草业学报 ›› 2022, Vol. 31 ›› Issue (10): 145-153.DOI: 10.11686/cyxb2022128
• 研究论文 • 上一篇
收稿日期:
2022-03-25
修回日期:
2022-05-05
出版日期:
2022-10-20
发布日期:
2022-09-14
通讯作者:
杨惠敏
作者简介:
E-mail: huimyang@lzu.edu.cn基金资助:
Tao ZHOU(), Le MU, Kai-qi SU, Jun-yu ZHANG, Hui-min YANG()
Received:
2022-03-25
Revised:
2022-05-05
Online:
2022-10-20
Published:
2022-09-14
Contact:
Hui-min YANG
摘要:
探讨不同间作比例下调亏灌溉对春小麦灌浆期旗叶性状的影响,进一步阐明豆科/禾本科间作优势,可为构建河西走廊地区适宜的粮草种植模式提供参考。设置春小麦单播(SW)、春小麦∶紫花苜蓿12∶4(12W4A)和8∶4(8W4A)的带状间作以及灌溉量为450(I450)、360(I360)、270(I270)和180 mm(I180)的水分梯度,通过测定灌浆期旗叶性状指标来分析间作下调亏灌溉对春小麦旗叶性状的影响。结果表明:1) 随灌溉量降低,春小麦旗叶的叶面积呈先增大后减小的趋势,在I360下达到最大值;而比叶重、叶氮浓度和叶绿素含量呈上升趋势,叶长宽比和叶干物质含量无明显变化。2) 总体上,春小麦旗叶面积表现为8W4A>12W4A,比叶重、叶氮浓度和叶绿素含量为12W4A>8W4A。12W4A的冠层结构下春小麦群体生长空间比例适宜,有利于旗叶光合同化作用的发挥。
周涛, 牟乐, 苏楷淇, 张筠钰, 杨惠敏. 间作比例和调亏灌溉对春小麦/紫花苜蓿间作中春小麦灌浆期旗叶性状的影响[J]. 草业学报, 2022, 31(10): 145-153.
Tao ZHOU, Le MU, Kai-qi SU, Jun-yu ZHANG, Hui-min YANG. Effects of intercropping ratio and regulated deficit irrigation on flag leaf traits of spring wheat at the grain filling stage in spring wheat-alfalfa intercropping[J]. Acta Prataculturae Sinica, 2022, 31(10): 145-153.
因素 Factor | 叶面积 Leaf area | 叶长宽比 Leaf length/ width | 比叶重 Specific leaf weight | 叶干物质含量 Leaf dry matter content | 叶氮浓度 Leaf nitrogen concentration | 叶绿素含量 Chlorophyll content |
---|---|---|---|---|---|---|
间作比例Intercropping ratio (Ir) | 50.482*** | 13.737*** | 11.200*** | 5.727** | 21.381*** | 16.923*** |
灌溉量Irrigation amount (Ia) | 19.013*** | 26.920*** | 33.260*** | 5.090** | 17.091*** | 67.745*** |
间作比例×灌溉量Ir×Ia | 8.851*** | 12.628*** | 1.708 | 5.539* | 6.457*** | 6.979*** |
表1 间作比例和灌溉量对灌浆期春小麦旗叶性状的影响效应分析
Table 1 Analysis on effects of intercropping ratio and irrigation amount on flag leaf traits of spring wheat at the grain filling stage
因素 Factor | 叶面积 Leaf area | 叶长宽比 Leaf length/ width | 比叶重 Specific leaf weight | 叶干物质含量 Leaf dry matter content | 叶氮浓度 Leaf nitrogen concentration | 叶绿素含量 Chlorophyll content |
---|---|---|---|---|---|---|
间作比例Intercropping ratio (Ir) | 50.482*** | 13.737*** | 11.200*** | 5.727** | 21.381*** | 16.923*** |
灌溉量Irrigation amount (Ia) | 19.013*** | 26.920*** | 33.260*** | 5.090** | 17.091*** | 67.745*** |
间作比例×灌溉量Ir×Ia | 8.851*** | 12.628*** | 1.708 | 5.539* | 6.457*** | 6.979*** |
指标 Index | 灌溉量 Irrigation amount | 间作比例Intercropping ratio | ||
---|---|---|---|---|
SW | 12W4A | 8W4A | ||
叶面积 Leaf area (cm2) | I450 | 12.12±0.95Ab | 7.32±0.18Bab | 7.89±0.12Bb |
I360 | 15.64±2.29Aa | 8.71±0.83Ba | 9.51±1.14Ba | |
I270 | 9.46±0.21Ac | 8.39±1.42Aa | 9.20±0.85Aab | |
I180 | 8.84±0.70Ac | 5.86±0.06Bb | 8.93±0.26Aab | |
叶长宽比 Leaf length/width (mm·mm-1) | I450 | 7.40±0.28Bb | 11.80±0.43Aa | 11.94±0.16Aa |
I360 | 11.97±1.69Aa | 11.26±0.54Aa | 10.85±0.18Aa | |
I270 | 11.25±0.29Aa | 8.87±0.54Bb | 11.21±1.66Aa | |
I180 | 6.84±0.84Bb | 5.37±1.36Bc | 10.44±1.33Aa |
表2 不同间作比例和灌溉量下旗叶面积和叶长宽比
Table 2 Flag leaf area and leaf length/width under different intercropping ratios and irrigation amounts
指标 Index | 灌溉量 Irrigation amount | 间作比例Intercropping ratio | ||
---|---|---|---|---|
SW | 12W4A | 8W4A | ||
叶面积 Leaf area (cm2) | I450 | 12.12±0.95Ab | 7.32±0.18Bab | 7.89±0.12Bb |
I360 | 15.64±2.29Aa | 8.71±0.83Ba | 9.51±1.14Ba | |
I270 | 9.46±0.21Ac | 8.39±1.42Aa | 9.20±0.85Aab | |
I180 | 8.84±0.70Ac | 5.86±0.06Bb | 8.93±0.26Aab | |
叶长宽比 Leaf length/width (mm·mm-1) | I450 | 7.40±0.28Bb | 11.80±0.43Aa | 11.94±0.16Aa |
I360 | 11.97±1.69Aa | 11.26±0.54Aa | 10.85±0.18Aa | |
I270 | 11.25±0.29Aa | 8.87±0.54Bb | 11.21±1.66Aa | |
I180 | 6.84±0.84Bb | 5.37±1.36Bc | 10.44±1.33Aa |
图1 不同间作比例和灌溉量下旗叶的比叶重和叶干物质含量不同大写字母表示同一灌溉量不同间作比例间差异显著(P<0.05),不同小写字母表示同一间作比例不同灌溉量间差异显著(P<0.05)。Different capital letters indicate significant differences among different intercropping ratios under the same irrigation amount (P<0.05), and different lowercase letters indicate significant differences among different irrigation amounts under the same intercropping ratio (P<0.05).
Fig.1 Specific leaf weight and leaf dry matter content of flag leaf under different intercropping ratios and irrigation amounts
指标 Index | 灌溉量 Irrigation amount | 间作比例 Intercropping ratio | ||
---|---|---|---|---|
SW | 12W4A | 8W4A | ||
叶氮浓度 Leaf nitrogen concentration (mg·g-1) | I450 | 17.7±1.99Ab | 17.9±1.54Ab | 15.9±0.25Ab |
I360 | 19.6±2.50Ab | 18.7±2.84Ab | 13.1±1.33Bc | |
I270 | 19.6±0.48Ab | 17.2±1.34Bb | 19.7±0.95Aa | |
I180 | 25.4±0.95Aa | 22.5±1.45Ba | 17.2±0.81Cb | |
叶绿素含量 Chlorophyll content (mg·g-1) | I450 | 32.4±1.80Ab | 29.2±2.98Ab | 28.7±0.20Ac |
I360 | 35.2±0.62Ab | 37.9±3.41Aa | 25.3±1.04Bd | |
I270 | 44.4±0.19Aa | 39.0±3.78Ba | 42.7±1.46ABa | |
I180 | 44.8±2.30Aa | 44.0±3.76ABa | 38.6±1.66Bb |
表3 不同间作比例和灌溉量下旗叶氮浓度和叶绿素含量
Table 3 Flag leaf nitrogen concentration and chlorophyll content under different intercropping ratios and irrigation amounts
指标 Index | 灌溉量 Irrigation amount | 间作比例 Intercropping ratio | ||
---|---|---|---|---|
SW | 12W4A | 8W4A | ||
叶氮浓度 Leaf nitrogen concentration (mg·g-1) | I450 | 17.7±1.99Ab | 17.9±1.54Ab | 15.9±0.25Ab |
I360 | 19.6±2.50Ab | 18.7±2.84Ab | 13.1±1.33Bc | |
I270 | 19.6±0.48Ab | 17.2±1.34Bb | 19.7±0.95Aa | |
I180 | 25.4±0.95Aa | 22.5±1.45Ba | 17.2±0.81Cb | |
叶绿素含量 Chlorophyll content (mg·g-1) | I450 | 32.4±1.80Ab | 29.2±2.98Ab | 28.7±0.20Ac |
I360 | 35.2±0.62Ab | 37.9±3.41Aa | 25.3±1.04Bd | |
I270 | 44.4±0.19Aa | 39.0±3.78Ba | 42.7±1.46ABa | |
I180 | 44.8±2.30Aa | 44.0±3.76ABa | 38.6±1.66Bb |
指标Index | L/W | LA | LMA | LDMC | LNC |
---|---|---|---|---|---|
LA | 0.205 | ||||
LMA | -0.471** | -0.482** | |||
LDMC | 0.172 | 0.534** | -0.187 | ||
LNC | -0.498** | -0.061 | 0.436** | 0.121 | |
Chl | -0.367* | -0.130 | 0.741** | 0.068 | 0.722** |
表4 间作和调亏灌溉下春小麦旗叶性状的相关性
Table 4 Correlations among flag leaf traits of spring wheat under intercropping and regulated deficit irrigation
指标Index | L/W | LA | LMA | LDMC | LNC |
---|---|---|---|---|---|
LA | 0.205 | ||||
LMA | -0.471** | -0.482** | |||
LDMC | 0.172 | 0.534** | -0.187 | ||
LNC | -0.498** | -0.061 | 0.436** | 0.121 | |
Chl | -0.367* | -0.130 | 0.741** | 0.068 | 0.722** |
1 | Corre-Hellou G, Fustec J, Crozat Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant and Soil, 2006, 282(1): 195-208. |
2 | Gogoi N, Baruah K K, Meena R S. Grain legumes: Impact on soil health and agroecosystem. Singapore: Springer Singapore, 2018: 511-539. |
3 | Li X, Zhao Y S, Sun G Y, et al. Linking soil bacterial community and crop yield in a wheat (Triticum aestivum L.)-alfalfa (Medicago sativa L.) intercropping system. Applied Ecology and Environmental Research, 2020, 18(3): 4487-4505. |
4 | Li E H, Mu Y Y, He Y N, et al. Effects of wheat/alfalfa intercropping systems on soil moisture and water utilization efficiency. Research of Soil and Water Conservation, 2020, 27(1): 54-58, 65. |
李恩慧, 穆阳阳, 何亚男, 等. 小麦和苜蓿套作种植对土壤水分及作物水分利用效率的影响. 水土保持研究, 2020, 27(1): 54-58, 65. | |
5 | An Z, Zhang M K, Qin J H, et al. Effects of wheat-maize||alfalfa intercropping mode on soil salinity and annual yield in saline-alkali field. Shandong Agricultural Sciences, 2019, 51(6): 69-74. |
安振, 张梦坤, 秦基皓, 等. 小麦玉米与苜蓿间作模式对盐碱地土壤含盐量及周年产量的影响. 山东农业科学, 2019, 51(6): 69-74. | |
6 | Liu Y N. Growth, yield and water use efficiency in winter wheat and alfalfa intercropping systems on the dryland of Loess Plateau. Lanzhou: Lanzhou University, 2020. |
刘亚男. 黄土旱塬区冬小麦/紫花苜蓿间作系统作物生长动态、产量与水分利用效率研究. 兰州: 兰州大学, 2020. | |
7 | Gong X W, Dang K, Li J, et al. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Scientia Agricultura Sinica, 2019, 52(22): 4139-4153. |
宫香伟, 党科, 李境, 等. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019, 52(22): 4139-4153. | |
8 | Yang F, Liao D, Wu X, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16-23. |
9 | Jiao N Y, Ning T Y, Zhao C, et al. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica, 2006, 32(6): 917-923. |
焦念元, 宁堂原, 赵春, 等. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006, 32(6): 917-923. | |
10 | Dong S, Wang H, Jia Q M, et al. Effects of irrigation modes and planting patterns on the growth, yield and economic benefits of silage maize in Hexi region. Acta Agrestia Sinica, 2020, 28(4): 1111-1120. |
董姗, 王皓, 贾倩民, 等. 灌溉模式与种植方式对河西地区青贮玉米生长、产量和经济效益的影响. 草地学报, 2020, 28(4): 1111-1120. | |
11 | Li X J, Bai Y P, Li M, et al. Analysis on spatiotemporal correlation between water resource change and ecological environment in Hexi Corridor. Bulletin of Soil and Water Conservation, 2019, 39(2): 275-280, 287. |
李晓婧, 白艳萍, 李萌, 等. 河西走廊水资源变化与生态环境时空关联分析. 水土保持通报, 2019, 39(2): 275-280, 287. | |
12 | Kou D, Su D R, Wu D, et al. Effects of regulated deficit irrigation on water consumption, hay yield and quality of alfalfa under subsurface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 116-123. |
寇丹, 苏德荣, 吴迪, 等. 地下调亏滴灌对紫花苜蓿耗水、产量和品质的影响. 农业工程学报, 2014, 30(2): 116-123. | |
13 | Wan W L, Guo P F, Hu Y Y, et al. Distribution and yield of spring wheat under drip irrigation in Xinjiang. Journal of Soil and Water Conservation, 2018, 32(6): 166-174. |
万文亮, 郭鹏飞, 胡语妍, 等. 调亏灌溉对新疆滴灌春小麦土壤水分、硝态氮分布及产量的影响. 水土保持学报, 2018, 32(6): 166-174. | |
14 | Zhang X, Wang Z N, Lu J Y, et al. Responses of leaf traits to drought at different growth stages of alfalfa. Acta Ecologica Sinica, 2016, 36(9): 2669-2676. |
张曦, 王振南, 陆姣云, 等. 紫花苜蓿叶性状对干旱的阶段性响应. 生态学报, 2016, 36(9): 2669-2676. | |
15 | Sun H Y, Liu C M, Zhang X Y, et al. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 2006, 85(1/2): 211-218. |
16 | Poorter H, Niinemets L, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 2009, 182(3): 565-588. |
17 | Cao L Q, Zhong Q P, Luo S, et al. Variation in leaf structure of Camellia oleifera under drought stress. Forestry Research, 2018, 31(3): 136-143. |
曹林青, 钟秋平, 罗帅, 等. 干旱胁迫下油茶叶片结构特征的变化. 林业科学研究, 2018, 31(3): 136-143. | |
18 | Ulo N, Antonio D E, Jaume F, et al. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany, 2009, 60(8): 2249-2270. |
19 | Liu M X, Liang G L. Research progress on leaf mass per area. Chinese Journal of Plant Ecology, 2016, 40(8): 847-860. |
刘明秀, 梁国鲁. 植物比叶质量研究进展. 植物生态学报, 2016, 40(8): 847-860. | |
20 | Feng J, Jiang C, Shui W, et al. Functional traits of Fagaceae plants in shady and sunny slopes in karst degraded tiankeng. Chinese Journal of Applied Ecology, 2021, 32(7): 2301-2308. |
冯洁, 江聪, 税伟, 等. 喀斯特退化天坑阴坡阳坡壳斗科植物的功能性状特征. 应用生态学报, 2021, 32(7): 2301-2308. | |
21 | Huang Q J. Effects of water deficit on physiological characteristics and differential proteins in flag leaves of wheat during grain filling stage. Tai’an: Shandong Agricultural University, 2021. |
黄峤璟. 灌浆期水分亏缺对小麦旗叶生理特性及差异蛋白的影响. 泰安: 山东农业大学, 2021. | |
22 | Wright I J, Reich P B, Westoby M, et al. The world-wide leaf economics spectrum. Nature, 2004, 428: 821-827. |
23 | Gamar M, Kisiala A, Emery R, et al. Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana. Planta, 2019, 250(4): 1191-1214. |
24 | Yu S X, Li F, Li S L, et al. Effects of water stress on chlorophyll contents of new wheat lines. Journal of Yunnan Agricultural University (Natural Science Edition), 2014, 29(3): 353-358. |
俞世雄, 李芬, 李绍林, 等. 水分胁迫对小麦新品系叶绿素含量的影响. 云南农业大学学报(自然科学版), 2014, 29(3): 353-358. | |
25 | Sun M, Tian K, Zhang Y, et al. Research on leaf functional traits and their environmental adaptation. Plant Science Journal, 2017, 35(6): 940-949. |
孙梅, 田昆, 张贇, 等. 植物叶片功能性状及其环境适应研究. 植物科学学报, 2017, 35(6): 940-949. | |
26 | Kleiman D, Aarssen L W. The leaf size/number trade-off in trees. Journal of Ecology, 2007, 95(2): 376-382. |
27 | Gáborčík N. Relationship between contents of chlorophyll (a+b) (SPAD values) and nitrogen of some temperate grasses. Photosynthetica: International Journal for Photosynthesis Research, 2003, 41(2): 285-287. |
28 | Wright I J, Reich W P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 2002, 90(3): 534-543. |
29 | Hu M Y, Zhang L, Luo T X, et al. Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 2012, 36(2): 136-143. |
胡梦瑶, 张林, 罗天祥, 等. 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 2012, 36(2): 136-143. | |
30 | Reich P B. The world-wide‘fast-slow’plant economics spectrum: A traits manifesto. Journal of Ecology, 2014, 102(2): 275-301. |
31 | Kołodziejek J, Michlewska S. Effect of soil moisture on morpho-anatomical leaf traits of Ranunculus acris (Ranunculaceae). Polish Journal of Ecology, 2015, 63(3): 400-413. |
[1] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[2] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[3] | 赵建涛, 岳亚飞, 张前兵, 马春晖. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应[J]. 草业学报, 2022, 31(8): 24-34. |
[4] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[5] | 王雪萌, 何欣, 张涵, 宋瑞, 毛培胜, 贾善刚. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报, 2022, 31(7): 197-208. |
[6] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
[7] | 孙洪仁, 王显国, 卜耀军, 乔楠, 任波. 黄土高原紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 草业学报, 2022, 31(4): 32-42. |
[8] | 高丽敏, 陈春, 沈益新. 氮磷肥对季节性栽培紫花苜蓿生长及再生的影响[J]. 草业学报, 2022, 31(4): 43-52. |
[9] | 欧成明, 赵美琦, 孙铭, 毛培胜. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报, 2022, 31(4): 93-101. |
[10] | 童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135. |
[11] | 张岳阳, 李芳, 梁维维, 李彦忠. 新疆昌吉32个紫花苜蓿品种的田间抗病性评价[J]. 草业学报, 2022, 31(2): 133-146. |
[12] | 王斌, 杨雨琦, 李满有, 倪旺, 海艺蕊, 张顺香, 董秀, 兰剑. 不同播种量下行距配置对紫花苜蓿产量及品质的影响[J]. 草业学报, 2022, 31(2): 147-158. |
[13] | 张辉辉, 师尚礼, 武蓓, 李自立, 李小龙. 苜蓿与3种多年生禾草混播效应研究[J]. 草业学报, 2022, 31(2): 159-170. |
[14] | 白婕, 臧真凤, 刘丛, 昝看卓, 龙明秀, 王可珍, 屈洋, 何树斌. 紫花苜蓿叶片和根系膜脂过氧化及C、N特征对水分和N添加的响应[J]. 草业学报, 2022, 31(2): 213-220. |
[15] | 林涛, 张立娇, 韩蓉蓉, 玉永雄, 蒋曹德. Gm4CL2基因对拟南芥和紫花苜蓿耐铝性的影响[J]. 草业学报, 2022, 31(10): 122-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||