 西南农业学报, 2011, 24(4): 1256-1260. | |
27 | Tian H, Zhang H S, Xiong J B, et al. Study on the seed shattering and suitable seed harvesting time of Bromus cartharticus Vahl. Hubei Agricultural Sciences, 2015, 54(23): 187-190. |
田宏, 张鹤山, 熊军波, 等. 扁穗雀麦种子落粒性和适宜采收期的研究. 湖北农业科学, 2015, 54(23): 187-190. | |
28 | Zhang M Q. Seed shattering and its related MADS-box genes in Elymus nutans. Lanzhou: Lanzhou University, 2011. |
张妙青. 垂穗披碱草种子落粒性及其相关MADS-box基因研究. 兰州: 兰州大学, 2011. | |
29 | Zhang L. Functional characterization of two shattering and yield related genes in common wheat (Triticum aestivum L.). Beijing: Chinese Academy of Agricultural Sciences, 2013. |
张兰. 小麦落粒性与产量性状相关基因功能鉴定. 北京: 中国农业科学院, 2013. | |
30 | Elgersma A, Leeuwangh J E, Wilms H J. Abscission and seed shattering in perennial ryegrass (Lolium perenne L.). Euphytica, 1988, 39(3): 51-57. |
31 | Xie W G, Zhang J C, Zhao X H, et al. Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biology, 2017, 17(1): 78. |
32 | Fu Z Y, Song J C, Zhao J Q, et al. Identification and expression of genes associated with the abscission layer controlling seed shattering in Lolium perenne. AoB Plants, 2019, 11(1): https://doi.org/10.1093/aobpla/ply076. |
33 | Zhao Y Q, Zhang J C, Zhang Z Y, et al. Elymus nutans genes for seed shattering and candidate gene-derived EST-SSR markers for germplasm evaluation. BMC Plant Biology, 2019, 19(1): 102. |
34 | Pourkheirandish M, Hensel G, Kilian B, et al. Evolution of the grain dispersal system in barley. Cell, 2015, 162(3): 527-539. |
35 | Qiao A H, Han J G. Study on the changes of seed vigor during the maturation process of Elymus nutans and its optimal harvesting time. Journal of Anhui Agricultural Sciences, 2010, 38(22): 11847-11850. |
乔安海, 韩建国. 垂穗披碱草种子成熟过程中活力变化及适宜收获期研究. 安徽农业科学, 2010, 38(22): 11847-11850. | |
36 | Sargent J A, Osborne D J, Dunford S M. Cell separation and its hormonal control during fruit abscission in the Gramineae. Journal of Experimental Botany, 1984, 35(160): 1663-1674. |
37 | Aneja M, Gianfagna T, Ng E. The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regulation, 1999, 27(3): 149-155. |
38 | Wang Q S, Zhao D Y, Shen L, et al. Regulation of plant organs abscission by abscission regulating substances. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(11): 2352-2359. |
王权帅, 赵丹莹, 申琳, 等. 脱落调节物质对植物器官脱落的调控. 西北植物学报, 2009, 29(11): 2352-2359. | |
39 | Han J G, Mao P S, Niu Z L, et al. Changes of physiology and biochemistry during seed development of siberian wildrye. Acta Agrestia Sinica, 2000, 8(4): 237-244. |
韩建国, 毛培胜, 牛忠联, 等. 老芒麦种子发育过程中的生理生化变化. 草地学报, 2000, 8(4): 237-244. | |
40 | Mao P S, Han J G, Wang Y, et al. Effects of fertilization on seed yield and seed quality of Elymus sibiricus. Pratacultural Science, 2001, 18(4): 7-13. |
毛培胜, 韩建国, 王颖, 等. 施肥处理对老芒麦种子质量和产量的影响. 草业科学, 2001, 18(4): 7-13. | |
41 | Roberts J A, Elliott K A, Gonzalez-carranza Z H. Abscission, dehiscence, and other cell separation processes. Annual Review of Plant Biology, 2002, 53(1): 131-158. |
42 | Jackson M B, Hartley C B, Osborne D J. Timing abscission in Phaseolus vulgaris L. by controlling ethylene production and sensitivity to ethylene. New Phytologist, 1973, 72(6): 1251-1260. |
43 | Ogawa M, Kay P, Wilson S, et al. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. The Plant Cell, 2009, 21(1): 216-233. |
44 | Chang T T, Li C C, Tagumpay O. Genetic correlation, heterosis, inbreeding depression and transgressive segregation of agronomic traits in a diallel cross of rice (Oryza sativa L.) cultivars. Botanical Bulletin Academia Sinica Taipei, 1973, 14(2): 83-93. |
45 | Taylor J E, Whitelaw C A. Signals in abscission. New Phytologist, 2001, 151(2): 323-340. |
46 | Osborne D J, Morgan P W. Abscission. Critical Reviews in Plant Sciences, 1989, 8(2): 103-129. |
47 | Fischer R L, Bennett A B. Role of cell wall hydrolases in fruit ripening. Annual Review of Plant Biology, 1991, 42(1): 675-703. |
48 | Sexton R, Roberts J A. Cell biology of abscission. Annual Review of Plant Physiology, 1982, 33(1): 133-162. |
49 | Tucker M L, Sexton R, Campillo E D, et al. Bean abscission cellulase: Characterization of a cDNA clone and regulation of gene expression by ethylene and auxin. Plant Physiology, 1988, 88(4): 1257-1262. |
50 | Agrawal A P, Basarkar P W, Salimath P M, et al. Role of cell wall-degrading enzymes in pod-shattering process of soybean, Glycine max (L.) Merrill. Current Science, 2002, 82(1): 58-61. |
51 | Sexton R, Durbin M L, Lewis L N, et al. Use of cellulase antibodies to study leaf abscission. Nature, 1980, 283(5750): 873-874. |
52 | González-carranza Z H, Lozoya-gloria E, Roberts J A. Recent developments in abscission: Shedding light on the shedding process. Trends in Plant Science, 1998, 3(1): 10-14. |
53 | Cai H W, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice. Theoretical and Applied Genetics, 2000, 100(6): 840-846. |
54 | Sun P Y, Zhang W H, Wang Y H, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice. Journal of Integrative Plant Biology, 2016, 58(10): 836-847. |
55 | Zhu B F, Si L Z, Wang Z X, et al. Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiology, 2011, 155(3): 1301-1311. |
56 | Ishii T, Numaguchi K, Miura K, et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nature Genetics, 2013, 45(4): 462-465. |
57 | Luo J J, Hao W, Jin J, et al. Fine mapping of Spr3, a locus for spreading panicle from African cultivated rice (Oryza glaberrima Steud.). Molecular Plant, 2008, 1(5): 830-838. |
58 | Wu W G, Liu X Y, Wang M H, et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3(6): 14964-14969. |
59 | Jiang L Y, Ma X, Zhao S S, et al. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. The Plant Cell, 2019, 31(1): 17-36. |
60 | Simons K J, Fellers J P, Trick H N, et al. Molecular characterization of the major wheat domestication gene Q. Genetics, 2006, 172(1): 547-555. |
61 | Huskins C L. Fatuoid, speltoid and related mutations of oats and wheat. The Botanical Review, 1946, 12(8): 457-514. |
62 | Sears E R. Misdivision of univalent in common wheat. Chromosoma, 1952, 4(6): 535-550. |
63 | Muramatsu M. Dosage effect of the spelta gene Q of hexaploid wheat. Genetics, 1963, 48(4): 469-482. |
64 | Debernardi J M, Lin H, Chuck G, et al. MicroRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development, 2017, 144(11): 1966-1975. |
65 | Xu B J, Chen Q, Zheng T, et al. An overexpressed Q allele leads to increased spike density and improved processing quality in common wheat (Triticum aestivum). Genes, Genomes, Genetics, 2018, 8(3): 771-778. |
66 | Liu P, Liu J, Dong H X, et al. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density. Plant Biotechnology Journal, 2018, 16(2): 495-506. |
67 | Kerber E R, Rowland G G. Origin of the free threshing character in hexaploid wheat. Genome, 1974, 16(1): 145-154. |
68 | Avni R, Nave M, Barad O, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357(6346): 93-97. |
69 | Zhao Y, Xie P, Guan P F, et al. Btr1-A induces grain shattering and affects spike morphology and yield-related traits in wheat. Plant and Cell Physiology, 2019, 60(6): 1342-1353. |
70 | Haberer G, Mayer K F. Barley: From brittle to stable harvest. Cell, 2015, 162(3): 469-471. |
71 | Arnaud N, Lawrenson T, Østergaard L, et al. The same regulatory point mutation changed seed-dispersal structures in evolution and domestication. Current Biology, 2011, 21(14): 1215-1219. |
72 | Gasser C S, Simon M K. Seed dispersal: Same gene, different organs. Current Biology, 2011, 21(14): 546-548. |
73 | Lv S W, Wu W G, Wang M H, et al. Genetic control of seed shattering during African rice domestication. Nature Plants, 2018, 4(6): 331-337. |
74 | Zheng Y, Jiao C, Sun H H, et al. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant, 2016, 9(12): 1667-1670. |
75 | Ji H, Kim S R, Kim Y H, et al. Inactivation of the CTD phosphatase‐like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. The Plant Journal, 2010, 61(1): 96-106. |
76 | Hofmann N R. SHAT1, a new player in seed shattering of rice. The Plant Cell, 2012, 24(3): 839. |
77 | Zhou Y, Lu D F, Li C Y, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. The Plant Cell, 2012, 24(3): 1034-1048. |
78 | Li F, Numa H, Hara N, et al. Identification of a locus for seed shattering in rice (Oryza sativa L.) by combining bulked segregant analysis with whole-genome sequencing. Molecular Breeding, 2019, 39(3): 36. |
79 | Tsujimura Y, Sugiyama S, Otsuka K, et al. Detection of a novel locus involved in non-seed-shattering behaviour of Japonica rice cultivar, Oryza sativa ‘Nipponbare’. Theoretical and Applied Genetics, 2019, 132(9): 2615-2623. |
80 | Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54(1): 519-546. |
81 | Li W L, Gill B S. Multiple genetic pathways for seed shattering in the grasses. Functional and Integrative Genomics, 2006, 6(4): 300-309. |
82 | Thurber C S, Reagon M, Gross B L, et al. Molecular evolution of shattering loci in U.S. weedy rice. Molecular Ecology, 2010, 19(16): 3271-3284. |
83 | Zhu Y, Ellstrand N C, Lu B R. Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication. Ecology and Evolution, 2012, 2(9): 2106-2113. |
84 | Zhang Y, Zhou J, Yang Y, et al. Two SNP mutations turned off seed shattering in rice. Plants, 2019, 8(11): 475. |
85 | Inoue C, Htun T M, Inoue K, et al. Inhibition of abscission layer formation by an interaction of two seed-shattering loci, sh4 and qSH3, in rice. Genes & Genetic Systems, 2015, 90(1): 1-9. |
86 | Yoon J, Cho L H, Antt H W, et al. KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiology, 2017, 174(1): 312-325. |
87 | Zhang L, Liu D M, Wang D, et al. Over expression of the wheat BEL1-like gene TaqSH1 affects floral organ abscission in Arabidopsis thaliana. Journal of Plant Biology, 2013, 56(2): 98-105. |
88 | Larson S R, Kellogg E A. Genetic dissection of seed production traits and identification of a major-effect seed retention QTL in hybrid Leymus (Triticeae) wildryes. Crop Science, 2009, 49(1): 29-40. |
89 | Tian Q S, Gao J Y, Rong X P, et al. Cloning and evolutionary analysis of shattering related gene Amsh1 in Agropyron mongolicum. Molecular Plant Breeding, 2018, 16(22): 7289-7297. |
田青松, 高金玉, 融晓萍, 等. 蒙古冰草(Agropyron mongolicum)落粒相关基因Amsh1克隆及进化分析. 分子植物育种, 2018, 16(22): 7289-7297. | |
90 | Mamidi S, Healey A, Huang P, et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology, 2020(38): 1203-1210. |
91 | Brown K M. Ethylene and abscission. Physiologia Plantarum, 1997, 100(3): 567-576. |
92 | Santiago J, Rodrigues A, Saez A, et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade? A PP2Cs. The Plant Journal, 2009, 60(4): 575-588. |
93 | Fujii H, Verslues P E, Zhu J K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. The Plant Cell, 2007, 19(2): 485-494. |
94 | Fujii H, Chinnusamy V, Rodrigues A, et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462(7273): 660-664. |
95 | Zhang J C. Identification and functional analysis of candidate genes for seed shattering in Elymus sibiricus based on transcriptome sequencing. Lanzhou: Lanzhou University, 2020. |
张俊超. 基于转录组测序挖掘老芒麦落粒候选基因及其功能分析. 兰州: 兰州大学, 2020. | |
96 | Li L B, Liu L, He C F, et al. Research progresses on the genes encoding the key enzymes in biosynthetic pathway of lignin. Molecular Plant Breeding, 2007, 5(6): 45-51. |
李潞滨, 刘蕾, 何聪芬, 等. 木质素生物合成关键酶基因的研究进展. 分子植物育种, 2007, 5(6): 45-51. | |
97 | Nunes A L, Delatorre C A, Merotto A J. Gene expression related to seed shattering and the cell wall in cultivated and weedy rice. Plant Biology, 2014, 16(5): 888-896. |
98 | Zhou H L, He S J, Cao Y R, et al. OsGLU1, a putative membrane-bound endo-1,4-ß-d-glucanase from rice, affects plant internode elongation. Plant Molecular Biology, 2006, 60(1): 137-151. |
99 | Lin Z W, Griffith M E, Li X R, et al. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226(1): 11-20. |
100 | Tang H B, Cuevas H E, Das S, et al. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proceedings of the National Academy of Sciences, 2013, 110(39): 15824-15829. |
101 | Xin Z J, Wang Q, Yu Z N, et al. Over expression of a xylanase inhibitor gene, OsHI-XIP, enhances resistance in rice to herbivores. Plant Molecular Biology Reporter, 2014, 32(2): 465-475. |
102 | Goesaert H, Gebruers K, Courtin C M, et al. Purification and characterization of a XIP-type endoxylanase inhibitor from rice (Oryza sativa). Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20(1): 95-101. |
103 | Durand A, Hughes R, Roussel A, et al. Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS Journal, 2005, 272(7): 1745-1755. |
104 | Tokunaga T, Esaka M. Induction of a novel XIP-type xylanase inhibitor by external ascorbic acid treatment and differential expression of XIP-family genes in rice. Plant and Cell Physiology, 2007, 48(5): 700-714. |
[1] | 曹佳敏, 郭亚亚, 李娜娜, 孙海荣, 车昭碧, 鲁为华. 绢蒿荒漠粪甲虫多样性特征及其对粪便内种子的二次分配[J]. 草业学报, 2021, 30(8): 137-145. |
[2] | 徐鑫磊, 宋彦涛, 赵京东, 乌云娜. 施肥和刈割对呼伦贝尔草甸草原牧草品质的影响及其与植物多样性的关系[J]. 草业学报, 2021, 30(7): 1-10. |
[3] | 李春杰, 郎鸣晓, 陈振江, 王正凤, 陈泰祥. 禾草-内生真菌人工接种技术研究进展[J]. 草业学报, 2021, 30(7): 179-189. |
[4] | 陶雅, 孙启忠, 柳茜, 李峰, 徐丽君, 李达, 王笛. 先秦时期的牧草栽培利用考述[J]. 草业学报, 2021, 30(5): 200-210. |
[5] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[6] | 南志标, 王彦荣, 聂斌, 李春杰, 张卫国, 夏超. 春箭筈豌豆新品种“兰箭3号”选育与特性评价[J]. 草业学报, 2021, 30(4): 111-120. |
[7] | 吴瑞, 刘文辉, 张永超, 秦燕, 魏小星, 刘敏洁. 青藏高原老芒麦落粒性及农艺性状相关性研究[J]. 草业学报, 2021, 30(4): 130-139. |
[8] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[9] | 潘发明, 常生华, 王国栋, 郝生燕, 刘佳, 张辉元, 徐银萍. 物候期对放牧牦牛瘤胃液、牧草中脂肪酸及乳脂中共轭亚油酸组成的影响及其相关性分析[J]. 草业学报, 2021, 30(3): 110-120. |
[10] | 侯金伟, 陈焘, 南志标. 不同埋藏方式及杀菌剂处理对黄土高原3种植物种子存活的影响[J]. 草业学报, 2021, 30(3): 129-136. |
[11] | 张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响[J]. 草业学报, 2021, 30(3): 158-166. |
[12] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
[13] | 牛欢欢, 王森森, 贾宏定, 陈桂华. 光叶紫花苕子浸提液对4种牧草种子萌发过程的化感作用[J]. 草业学报, 2020, 29(9): 161-168. |
[14] | 李凤兰, 武佳文, 姚树宽, 赵梓颐, 赵潇璨, 贺付蒙, 朱元芳, 石奇海, 周磊, 徐永清. 假苍耳不同部位水浸提液对5种土著植物化感作用的研究[J]. 草业学报, 2020, 29(9): 169-178. |
[15] | 张雨桐, 石凤翎. 株型形成及牧草株型相关研究进展[J]. 草业学报, 2020, 29(9): 203-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||