草业学报 ›› 2022, Vol. 31 ›› Issue (11): 204-213.DOI: 10.11686/cyxb2021449
• 综合评述 • 上一篇
收稿日期:
2021-12-01
修回日期:
2022-01-11
出版日期:
2022-11-20
发布日期:
2022-10-01
通讯作者:
韩云华
作者简介:
韩云华(1985-),男,河北张家口人,副教授,博士。E-mail: hanyh@lzu.edu.cn基金资助:
Yun-hua HAN(), Su-juan MI, Xiao-qi SHI, Tian-hang ZHONG
Received:
2021-12-01
Revised:
2022-01-11
Online:
2022-11-20
Published:
2022-10-01
Contact:
Yun-hua HAN
摘要:
随着全球气候变化和人口数量的增长,人们对于植物生产的可持续发展需求更为迫切。纳米技术是21世纪发展最快的前沿科技之一,为促进农业可持续发展最有前景的工具之一。近年来,纳米材料调控植物生长的研究迅速发展,证实了其在传统植物生产中的潜在能力。为明确纳米材料对植物的促生作用及作用机制,本研究就纳米材料的吸收运输、纳米肥料、纳米植物生长调节剂、纳米酶与植物抗逆、纳米材料与光合作用等方面进行了论述,并指出纳米材料在植物生产领域面临的挑战和未来研究重点,强调要系统考虑纳米材料在农业生产中的应用,以期为后续纳米粒子调控植物生产的研究工作理清思路。
韩云华, 米素娟, 石晓琪, 钟天航. 纳米粒子的植物促生效应[J]. 草业学报, 2022, 31(11): 204-213.
Yun-hua HAN, Su-juan MI, Xiao-qi SHI, Tian-hang ZHONG. Promotional effects of nanoparticles on plants[J]. Acta Prataculturae Sinica, 2022, 31(11): 204-213.
图1 纳米材料的植物吸收运输途径A: 纳米材料通过叶片的吸收途径:经气孔和角质层空隙进入叶肉组织,通过共质体和质外体途径吸收;B: 纳米材料通过根系的吸收途径:共质体途径和质外体途径;C: 根系吸收经木质部转移到地上部;D: 叶片吸收经韧皮部转移到根部。A: The absorption pathway of nanomaterials through the leaves: stomata and cuticular pathway; B: The absorption pathway of nanomaterials through roots: symplastic and apoplastic transport; C: Absorbed by roots and transferred to the above ground through xylem; D: Absorbed by leaves and transferred to the roots through the phloem.
Fig.1 The absorption and transport pathways of nanomaterials in plants
图2 纳米酶提高植物的抗逆机制A: 纳米酶通过清除自由基提高植物抗逆性;B: 纳米材料阻碍病原微生物吸水,造成质壁分离;诱导产生ROS,造成基因表达异常,破坏细胞膜完整性,使细胞泄漏。 A: Nano-enzyme increase plant stress resistance by ROS scavenging; B: Nanomaterials hinder the absorption of water by pathogenic microorganisms, resulting in plasmolysis; Induce ROS production, resulting in abnormal gene expression, destruction of cell membrane integrity and cell leakage.
Fig.2 Improvement of plant resistance mechanism by nano-enzyme
1 | Bijali J, Acharya K. Current trends in nano-technological interventions on plant growth and development: a review. IET Nanobiotechnology, 2020, 14(2): 113-119. |
2 | Huang S W, Wang L, Liu L M, et al. Nanotechnology in agriculture, livestock, and aquaculture in China: A review. Agronomy for Sustainable Development, 2015, 35(2): 369-400. |
3 | Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-1851. |
4 | Su Y, Ashworth V, Kim C, et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science-Nano, 2019, 6(8): 2311-2331. |
5 | Wang J X, Chen C Y, Sun J, et al. Translocation of inhaled TiO2 nanoparticles along olfactory nervous system to brain studied by synchrotron radiation X-ray fluorescence. High Energy Physics and Nuclear Physics-Chinese Edition, 2005, 29: 76-79. |
6 | Liu Y, Xiao Z, Chen F, et al. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: trends, meta-analysis, and prospect. Science of the Total Environment, 2021, 780: e146578. |
7 | Mukhopadhyay S S. Nanotechnology in agriculture: prospects and constraints. Nanotechnology Science & Applications, 2014, 7: 63-71. |
8 | Rodrigues S M, Demokritou P, Dokoozlian N, et al. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science-Nano, 2017, 4(4): 767-781. |
9 | Zhang H Y, Liu Y, Shen X F, et al. Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings. Environmental Pollution, 2017, 220: 1409-1417. |
10 | Cano A M, Kohl K, Deleon S, et al. Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. Chemosphere, 2016, 152: e117. |
11 | Khodakovskaya M V, Kim B-S, Kim J N, et al. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small, 2013, 9(1): 115-123. |
12 | Wang X P, Han H Y, Liu X Q, et al. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 2012, 14: e841. |
13 | Lian F, Wang C R, Wang C X, et al. Variety-dependent responses of rice plants with differential cadmium accumulating capacity to cadmium telluride quantum dots (CdTe QDs): Cadmium uptake, antioxidative enzyme activity, and gene expression. Science of the Total Environment, 2019, 697: e134083. |
14 | Hu L, Wan J, Zeng G M, et al. Comprehensive evaluation of the cytotoxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium by cellular uptake and oxidative stress. Environmental Science-Nano, 2017, 4(10): 2018-2029. |
15 | Li W, Zheng Y J, Zhang H R, et al. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. Acs Applied Materials & Interfaces, 2016, 8(31): 19939-19945. |
16 | Navarro D A, Bisson M A, Aga D S. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. Journal of Hazardous Materials, 2012, 211(2): 427-435. |
17 | Nair R, Poulose A C, Nagaoka Y, et al. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. Journal of Fluorescence, 2011, 21(6): e2057. |
18 | Zhang H L, Du W C, Peralta-Videa J R, et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress. Environmental Science & Technology, 2018, 52(14): e8016. |
19 | Park S, Ahn Y J. Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (Daucus carota L.). Biocatalysis & Agricultural Biotechnology, 2016, 8: 257-262. |
20 | Tamez C, Hernandez-Molina M, Hernandez-Viezcas J A, et al. Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo). Science of the Total Environment, 2019, 665: 100-106. |
21 | Lin D H, Xing B S. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 2008, 42(15): 5580-5585. |
22 | López-Moreno M L, De L R G, Hernández-Viezcas J A, et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 2010, 44(19): 7315-7320. |
23 | Dimkpa C O, Mclean J E, Latta D E, et al. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 2012, 14(9): 1-15. |
24 | Xu X K, Mao X P, Zhuang J, et al. PVA-coated fluorescent carbon dot nanocapsules as an optical amplifier for enhanced photosynthesis of lettuce. Acs Sustainable Chemistry & Engineering, 2020, 8(9): 3938-3949. |
25 | Avellan A, Yun J, Zhang Y, et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano, 2019, 13(5): 5291-5305. |
26 | Schwab F, Zhai G, Kern M, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology, 2016, 10(3): 257-278. |
27 | Zhai G, Gutowski S M, Walters K S, et al. Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environmental Science & Technology, 2015, 49(12): e7380. |
28 | Hubbard J D, Lui A, Landry M P. Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Current Opinion in Chemical Engineering, 2020, 30: 135-143. |
29 | Rico C M, Majumdar S, Duarte-Gardea M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3485-3498. |
30 | Zhai G S, Walters K S, Peate D W, et al. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environmental Science & Technology Letters, 2014, 1(2): e146. |
31 | Wang Z Y, Xie X Y, Zhao J, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology, 2012, 46(8): 4434-4441. |
32 | Ma Y H, He X, Zhang P, et al. Xylem and phloem based transport of CeO2 nanoparticles in hydroponic cucumber plants. Environmental Science & Technology, 2017, 51(9): 5215-5221. |
33 | Joshi A, Kaur S, Singh P, et al. Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Applied Nanoscience, 2018, 8(6): 1399-1414. |
34 | Chichiriccò G, Poma A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 2015, 5(2): 851-873. |
35 | Ma C X, White J C, Zhao J, et al. Uptake of engineered nanoparticles by food crops: characterization, mechanisms, and implications. Annual Review of Food Science and Technology, 2018, 9: 129-153. |
36 | Banerjee K, Pramanik P, Maity A, et al. Methods of using nanomaterials to plant systems and their delivery to plants (mode of entry, uptake, translocation, accumulation, biotransformation and barriers)//Ghorbanpour M, Wani S H. Advances in Phytonanotechnology. London, UK: Academic Press, 2019: 123-152. |
37 | Miralles P, Church T L, Harris A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science & Technology, 2012, 46(17): 9224-9239. |
38 | Anjum N A, Rodrigo M A M, Moulick A, et al. Transport phenomena of nanoparticles in plants and animals/humans. Environmental Research, 2016, 151: 233-243. |
39 | Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 2017, 15(1): 15-22. |
40 | Subramanian K S, Manikandan A, Thirunavukkarasu M, et al. Nano-fertilizers for balanced crop nutrition//Rai M, Ribeiro C, Mattoso L, et al. Nanotechnologies in food and agriculture. Cham, Switzerland: Springer International Publishing, 2015, 3: 69-80. |
41 | Adisa I O, Pullagurala V L R, Peralta-Videa J R, et al. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science-Nano, 2019, 6(7): e2002. |
42 | Kottegoda N, Sandaruwan C, Priyadarshana G, et al. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano, 2017, 11(2): 1214-1221. |
43 | Liu Y N, Li Y C, Peng Z P, et al. Effects of different nitrogen fertilizer management practices on wheat yields and N2O emissions from wheat fields in North China. Journal of Integrative Agriculture, 2015, 14(6): 1184-1191. |
44 | Abdel-Aziz H M M, Hasaneen M N A, Omer A M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 2016, 14(1): e0902. |
45 | Deepa M, Sudhakar P, Nagamadhuri K V, et al. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Applied Nanoscience, 2015, 5(5): 545-551. |
46 | Pradhan S, Patra P, Das S, et al. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environmental Science & Technology, 2013, 47(22): e13122. |
47 | Yang D Y, Li J L, Cheng Y X, et al. Compound repair effect of carbon dots and Fe2+ on iron deficiency in Cucumis melon L. Plant Physiology and Biochemistry, 2019, 142: 137-142. |
48 | Palchoudhury S, Jungjohann K L, Weerasena L, et al. Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer. RSC Advances, 2018, 8(43): e24075. |
49 | Cai L, Liu M H, Liu Z W, et al. MgO NPs can boost plant growth: evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules, 2018, 23(12): e3375. |
50 | Singh A, Singh N B, Afzal S, et al. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 2018, 53(1): 185-201. |
51 | Rademacher W. Plant growth regulators: backgrounds and uses in plant production. Journal of Plant Growth Regulation, 2015, 34(4): 845-872. |
52 | Qiao J, Zhao J G, Xie Q, et al. Review of effects of carbon nano-materials on crop growth. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 162-170. |
乔俊, 赵建国, 解谦, 等. 纳米炭材料对作物生长影响的研究进展. 农业工程学报, 2017, 33(2): 162-170. | |
53 | Li H, Huang J, Liu Y, et al. Enhanced Rubisco activity and promoted dicotyledons growth with degradable carbon dots. Nano Research, 2019, 12(7): 1585-1593. |
54 | Zhang M L, Wang H B, Liu P P, et al. Biotoxicity of degradable carbon dots towards microalgae Chlorella vulgaris. Environmental Science-Nano, 2019, 6(11): 3316-3323. |
55 | Lee S M, Raja P M, Esquenazi G L, et al. Effect of raw and purified carbon nanotubes and iron oxide nanoparticles on the growth of wheatgrass prepared from the cotyledons of common wheat (Triticum aestivum). Environmental Science-Nano, 2018, 5(1): 103-114. |
56 | Sun L L, Wang R T, Ju Q, et al. Physiological, metabolic, and transcriptomic analyses reveal the responses of Arabidopsis seedlings to carbon nanohorns. Environmental Science & Technology, 2020, 54(7): 4409-4420. |
57 | Wang Y, Chang C H, Ji Z X, et al. Agglomeration determines effects of carbonaceous nanomaterials on soybean nodulation, dinitrogen fixation potential, and growth in soil. ACS Nano, 2017, 11(6): 5753-5765. |
58 | Yuan Z D, Zhang Z M, Wang X P, et al. Novel impacts of functionalized multi-walled carbon nanotubes in plants: promotion of nodulation and nitrogenase activity in the rhizobium-legume system. Nanoscale, 2017, 9(28): 9921-9937. |
59 | Wang A W, Kang F W, Wang Z G, et al. Facile synthesis of nitrogen-rich carbon dots as fertilizers for mung bean sprouts. Advanced Sustainable Systems, 2019, 3(3): e1800132. |
60 | Sankaranarayanan S, Vishnukumar P, Hariram M, et al. Hydrothermal synthesis, characterization and seed germination effects of green-emitting graphene oxide-carbon dot composite using brown macroalgal bio-oil as precursor. Journal of Chemical Technology and Biotechnology, 2019, 94(10): 3269-3275. |
61 | Wang H B, Zhang M L, Song Y X, et al. Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 2018, 136: 94-102. |
62 | Li Y D, Xu X K, Wu Y, et al. A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 2020, 4(2): 437-448. |
63 | Choi Y, Zheng X T, Tan Y N. Bioinspired carbon dots (biodots): emerging fluorophores with tailored multiple functionalities for biomedical, agricultural and environmental applications. Molecular Systems Design & Engineering, 2020, 5(1): 67-90. |
64 | Martínez-Ballesta M C, Zapata L, Chalbi N, et al. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of Nanobiotechnology, 2016, 14(1): 1-14. |
65 | Su L X, Ma X L, Zhao K K, et al. Carbon nanodots for enhancing the stress resistance of peanut plants. ACS Omega, 2018, 3(12): 17770-17777. |
66 | Hatami M, Hadian J, Ghorbanpour M. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. Journal of Hazardous Materials, 2016, 324: 306-320. |
67 | Zhao L J, Zhang H L, Wang J J, et al. C60 fullerols enhance copper toxicity and alter the leaf metabolite and protein profile in cucumber. Environmental Science & Technology, 2019, 53(4): 2171-2180. |
68 | Xiao L, Guo H Y, Wang S X, et al. Carbon dots alleviate the toxicity of cadmium ions (Cd2+) toward wheat seedlings. Environmental Science-Nano, 2019, 6(5): 1493-1506. |
69 | Chen Q, Liu B B, Man H, et al. Enhanced bioaccumulation efficiency and tolerance for Cd (II) in Arabidopsis thaliana by amphoteric nitrogen-doped carbon dots. Ecotoxicology and Environmental Safety, 2020, 190: e110108. |
70 | Li J L, Xiao L, Cheng Y C, et al. Applications of carbon quantum dots to alleviate Cd2+ phytotoxicity in Citrus maxima seedlings. Chemosphere, 2019, 236: e124385. |
71 | Fan X J, Xu J H, Lavoie M, et al. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. Environmental Pollution, 2018, 233: 633-641. |
72 | Zhang M L, Hu L L, Wang H B, et al. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 2018, 10(26): 12734-12742. |
73 | Tripathi S, Kapri S, Datta A, et al. Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant. RSC Advances, 2016, 6(50): 43864-43873. |
74 | Mohammadi M H Z, Panahirad S, Navai A, et al. Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in moldavian balm (Dracocephalum moldavica L.) under salinity stress. Plant Stress, 2021, 1: e100006. |
75 | Sun L, Song F, Zhu X, et al. Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Archives of Agronomy and Soil Science, 2021, 67(2): 245-259. |
76 | Mohasseli V, Farbood F, Moradi A. Antioxidant defense and metabolic responses of lemon balm (Melissa officinalis L.) to Fe-nano-particles under reduced irrigation regimes. Industrial Crops and Products, 2020, 149: e112338. |
77 | Shafiq F, Iqbal M, Ali M, et al. Seed pre-treatment with polyhydroxy fullerene nanoparticles confer salt tolerance in wheat through upregulation of H2O2 neutralizing enzymes and phosphorus uptake. Journal of Soil Science and Plant Nutrition, 2019, 19(4): 734-742. |
78 | Rizwan M, Ali S, Ali B, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 2019, 214: e269. |
79 | Dimkpa C O, Singh U, Bindraban P S, et al. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 2019, 688: e926. |
80 | Abdel Latef A A H, Srivastava A K, El-Sadek M S A, et al. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation & Development, 2018, 29(4): e1065. |
81 | Wu H H, Tito N, Giraldo J P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 2017, 11(11): 11283-11297. |
82 | Wu H, Shabala L, Shabala S, et al. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science-Nano, 2018, 5(7): 1567-1583. |
83 | Lu L, Huang M, Huang Y X, et al. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science-Nano, 2020, 7(6): 1692-1703. |
84 | Rizwan M, Ali S, Zia Ur Rehman M, et al. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 2019, 248: e358. |
85 | Arora A, Sairam R K, Srivastava G C. Oxidative stress and antioxidative system in plants. Current Science, 2002, 82(10): 1227-1238. |
86 | Hong F S, Yang F, Liu C, et al. Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biological Trace Element Research, 2005, 104(3): 249-260. |
87 | Yao J, Cheng Y, Zhou M, et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chemical Science, 2018, 9(11): 2927-2933. |
88 | Foley S, Crowley C, Smaihi M, et al. Cellular localisation of a water-soluble fullerene derivative. Biochemical and Biophysical Research Communications, 2002, 294(1): 116-119. |
89 | Chen Q, Man H, Zhu L, et al. Enhanced plant antioxidant capacity and biodegradation of phenol by immobilizing peroxidase on amphoteric nitrogen-doped carbon dots. Catalysis Communications, 2020, 134: e105847. |
90 | Wang X P, Liu X Q, Chen J N, et al. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon, 2014, 68: 798. |
91 | Narayanan K B, Park H H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Europen Journal of Plant Pathology, 2014, 140(2): e185. |
92 | Kanhed P, Birla S, Gaikwad S, et al. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters, 2014, 115: e13. |
93 | Hajji-Hedfi L, Chhipa H. Nano-based pesticides: challenges for pest and disease management. Euro-Mediterranean Journal for Environmental Integration, 2021, 6(3): 1-8. |
94 | Liu Y L, Yue L, Wang Z Y, et al. Processes and mechanisms of photosynthesis augmented by engineered nanomaterials. Environmental Chemistry, 2019, 16(6): 430. |
95 | Sharkey T D. Discovery of the canonical Calvin-Benson cycle. Photosynthesis Research, 2019, 140(2): 235-252. |
96 | Servin A D, Morales M I, Castillo-Michel H, et al. Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science & Technology, 2013, 47(20): 11592-11598. |
97 | Abbasifar A, Shahrabadi F, Valizadehkaji B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 2020, 43(8): 1104-1118. |
98 | Li Y D, Xu X K, Lei B F, et al. Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis. Chemical Engineering Journal, 2021, 422: e130114. |
99 | Li W, Wu S S, Zhang H R, et al. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Advanced Functional Materials, 2018, 28(44): e1804004. |
100 | Sai L M, Liu S Q, Qian X X, et al. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization. Colloids and Surfaces B-Biointerfaces, 2018, 169: 422-428. |
101 | Ze Y G, Liu C, Wang L,et al. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biological Trace Element Research, 2011, 143(2): e1131. |
102 | Kang S, Yasuda M, Miyasaka H, et al. Light harvesting and energy transfer in multiporphyrin-modified CdSe nanoparticles. Chemsuschem, 2008, 1(3): 254-261. |
103 | Hong F, Zhou J, Liu C, et al. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 2005, 105(1/2/3): 269-279. |
104 | Wang A D, Jin Q J, Xu X, et al. High-throughput screening for engineered nanoparticles that enhance photosynthesis using mesophyll protoplasts. Journal of Agricultural and Food Chemistry, 2020, 68(11): 3382-3389. |
105 | Giraldo J, Landry M, Faltermeier S, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 2014, 13(4): 400-408. |
106 | Kim J H, Oh Y, Yoon H, et al. Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environmental Science & Technology, 2015, 49(2): 1113-1119. |
107 | Wachter R M, Henderson J N. Photosynthesis: Rubisco rescue. Nature Plants, 2015, 1(1): e14010. |
108 | Singh D, Kumar A. Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology, 2018, 27(1): 23-31. |
[1] | 沙玉宝, 干珠扎布, 胡国铮, 王学霞, 严俊, 何世丞, 高清竹. 藏北高寒草甸土壤线虫群落结构和多样性对增氮的响应[J]. 草业学报, 2023, 32(1): 154-164. |
[2] | 陈林, 陈高路, 宋乃平, 李学斌, 万红云, 何文强. 宁夏东部荒漠草原猪毛蒿光合特征和水分利用效率对降水变化的响应[J]. 草业学报, 2022, 31(10): 87-98. |
[3] | 张永超, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应[J]. 草业学报, 2022, 31(1): 229-237. |
[4] | 赵利清, 彭向永, 刘俊祥, 毛金梅, 孙振元. GSH对铅胁迫下多年生黑麦草生长及光合生理的影响[J]. 草业学报, 2021, 30(9): 97-104. |
[5] | 汪辉, 田浩琦, 毛培胜, 刘文辉, 贾志锋, 魏露萍, 周青平. 植物非叶绿色器官光合特征研究进展[J]. 草业学报, 2021, 30(10): 191-200. |
[6] | 王泳超, 张颖蕾, 闫东良, 何灵芝, 李卓, 燕博文, 邵瑞鑫, 郭家萌, 杨青华. 干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应[J]. 草业学报, 2020, 29(6): 191-203. |
[7] | 车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明. 半干旱沙地草本植物群落特征对短期降水变化的响应[J]. 草业学报, 2020, 29(4): 19-28. |
[8] | 黄曦叶, 何林江, 刘金平, 游明鸿, 刘航江. 葎草水分和光合特征及抗性物质含量响应冬季降温的性别差异[J]. 草业学报, 2020, 29(2): 103-113. |
[9] | 王日明, 王志强, 向佐湘. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报, 2019, 28(2): 168-178. |
[10] | 郭海燕, 段婧, 刘金平, 游明鸿, 谢瑞娟. 温度对雌雄葎草花芽分化和色素含量及光合作用影响的性别差异[J]. 草业学报, 2017, 26(8): 104-112. |
[11] | 李杨, 史娟, 崔娜娜, 韩宇. 苜蓿褐斑病对紫花苜蓿光合作用及草品质的影响[J]. 草业学报, 2017, 26(10): 149-157. |
[12] | 寇江涛, 康文娟, 苗阳阳, 师尚礼. 外源2,4-表油菜素内酯对NaCl胁迫下紫花苜蓿幼苗光合特性及离子吸收、运输和分配的影响[J]. 草业学报, 2016, 25(4): 91-103. |
[13] | 闫玉龙, 张立欣, 万志强, 谷蕊, 苏力德, 杨劼, 高清竹. 模拟增温与增雨对克氏针茅光合作用的影响[J]. 草业学报, 2016, 25(2): 240-250. |
[14] | 李晓宇,刘兴土,李秀军,张继涛,文波龙. 不同干湿交替频率对芦苇生长和生理的影响[J]. 草业学报, 2015, 24(3): 99-107. |
[15] | 董立花,韩巧红,杨勇,袁明. 短时强光处理对金心吊兰光合特性的影响[J]. 草业学报, 2015, 24(12): 245-252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||