草业学报 ›› 2023, Vol. 32 ›› Issue (1): 154-164.DOI: 10.11686/cyxb2022165
• 研究论文 • 上一篇
沙玉宝1,2(), 干珠扎布1,2(), 胡国铮1,2, 王学霞3, 严俊4, 何世丞4, 高清竹1,2
收稿日期:
2022-04-12
修回日期:
2022-05-30
出版日期:
2023-01-20
发布日期:
2022-11-07
通讯作者:
干珠扎布
作者简介:
E-mail: ganjurjav@foxmail.com基金资助:
Yu-bao SHA1,2(), Ganjurjav HASBAGAN1,2(), Guo-zheng HU1,2, Xue-xia WANG3, Jun YAN4, Shi-cheng HE4, Qing-zhu GAO1,2
Received:
2022-04-12
Revised:
2022-05-30
Online:
2023-01-20
Published:
2022-11-07
Contact:
Ganjurjav HASBAGAN
摘要:
土壤线虫在高寒草甸生态系统物质循环和能量传递过程中起重要作用。高寒草甸植物对氮沉降极为敏感,但增氮对土壤线虫群落结构和多样性的影响仍不明确。本研究在西藏那曲高寒草甸开展模拟氮沉降试验,设置0、7、20、40 kg N·hm-2·a-1 4个增氮水平(硝酸铵),研究增氮对高寒草甸土壤线虫群落结构和多样性的影响。结果表明:1)增氮显著改变了高寒草甸土壤线虫的群落组成,并且降低了线虫多样性和均匀度;2)N20、N40显著提高了食细菌线虫(Ba)类群的相对丰度,较对照组分别提高了30.4%和31.7%;3)线虫多样性指数(H′)和均匀度指数(J)均表现为Nck>N40>N20>N7,不同处理间植物寄生线虫指数(plant parasite index, PPI)、自由线虫成熟度指数(maturity index, MI)、瓦斯乐思卡指数(wasilewska index, WI)无显著差异。在不同增氮条件下,线虫通道指数(nematode channel ratio, NCR)均大于0.5,瓦斯乐思卡指数(WI)均大于1,说明研究区土壤线虫类群整体以食细菌线虫为主,矿化途径主要由食细菌真菌线虫参与;4)土壤中氨态氮含量和线虫总量及食细菌线虫数量显著正相关。本研究明确了施氮条件下食细菌线虫数量的增加是藏北高寒草甸土壤线虫总量增加的主要来源,为探究藏北高寒草甸生态系统对氮沉降的响应机制提供了参考。
沙玉宝, 干珠扎布, 胡国铮, 王学霞, 严俊, 何世丞, 高清竹. 藏北高寒草甸土壤线虫群落结构和多样性对增氮的响应[J]. 草业学报, 2023, 32(1): 154-164.
Yu-bao SHA, Ganjurjav HASBAGAN, Guo-zheng HU, Xue-xia WANG, Jun YAN, Shi-cheng HE, Qing-zhu GAO. Response of soil nematode community structure and diversity to increased nitrogen in alpine meadows of northern Tibet[J]. Acta Prataculturae Sinica, 2023, 32(1): 154-164.
图 1 增氮处理下高寒草甸土壤线虫的密度不同小写字母表示同一指标不同处理间差异显著(P<0.05),下同。Different lowercase letters indicate significant difference among different treatments of the same index (P<0.05), the same below.
Fig.1 The density of soil nematodes in alpine meadow under nitrogen increase treatment
属Genus | 营养类群Trophic group | c-p值c-p values | Nck | N7 | N20 | N40 |
---|---|---|---|---|---|---|
拟丽突属Acrobeloides | Ba | 2 | +++ | +++ | ++ | ++ |
头叶属Cephalobus | Ba | 2 | ++ | ++ | ++ | ++ |
丽突属Acrobeles | Ba | 2 | ++ | ++ | ++ | ++ |
鹿角唇属Cervidellus | Ba | 2 | ++ | ++ | ++ | ++ |
小杆属Rhabditis | Ba | 1 | + | - | - | - |
中小杆属Mesorhabditis | Ba | 1 | ++ | ++ | ++ | ++ |
真头叶属Eucephalobus | Ba | 2 | + | ++ | ++ | - |
无咽属Alaimus | Ba | 4 | ++ | ++ | ++ | ++ |
绕线属Plectus | Ba | 2 | + | ++ | - | + |
唇绕线属Bastiania | Ba | 3 | - | - | + | + |
单宫属Monhystera | Ba | 2 | ++ | - | - | - |
棱咽属Prismatolaimus | Ba | 3 | ++ | ++ | ++ | ++ |
威尔斯属Wilsonema | Ba | 2 | + | - | - | - |
似绕线属Anaplectus | Ba | 2 | ++ | ++ | ++ | ++ |
原杆属Protorhabditis | Ba | 1 | - | - | + | + |
杆咽属Rhabdolaimus | Ba | 3 | + | + | + | + |
鞘线虫属Hemicycliophora | Pp | 3 | ++ | ++ | ++ | + |
纳格尔属Nagelus | Pp | 2 | - | + | + | + |
针属Paratylenchus | Pp | 2 | + | ++ | ++ | - |
垫刃属Tylenchus | Pp | 2 | + | ++ | ++ | ++ |
丝尾垫刃属Filenchus | Pp | 2 | ++ | ++ | ++ | ++ |
叉针属Boleodorus | Pp | 2 | ++ | - | - | - |
矮化属Tylenchorhynchus | Pp | 3 | ++ | ++ | + | + |
野外垫刃属Aglenchus | Pp | 2 | - | + | + | + |
螺旋属Helicotylenchus | Pp | 3 | + | ++ | ++ | ++ |
短体属Pratylenchus | Pp | 3 | + | - | - | - |
剑尾垫刃属Malenchus | Pp | 2 | + | + | + | + |
环属Criconema | Pp | 3 | + | - | + | + |
盘旋属Rotylenchus | Pp | 3 | - | - | + | - |
默林属Merlinius | Pp | 2 | + | ++ | + | ++ |
类短体属Pratylenchoides | Pp | 3 | ++ | ++ | ++ | ++ |
小孔咽属Aporcelaimellus | Om | 5 | ++ | - | - | - |
盘咽属Discolaimus | Om | 5 | + | - | - | - |
三孔属Tripyla | Om | 3 | - | + | + | - |
色矛属Chromadorita | Om | 3 | - | + | - | - |
异色矛属Achromadora | Om | 3 | + | - | - | - |
中矛线属Mesodorylaimus | Om | 5 | ++ | ++ | ++ | ++ |
大矛属Enchodelus | Om | 4 | - | + | + | - |
锉齿属Mylonchulidae | Om | 4 | + | + | + | - |
拱唇属Labronema | Om | 4 | ++ | - | - | - |
Allodorylaimus | Om | 4 | ++ | ++ | ++ | ++ |
表矛线属Epidorylaimus | Om | 4 | + | - | - | - |
牙咽属Dorylaimellus | Om | 5 | + | ++ | + | + |
单齿属Mononchus | Om | 4 | + | - | + | + |
缢咽属Axonchium | Om | 4 | ++ | ++ | ++ | ++ |
滑刃属Aphelenchoides | Fu | 2 | ++ | - | - | - |
拟滑刃属Paraphelenchus | Fu | 2 | + | - | - | - |
垫咽属Tylencholaimus | Fu | 4 | ++ | ++ | ++ | - |
拟矛线属Dorylaimoides | Fu | 4 | ++ | - | - | - |
细齿属Leptonchus | Fu | 4 | + | - | - | - |
真滑刃属Aphelenchus | Fu | 2 | ++ | ++ | + | + |
双垫刃属Ditylenchus | Fu | 2 | + | ++ | ++ | ++ |
短矛属Doryllium | Fu | 4 | + | - | - | - |
表1 增氮处理下高寒草甸土壤线虫群落组成、营养类群和c-p 值
Table 1 Compositions of nematode community and trophic groups and c-p values under nitrogen increase treatment in alpine meadow
属Genus | 营养类群Trophic group | c-p值c-p values | Nck | N7 | N20 | N40 |
---|---|---|---|---|---|---|
拟丽突属Acrobeloides | Ba | 2 | +++ | +++ | ++ | ++ |
头叶属Cephalobus | Ba | 2 | ++ | ++ | ++ | ++ |
丽突属Acrobeles | Ba | 2 | ++ | ++ | ++ | ++ |
鹿角唇属Cervidellus | Ba | 2 | ++ | ++ | ++ | ++ |
小杆属Rhabditis | Ba | 1 | + | - | - | - |
中小杆属Mesorhabditis | Ba | 1 | ++ | ++ | ++ | ++ |
真头叶属Eucephalobus | Ba | 2 | + | ++ | ++ | - |
无咽属Alaimus | Ba | 4 | ++ | ++ | ++ | ++ |
绕线属Plectus | Ba | 2 | + | ++ | - | + |
唇绕线属Bastiania | Ba | 3 | - | - | + | + |
单宫属Monhystera | Ba | 2 | ++ | - | - | - |
棱咽属Prismatolaimus | Ba | 3 | ++ | ++ | ++ | ++ |
威尔斯属Wilsonema | Ba | 2 | + | - | - | - |
似绕线属Anaplectus | Ba | 2 | ++ | ++ | ++ | ++ |
原杆属Protorhabditis | Ba | 1 | - | - | + | + |
杆咽属Rhabdolaimus | Ba | 3 | + | + | + | + |
鞘线虫属Hemicycliophora | Pp | 3 | ++ | ++ | ++ | + |
纳格尔属Nagelus | Pp | 2 | - | + | + | + |
针属Paratylenchus | Pp | 2 | + | ++ | ++ | - |
垫刃属Tylenchus | Pp | 2 | + | ++ | ++ | ++ |
丝尾垫刃属Filenchus | Pp | 2 | ++ | ++ | ++ | ++ |
叉针属Boleodorus | Pp | 2 | ++ | - | - | - |
矮化属Tylenchorhynchus | Pp | 3 | ++ | ++ | + | + |
野外垫刃属Aglenchus | Pp | 2 | - | + | + | + |
螺旋属Helicotylenchus | Pp | 3 | + | ++ | ++ | ++ |
短体属Pratylenchus | Pp | 3 | + | - | - | - |
剑尾垫刃属Malenchus | Pp | 2 | + | + | + | + |
环属Criconema | Pp | 3 | + | - | + | + |
盘旋属Rotylenchus | Pp | 3 | - | - | + | - |
默林属Merlinius | Pp | 2 | + | ++ | + | ++ |
类短体属Pratylenchoides | Pp | 3 | ++ | ++ | ++ | ++ |
小孔咽属Aporcelaimellus | Om | 5 | ++ | - | - | - |
盘咽属Discolaimus | Om | 5 | + | - | - | - |
三孔属Tripyla | Om | 3 | - | + | + | - |
色矛属Chromadorita | Om | 3 | - | + | - | - |
异色矛属Achromadora | Om | 3 | + | - | - | - |
中矛线属Mesodorylaimus | Om | 5 | ++ | ++ | ++ | ++ |
大矛属Enchodelus | Om | 4 | - | + | + | - |
锉齿属Mylonchulidae | Om | 4 | + | + | + | - |
拱唇属Labronema | Om | 4 | ++ | - | - | - |
Allodorylaimus | Om | 4 | ++ | ++ | ++ | ++ |
表矛线属Epidorylaimus | Om | 4 | + | - | - | - |
牙咽属Dorylaimellus | Om | 5 | + | ++ | + | + |
单齿属Mononchus | Om | 4 | + | - | + | + |
缢咽属Axonchium | Om | 4 | ++ | ++ | ++ | ++ |
滑刃属Aphelenchoides | Fu | 2 | ++ | - | - | - |
拟滑刃属Paraphelenchus | Fu | 2 | + | - | - | - |
垫咽属Tylencholaimus | Fu | 4 | ++ | ++ | ++ | - |
拟矛线属Dorylaimoides | Fu | 4 | ++ | - | - | - |
细齿属Leptonchus | Fu | 4 | + | - | - | - |
真滑刃属Aphelenchus | Fu | 2 | ++ | ++ | + | + |
双垫刃属Ditylenchus | Fu | 2 | + | ++ | ++ | ++ |
短矛属Doryllium | Fu | 4 | + | - | - | - |
指数Index | Nck | N7 | N20 | N40 |
---|---|---|---|---|
H′ | 3.08±0.11a | 1.94±0.25c | 2.03±0.18c | 2.50±0.16b |
J | 0.91±0.01a | 0.57±0.08c | 0.59±0.06c | 0.74±0.07b |
MI | 2.20±0.13a | 2.01±0.10a | 2.09±0.05a | 2.10±0.12a |
PPI | 0.67±0.14a | 0.81±0.09a | 0.74±0.02a | 0.70±0.05a |
NCR | 0.63±0.06b | 0.63±0.10b | 0.73±0.08a | 0.76±0.05a |
WI | 2.50±0.91a | 1.71±0.28a | 1.86±0.16a | 2.08±0.23a |
表 2 增氮处理下高寒草甸土壤线虫生态指数
Table 2 Nematode ecology indices under nitrogen increase treatment in alpine meadow
指数Index | Nck | N7 | N20 | N40 |
---|---|---|---|---|
H′ | 3.08±0.11a | 1.94±0.25c | 2.03±0.18c | 2.50±0.16b |
J | 0.91±0.01a | 0.57±0.08c | 0.59±0.06c | 0.74±0.07b |
MI | 2.20±0.13a | 2.01±0.10a | 2.09±0.05a | 2.10±0.12a |
PPI | 0.67±0.14a | 0.81±0.09a | 0.74±0.02a | 0.70±0.05a |
NCR | 0.63±0.06b | 0.63±0.10b | 0.73±0.08a | 0.76±0.05a |
WI | 2.50±0.91a | 1.71±0.28a | 1.86±0.16a | 2.08±0.23a |
项目Item | Nck | N7 | N20 | N40 |
---|---|---|---|---|
禾莎草高度Gramineae height (cm) | 3.42±0.62c | 3.22±1.48c | 5.39±0.40b | 7.62±1.81a |
禾莎草盖度Gramineae coverage (%) | 39.62±4.62c | 44.00±3.65c | 52.32±7.26b | 67.35±3.31a |
杂类草高度Forb height (cm) | 1.69±0.15c | 1.51±0.37c | 2.30±0.26b | 2.84±0.19a |
杂类草盖度Forb coverage (%) | 18.02±5.36b | 33.07±6.95a | 30.27±3.48a | 22.82±5.66b |
地上生物量Above-ground biomass (g·m-2) | 44.23±2.85d | 70.33±0.81c | 98.33±3.51b | 106.00±6.45a |
地下生物量Below-ground biomass (g·m-2) | 1054.77±65.20a | 1192.35±67.77a | 1333.75±56.29a | 1284.71±85.35a |
氨态氮NH4+-N (mg·kg-1) | 11.04±1.38b | 14.10±1.65ab | 24.07±3.30a | 31.22±3.01a |
硝态氮NO3--N (mg·kg-1) | 2.29±0.21b | 4.17±0.24ab | 4.85±0.98a | 10.86±2.36a |
表 3 增氮处理下高寒草甸植物群落特征和土壤氮含量
Table 3 Plant community characteristics and soil nitrogen content under nitrogen increase treatment in alpine meadow
项目Item | Nck | N7 | N20 | N40 |
---|---|---|---|---|
禾莎草高度Gramineae height (cm) | 3.42±0.62c | 3.22±1.48c | 5.39±0.40b | 7.62±1.81a |
禾莎草盖度Gramineae coverage (%) | 39.62±4.62c | 44.00±3.65c | 52.32±7.26b | 67.35±3.31a |
杂类草高度Forb height (cm) | 1.69±0.15c | 1.51±0.37c | 2.30±0.26b | 2.84±0.19a |
杂类草盖度Forb coverage (%) | 18.02±5.36b | 33.07±6.95a | 30.27±3.48a | 22.82±5.66b |
地上生物量Above-ground biomass (g·m-2) | 44.23±2.85d | 70.33±0.81c | 98.33±3.51b | 106.00±6.45a |
地下生物量Below-ground biomass (g·m-2) | 1054.77±65.20a | 1192.35±67.77a | 1333.75±56.29a | 1284.71±85.35a |
氨态氮NH4+-N (mg·kg-1) | 11.04±1.38b | 14.10±1.65ab | 24.07±3.30a | 31.22±3.01a |
硝态氮NO3--N (mg·kg-1) | 2.29±0.21b | 4.17±0.24ab | 4.85±0.98a | 10.86±2.36a |
图 3 土壤线虫群落与植物群落及土壤氮含量相关性分析S: 线虫总量Total number of nematodes; Ba: 食细菌线虫数量The number of bacterivores; Pp: 植物寄生类线虫数量The number of plant-para-sites; Om: 杂食-捕食线虫数量The number of predators-omnivores; Fu: 食真菌线虫数量The number of fungivores; AGB: 地上生物量Above-ground biomass; BGB: 地下生物量Below-ground biomass; NH4+-N: 氨态氮; NO3--N: 硝态氮; C-G: 禾莎草盖度Gramineae coverage; C-F: 杂类草盖度Forb coverage; H-G: 禾莎草高度Gramineae height; H-F: 杂类草高度Forb height. 红色代表正相关,蓝色代表负相关Red for positive correlation, blue for negative correlation. *: P<0.05, **: P<0.01.
Fig.3 Correlation of soil nematode communities with plant community and soil nitrogen content
1 | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892. |
2 | Zhang Y Q, Mao Q G, Wang C, et al. Advances in effect of nitrogen deposition on soil nematode communities. Journal of Tropical and Subtropical Botany, 2020, 28(1): 105-114. |
张勇群, 毛庆功, 王聪, 等. 氮沉降对土壤线虫群落影响的研究进展. 热带亚热带植物学报, 2020, 28(1): 105-114. | |
3 | Wang Y T, Niu K C. Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows. Biodiversity Science, 2020, 28(6): 707-717. |
王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响. 生物多样性, 2020, 28(6): 707-717. | |
4 | Liang S W. Effect of nitrogen deposition on soil nematode community composition and diversity in a semiarid grassland. Shenyang: Shenyang Agricultural University, 2020. |
梁思维. 氮沉降对半干旱草地土壤线虫群落组成及多样性的影响. 沈阳: 沈阳农业大学, 2020. | |
5 | Zhang Y. Effects of grazing and nitrogen addition on soil nematode community in meadow grassland. Changchun: Northeast Normal University, 2016. |
张瑶. 放牧与施氮对草甸草原土壤线虫群落的作用研究. 长春: 东北师范大学, 2016. | |
6 | Shao Y H, Fu S L. The diversity and functions of soil nematodes. Biodiversity Science, 2007, 15(2): 116-123. |
邵元虎, 傅声雷. 试论土壤线虫多样性在生态系统中的作用. 生物多样性, 2007, 15(2): 116-123. | |
7 | Yu B B. Effects of changes in plan resource input patterns on soil nematode and microbial communities under different climatic zones. Kaifeng: Henan University, 2019. |
于彬彬. 不同气候带下的植物资源输入方式改变对土壤线虫和微生物群落的影响. 开封: 河南大学, 2019. | |
8 | Aber J, Mcdowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems. Bioscience, 1998, 48(11): 921-934. |
9 | Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews of the Cambridge Philosophical Society, 1992, 67(3): 321-358. |
10 | Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 2010, 20: 30-59. |
11 | Wang J. Effects of fertilization on soil nematode community composition in the eastern Tibetan Plateau alpine meadow. Lanzhou: Lanzhou University, 2015. |
王静. 施肥对青藏高原东部高寒草甸土壤线虫群落组成的影响. 兰州: 兰州大学, 2015. | |
12 | Liu Y F, Liu P, Wang W Y, et al. The research progress of soil nematodes as ecological indicator organisms. Ecological Science, 2020, 39(2): 207-214. |
刘艳方, 刘攀, 王文颖, 等. 土壤线虫作为生态指示生物的研究进展. 生态科学, 2020, 39(2): 207-214. | |
13 | Tipping E, Davies J A C, Henrys P A, et al. Measured estimates of semi-natural terrestrial NPP in Great Britain: Comparison with modelled values, and dependence on atmospheric nitrogen deposition. Biogeochemistry, 2019, 144(2): 215-227. |
14 | Midolo G, Alkemade R, Schipper A M, et al. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global Ecology and Biogeography, 2019, 28(3): 398-413. |
15 | Murray P J, Cook R, Currie A F, et al. Interactions between fertilizer addition, plants and the soil environment: Implications for soil faunal structure and diversity. Applied Soil Ecology, 2005, 33(2):199-207. |
16 | Wang X Y, Response of plant community to simulated nitrogen deposition in the early state of restoration in Songnen Grassland. Changchun: Northeast Normal University, 2010. |
王昕勇. 松嫩草地恢复演替初期植物群落对模拟氮沉降的响应. 长春: 东北师范大学, 2010. | |
17 | Wang X X, Gao Q Z, Ganjurjav H, et al. Soil nematode community response to warming in alpine meadows of northern Tibet. Pratacultural Science, 2018, 35(6): 1528-1538. |
王学霞, 高清竹, 干珠扎布, 等. 藏北高寒草甸土壤线虫群落结构对增温的响应. 草业科学, 2018, 35(6): 1528-1538. | |
18 | Xue H Y, Luo D Q, Wang H Y, et al. Effects of free grazing or enclosure on soil nematodes in alpine meadows in North Tibet, China. Acta Pedologica Sinica, 2017, 54(2): 480-492. |
薛会英, 罗大庆, 王鸿源, 等. 藏北高寒草甸土壤线虫群落对围封及自由放牧的响应. 土壤学报, 2017, 54(2): 480-492. | |
19 | Yan Y L, Ganjurjav H, Hu G Z, et al. Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau. Agriculture Ecosystems & Environment, 2018, 265: 45-53. |
20 | Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: Past, present and future. Biogeochemistry, 2004, 70(2): 153-226. |
21 | Yang Z A. A study on the responses of vefetation-soil system to grazing and nitrogen addition in an alpine meadow of Qinghai-Tibetan Plateau, China. Xianyang: Northwest A&F University, 2017. |
杨振安. 青藏高原高寒草甸植被土壤系统对放牧和氮沉降的响应研究. 咸阳: 西北农林科技大学, 2017. | |
22 | Xie H. Taxonomy of plant nematodes (Second Edition). Beijing: Higher Education Press, 2005. |
谢辉. 植物线虫分类学(第2版). 北京: 高等教育出版社, 2005. | |
23 | Yin W Y. Pictorial keys to soil animal of China. Beijing: Science Press, 1998. |
尹文英. 中国土壤动物检索图鉴. 北京: 科学出版社, 1998. | |
24 | Bongers T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 1990, 83(1): 14-19. |
25 | Xia J Y, Niu S L, Wan S Q. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 2009, 15(6): 1544-1556. |
26 | Li Y J, Wu J H, Chen H L, et al. Nematodes as bioindicator of soil health: methods and applications. Chinese Journal of Applied Ecology, 2005, 16(8): 1541-1546. |
李玉娟, 吴纪华, 陈慧丽, 等. 线虫作为土壤健康指示生物的方法及应用. 应用生态学报, 2005, 16(8): 1541-1546. | |
27 | Chen D, Cheng J, Chu P, et al. Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: Relationships with climate, soil, and plants. Ecography, 2015, 38(6): 622-631. |
28 | Lv R F, Wei C Z. The impact of nitrogen deposition on soil animal: A review. Journal of Shenyang Normal University (Natural Science Edition), 2017, 35(2): 185-188. |
吕若菲, 魏存争. 氮沉降对土壤动物影响的研究进展. 沈阳师范大学学报(自然科学版), 2017, 35(2): 185-188. | |
29 | Du Q. The studies on the effects of fertilization on soil nematodes community structure in alpine meadow on the Qinghai-Tibetan Plateau. Lanzhou: Lanzhou University, 2020. |
杜清. 施肥对青藏高原高寒草甸土壤线虫群落结构影响的研究. 兰州: 兰州大学, 2020. | |
30 | Liu Q E, Cao P F. Research progress in the control of plant nematode. Journal of Anhui Agricultural Sciences, 2006, 34(18): 4644-4645, 4664. |
刘青娥, 曹鹏飞. 植物线虫的研究和防治. 安徽农业科学, 2006, 34(18): 4644-4645, 4664. | |
31 | Kostenko O, Duyts H, Grootemaat S, et al. Plant diversity and identity effects on predatory nematodes and their prey. Ecology Evolution, 2015, 5(4): 836-847. |
32 | Gutknecht J, Field C B, Balser T C. Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biology, 2012, 18(7): 2256-2269. |
33 | Song S S. Effects of long-term nitrogen and phosphorus addition on plant community diversity and biomass stability in an alpine. Lanzhou: Lanzhou University, 2021. |
宋珊珊. 长期氮、磷添加对高寒草地植物群落多样性和生物量稳定性的影响. 兰州: 兰州大学, 2021. | |
34 | Ge Y Q. Effects of warming and nitrogen deposition on soil emission in a meadow in north Tibet. Hohhot: Inner Mongolia University, 2020. |
葛怡情. 增温氮沉降对藏北高寒草甸N2O排放的影响. 呼和浩特: 内蒙古大学, 2020. | |
35 | Tian Q Y, Liu N N, Bai W M, et al. A novel soil manganese mechanism drives plant species loss with increase nitrogen deposition in a temperate steppe. Ecology, 2016, 97(1): 65-74. |
36 | Yan J. The studies on the responses of nematode communities on fertilization on eastern Tibetan Plateau alpine meadows. Lanzhou: Lanzhou University, 2017. |
闫俊. 青藏高原东部高寒草甸土壤线虫群落对施肥的响应研究. 兰州: 兰州大学, 2017. | |
37 | Benizri E, Amiaud B. Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biology and Biochemistry, 2005, 37(11): 2055-2064. |
38 | Deru J, Bloem J, Goede R D, et al. Soil ecology and ecosystem services of dairy and semi-natural grasslands on peat. Applied Soil Ecology, 2018, 125: 589-591. |
39 | Hu J, Chen G R, Hassan W M, et al. Fertilization influences the nematode community through changing the plant community in the Tibetan Plateau. European Journal of Soil Biology, 2017, 78: 7-16. |
40 | Hu J. The studies on the responses of nematode communities on fertilization and grassing on eastern Tibetan Plateau alpine meadows. Lanzhou: Lanzhou University, 2015. |
胡靖. 青藏高原东缘高寒草甸土壤线虫群落对施肥和放牧的响应研究. 兰州: 兰州大学, 2015. | |
41 | Qi S, Zhao X R, Zheng H X, et al. Changes of soil biodiversity in Inner Mongolia steppe after 5 years of N and P fertilizer applications. Acta Ecologica Sinica, 2010, 30(20): 5518-5526. |
齐莎, 赵小蓉, 郑海霞, 等. 内蒙古典型草原连续5年施用氮磷肥土壤生物多样性的变化. 生态学报, 2010, 30(20): 5518-5526. | |
42 | Geng D Z, Huang J H, Huo N, et al. Characteristics of soil microbial and nematode communities in artificial grasses of alfalfa in semi-arid areas of the Loess Plateau at different planting years. Chinese Journal of Applied Ecology, 2020, 31(4): 1365-1377. |
耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征. 应用生态学报, 2020, 31(4): 1365-1377. | |
43 | Wang R R. Responses of soil nematode to enclosure and nitrogen addition in the degraded meadow steppe of Stipa baicalensis. Changchun: Northeast Normal University, 2019. |
王蕊蕊. 贝加尔针茅退化草地土壤线虫群落对围封和施氮的响应. 长春: 东北师范大学, 2019. | |
44 | Aerts R, Caluwe H D, Beltman B. Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology, 2003, 84(12): 3198-3208. |
[1] | 陆姣云, 张鹤山, 田宏, 熊军波, 刘洋. 氮沉降影响草地生态系统土壤氮循环过程的研究进展[J]. 草业学报, 2022, 31(6): 221-234. |
[2] | 郭志霞, 刘任涛, 赵文智. 荒漠灌丛和土壤动物关系及对降水变化的响应研究进展[J]. 草业学报, 2022, 31(10): 206-216. |
[3] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[4] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
[5] | 杨乃瑞, 胡玉福, 舒向阳, 曾建, 张祥林, 申屠瑜程, 何佳, 程琪, 李杰, 李智, 余颖. 草地土壤C∶N∶P化学计量及微生物呼吸对氮沉降响应的Meta分析[J]. 草业学报, 2020, 29(5): 1-12. |
[6] | 车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明. 半干旱沙地草本植物群落特征对短期降水变化的响应[J]. 草业学报, 2020, 29(4): 19-28. |
[7] | 张智起, 张立旭, 徐炜, 汪浩, 王金洲, 王娓, 贺金生. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164-173. |
[8] | 李明, 秦洁, 红雨, 杨殿林, 周广帆, 王宇, 王丽娟. 氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响[J]. 草业学报, 2019, 28(12): 29-40. |
[9] | 李东, 罗旭鹏, 曹广民, 吴琴, 卓玛措, 李惠梅, 杨永梅, 庞炳坤. 高寒草甸土壤异养呼吸对气候变化和氮沉降响应的模拟[J]. 草业学报, 2015, 24(7): 1-11. |
[10] | 张峰,南志标,闫飞扬,李芳,段廷玉. AM真菌在草地生态系统碳汇中的重要作用[J]. 草业学报, 2015, 24(4): 191-200. |
[11] | 于雯超,宋晓龙,修伟明,张贵龙,赵建宁,杨殿林. 氮素添加对贝加尔针茅草原凋落物分解的影响[J]. 草业学报, 2014, 23(5): 49-60. |
[12] | 罗金明,尹雄锐,叶雅杰,王永洁. 大中型土壤动物对内陆盐沼沿退化序列环境的指示研究[J]. 草业学报, 2014, 23(2): 287-295. |
[13] | 曹丛丛,齐玉春,董云社,彭琴,刘欣超,孙良杰,贾军强,郭树芳,闫钟清. 氮沉降对陆地生态系统关键有机碳组分的影响[J]. 草业学报, 2014, 23(2): 323-332. |
[14] | 高立杰,侯建华,安哲,高宝嘉. 内蒙古高原东南缘森林草原交错带土壤动物群落特征[J]. 草业学报, 2013, 22(4): 27-34. |
[15] | 赵哈林,刘任涛,周瑞莲,曲浩,潘成臣,王燕,李瑾. 沙漠化对科尔沁沙质草地大型土壤动物群落的影响及其成因分析[J]. 草业学报, 2013, 22(3): 70-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||