草业学报 ›› 2022, Vol. 31 ›› Issue (2): 62-75.DOI: 10.11686/cyxb2021309
孙彩彩(), 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞()
收稿日期:
2021-08-11
修回日期:
2021-09-27
出版日期:
2022-02-20
发布日期:
2021-12-22
通讯作者:
杨晓霞
作者简介:
Corresponding author. E-mail:xxyang@qhu.edu.cn基金资助:
Cai-cai SUN(), Quan-min DONG, Wen-ting LIU, Bin FENG, Guang SHI, Yu-zhen LIU, Yang YU, Chun-ping ZHANG, Xiao-fang ZHANG, Cai-di LI, Zeng-zeng YANG, Xiao-xia YANG()
Received:
2021-08-11
Revised:
2021-09-27
Online:
2022-02-20
Published:
2021-12-22
Contact:
Xiao-xia YANG
摘要:
土壤节肢动物作为土壤生态系统的重要组成部分,对于周围环境的变化十分敏感,可作为环境变化的“指示剂”。放牧作为青藏高原地区高寒草地的主要利用方式,不仅影响土壤理化性质,同时会对生物多样性产生影响,进而影响到以土壤为主要生存场所的土壤节肢动物。为了明确不同放牧家畜及其混合比例对青藏高原高寒草地土壤节肢动物群落结构及多样性的影响,于2020年7月在青海省海北州海晏县西海镇“高寒草地-家畜系统适应性管理技术平台”,设置中等放牧强度下牦牛单牧(YG)、藏羊单牧(SG)、牦牛藏羊1∶2混合放牧(MG1∶2)、牦牛藏羊1∶4混合放牧(MG1∶4)和牦牛藏羊1∶6混合放牧(MG1∶6)5个放牧样地,以无放牧(CK)为对照样地,采集0~5 cm、5~10 cm、10~15 cm的土样,利用干漏斗法(Tullgren法)分离土壤节肢动物,并进行鉴定统计。结果表明:1)试验样地分离得到的土壤节肢动物优势类群为螨总科(Acaroidae)和甲螨总科(Oiibatida),分别占土壤节肢动物总捕获量的36.67%和41.14%,且在0~5 cm土层数量最多,具有表聚性;2)不同放牧方式对土壤节肢动物的组成、群落结构、密度及多样性存在不同的影响。与对照相比,放牧降低了土壤节肢动物优势类群螨总科的组成比例,而增加了甲螨总科的组成比例;无放牧样地与其他放牧方式样地土壤节肢动物群落结构存在明显差异;土壤节肢动物丰富度指数、多样性指数、类群数均表现为藏羊单牧放牧样地较高,而均匀度指数与之相反;3)土壤节肢动物均匀度指数与土壤全氮、全碳、速效钾呈显著负相关(P<0.05或P<0.01),而与有机质、pH呈显著正相关(P<0.05或P<0.01);土壤节肢动物丰富度指数与土壤pH呈显著负相关,而与土壤全氮、速效氮、有机质呈显著正相关;土壤节肢动物多样性指数与土壤pH呈显著负相关,而与土壤全氮、速效氮、速效磷、有机质呈显著正相关;土壤节肢动物平均密度、总类群数与土壤pH呈显著负相关, 而与土壤全氮、速效氮、速效钾、有机质呈显著正相关;4)土壤全氮、全磷、全碳、速效氮、速效磷在藏羊单牧放牧样地较高;速效钾、有机质在无放牧样地最高;pH、土壤含水量在牦牛藏羊1∶6混合放牧样地最高。综上所述,在青藏高原高寒草地生态系统,藏羊单牧对于土壤节肢动物密度、群落组成以及群落多样性的提高具有正向作用。
孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75.
Cai-cai SUN, Quan-min DONG, Wen-ting LIU, Bin FENG, Guang SHI, Yu-zhen LIU, Yang YU, Chun-ping ZHANG, Xiao-fang ZHANG, Cai-di LI, Zeng-zeng YANG, Xiao-xia YANG. Effects of grazing modes on the community structure and diversity of soil arthropod in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2022, 31(2): 62-75.
处理 Treatment | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus(g·kg-1) | 全碳 Total carbon (g·kg-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|---|---|---|
MG1∶2 | 3.151±0.061a | 0.158±0.004abc | 39.849±0.662b | 144.333±1.700c | 4.278±0.022b | 109.180±4.486b | 45.953±2.212a | 8.002±0.013a | 15.948±2.094a |
MG1∶4 | 3.260±0.051a | 0.150±0.004c | 42.653±0.553a | 155.556±1.425b | 3.503±0.071d | 96.867±5.051bc | 49.223±3.292a | 7.987±0.017a | 16.031±0.578a |
MG1∶6 | 3.261±0.104a | 0.159±0.003ab | 41.590±0.918ab | 158.111±1.961b | 4.246±0.029b | 86.396±4.641cd | 47.637±2.253a | 8.071±0.044a | 20.050±1.040a |
SG | 3.382±0.097a | 0.163±0.002a | 42.149±0.954ab | 166.222±2.727a | 4.527±0.036a | 81.886±5.027d | 46.508±3.264a | 7.984±0.025a | 16.978±0.733a |
YG | 3.159±0.079a | 0.155±0.002abc | 39.778±0.666b | 155.111±1.207b | 3.703±0.049c | 77.358±4.134d | 47.764±2.240a | 8.026±0.027a | 19.755±2.643a |
CK | 3.110±0.152a | 0.152±0.003bc | 42.372±0.956a | 135.667±1.374d | 3.449±0.041d | 124.677±5.365a | 52.244±2.399a | 8.010±0.041a | 19.755±2.643a |
表1 不同放牧方式样地的土壤理化特性
Table 1 Soil physical and chemical properties under different grazing treatments
处理 Treatment | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus(g·kg-1) | 全碳 Total carbon (g·kg-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|---|---|---|
MG1∶2 | 3.151±0.061a | 0.158±0.004abc | 39.849±0.662b | 144.333±1.700c | 4.278±0.022b | 109.180±4.486b | 45.953±2.212a | 8.002±0.013a | 15.948±2.094a |
MG1∶4 | 3.260±0.051a | 0.150±0.004c | 42.653±0.553a | 155.556±1.425b | 3.503±0.071d | 96.867±5.051bc | 49.223±3.292a | 7.987±0.017a | 16.031±0.578a |
MG1∶6 | 3.261±0.104a | 0.159±0.003ab | 41.590±0.918ab | 158.111±1.961b | 4.246±0.029b | 86.396±4.641cd | 47.637±2.253a | 8.071±0.044a | 20.050±1.040a |
SG | 3.382±0.097a | 0.163±0.002a | 42.149±0.954ab | 166.222±2.727a | 4.527±0.036a | 81.886±5.027d | 46.508±3.264a | 7.984±0.025a | 16.978±0.733a |
YG | 3.159±0.079a | 0.155±0.002abc | 39.778±0.666b | 155.111±1.207b | 3.703±0.049c | 77.358±4.134d | 47.764±2.240a | 8.026±0.027a | 19.755±2.643a |
CK | 3.110±0.152a | 0.152±0.003bc | 42.372±0.956a | 135.667±1.374d | 3.449±0.041d | 124.677±5.365a | 52.244±2.399a | 8.010±0.041a | 19.755±2.643a |
纲 Class | 目 Order | 科 Family | 占比 Proportion (%) |
---|---|---|---|
蛛形纲 Arachnida | 真螨目 Acariformes | 螨总科 Acaroidae | 36.67 |
走螨总科 Eupodoidae | 0.84 | ||
隐额螨科 Cryptognathidae | 0.50 | ||
甲螨总科 Oiibatida | 41.14 | ||
寄螨目 Parasiformes | 蜱科 Ixodidae | 0.76 | |
寄螨科 Parasitoidae | 6.09 | ||
厉螨科 Laelapidae | 0.31 | ||
蜘蛛目 Araneae | 地蛛科 Atypidae | 0.06 | |
弹尾纲 Collembola | 弹尾目 Collembola | 吉圆跳科 Yosiides | 0.26 |
棘跳科 Onychiuridae | 1.33 | ||
等节跳科 Isotomidae | 8.05 | ||
双尾纲 Diplura | 双尾目 Diplura | 原铗趴科 Projapygidae | 0.18 |
昆虫纲 Insecta | 缨翅目 Thysanoptera | 管蓟马科 Phlaeothripida | 0.54 |
半翅目 Hemiptera | 叶蝉科 Cicadellidae | 0.04 | |
双翅目 Diptera | 冬大蚊科 Trichoceridae | 0.16 | |
大蚊科 Tipulidae | 0.47 | ||
摇蚊科 Chironomidae | 0.02 | ||
蠓科 Ceratopogonidae | 0.23 | ||
蚋科 Simuliidae | 0.29 | ||
蕈蚊科 Mycetophilidae | 1.08 | ||
瘿蚊科 Cecidomyiidae | 0.10 | ||
粘蕈蚊科 Cecidomyiidae | 0.02 | ||
毛蚊科 Bibionidae | 0.46 | ||
长角毛蚊科 Hesperinidae | 0.01 | ||
长足虻科 Dolichopodidae | 0.12 | ||
蝇科 Muscidae | 0.12 | ||
粪蝇科 Scathophagidae | 0.15 | ||
扁足蝇科 Platypezide | 0.01 |
表2 试验样地土壤节肢动物组成
Table 2 Composition of soil arthropod in experimental places
纲 Class | 目 Order | 科 Family | 占比 Proportion (%) |
---|---|---|---|
蛛形纲 Arachnida | 真螨目 Acariformes | 螨总科 Acaroidae | 36.67 |
走螨总科 Eupodoidae | 0.84 | ||
隐额螨科 Cryptognathidae | 0.50 | ||
甲螨总科 Oiibatida | 41.14 | ||
寄螨目 Parasiformes | 蜱科 Ixodidae | 0.76 | |
寄螨科 Parasitoidae | 6.09 | ||
厉螨科 Laelapidae | 0.31 | ||
蜘蛛目 Araneae | 地蛛科 Atypidae | 0.06 | |
弹尾纲 Collembola | 弹尾目 Collembola | 吉圆跳科 Yosiides | 0.26 |
棘跳科 Onychiuridae | 1.33 | ||
等节跳科 Isotomidae | 8.05 | ||
双尾纲 Diplura | 双尾目 Diplura | 原铗趴科 Projapygidae | 0.18 |
昆虫纲 Insecta | 缨翅目 Thysanoptera | 管蓟马科 Phlaeothripida | 0.54 |
半翅目 Hemiptera | 叶蝉科 Cicadellidae | 0.04 | |
双翅目 Diptera | 冬大蚊科 Trichoceridae | 0.16 | |
大蚊科 Tipulidae | 0.47 | ||
摇蚊科 Chironomidae | 0.02 | ||
蠓科 Ceratopogonidae | 0.23 | ||
蚋科 Simuliidae | 0.29 | ||
蕈蚊科 Mycetophilidae | 1.08 | ||
瘿蚊科 Cecidomyiidae | 0.10 | ||
粘蕈蚊科 Cecidomyiidae | 0.02 | ||
毛蚊科 Bibionidae | 0.46 | ||
长角毛蚊科 Hesperinidae | 0.01 | ||
长足虻科 Dolichopodidae | 0.12 | ||
蝇科 Muscidae | 0.12 | ||
粪蝇科 Scathophagidae | 0.15 | ||
扁足蝇科 Platypezide | 0.01 |
变量 Variables | 处理 Treatment | 土层 Soil layer | ||
---|---|---|---|---|
0~5 cm | 5~10 cm | 10~15 cm | ||
真螨目 Acariformes | 牦牛 Yak | 102.45** | 36.23** | 112.73** |
藏羊 Tibetan sheep | 1.42 | 16.67** | 215.90** | |
牦牛×藏羊 Yak×Tibetan sheep | 20.41** | 64.37** | 187.12** | |
寄螨目 Parasiformes | 牦牛 Yak | 14.35** | 9.26** | 7.66** |
藏羊 Tibetan sheep | 101.81** | 243.39** | 66.78** | |
牦牛×藏羊 Yak×Tibetan sheep | 76.71** | 76.66** | 27.43** | |
弹尾目 Collembola | 牦牛 Yak | 16.73** | 12.25** | 28.15** |
藏羊 Tibetan sheep | 25.74** | 0.72 | 13.17** | |
牦牛×藏羊 Yak×Tibetan sheep | 18.22** | 4.38* | 0.07 | |
双尾目 Diplura | 牦牛 Yak | 4.73* | 0.15 | / |
藏羊 Tibetan sheep | 12.67** | 0.93 | / | |
牦牛×藏羊 Yak×Tibetan sheep | 0.14 | 1.15 | / | |
缨翅目 Thysanoptera | 牦牛 Yak | 1.30 | 6.12 | / |
藏羊 Tibetan sheep | 6.65* | 5.83* | / | |
牦牛×藏羊 Yak×Tibetan sheep | 1.04 | 0.00* | / | |
半翅目 Hemiptera | 牦牛 Yak | 0.04 | / | / |
藏羊 Tibetan sheep | 0.05 | / | / | |
牦牛×藏羊 Yak×Tibetan sheep | 2.77 | / | / | |
双翅目 Diptera | 牦牛Yak | 0.02 | 0.66 | 18.38** |
藏羊 Tibetan sheep | 9.77** | 6.20* | 7.89** | |
牦牛×藏羊 Yak×Tibetan sheep | 2.61 | 16.78** | 8.40** | |
蜘蛛目 Araneae | 牦牛 Yak | 0.52 | / | / |
藏羊 Tibetan sheep | 4.45* | / | / | |
牦牛×藏羊 Yak×Tibetan sheep | 0.73 | / | / |
表3 放牧方式对土壤节肢动物数量影响的双因素方差分析
Table 3 Two-way ANOVA analysis of the influence of grazing modes on the number of soil arthropods
变量 Variables | 处理 Treatment | 土层 Soil layer | ||
---|---|---|---|---|
0~5 cm | 5~10 cm | 10~15 cm | ||
真螨目 Acariformes | 牦牛 Yak | 102.45** | 36.23** | 112.73** |
藏羊 Tibetan sheep | 1.42 | 16.67** | 215.90** | |
牦牛×藏羊 Yak×Tibetan sheep | 20.41** | 64.37** | 187.12** | |
寄螨目 Parasiformes | 牦牛 Yak | 14.35** | 9.26** | 7.66** |
藏羊 Tibetan sheep | 101.81** | 243.39** | 66.78** | |
牦牛×藏羊 Yak×Tibetan sheep | 76.71** | 76.66** | 27.43** | |
弹尾目 Collembola | 牦牛 Yak | 16.73** | 12.25** | 28.15** |
藏羊 Tibetan sheep | 25.74** | 0.72 | 13.17** | |
牦牛×藏羊 Yak×Tibetan sheep | 18.22** | 4.38* | 0.07 | |
双尾目 Diplura | 牦牛 Yak | 4.73* | 0.15 | / |
藏羊 Tibetan sheep | 12.67** | 0.93 | / | |
牦牛×藏羊 Yak×Tibetan sheep | 0.14 | 1.15 | / | |
缨翅目 Thysanoptera | 牦牛 Yak | 1.30 | 6.12 | / |
藏羊 Tibetan sheep | 6.65* | 5.83* | / | |
牦牛×藏羊 Yak×Tibetan sheep | 1.04 | 0.00* | / | |
半翅目 Hemiptera | 牦牛 Yak | 0.04 | / | / |
藏羊 Tibetan sheep | 0.05 | / | / | |
牦牛×藏羊 Yak×Tibetan sheep | 2.77 | / | / | |
双翅目 Diptera | 牦牛Yak | 0.02 | 0.66 | 18.38** |
藏羊 Tibetan sheep | 9.77** | 6.20* | 7.89** | |
牦牛×藏羊 Yak×Tibetan sheep | 2.61 | 16.78** | 8.40** | |
蜘蛛目 Araneae | 牦牛 Yak | 0.52 | / | / |
藏羊 Tibetan sheep | 4.45* | / | / | |
牦牛×藏羊 Yak×Tibetan sheep | 0.73 | / | / |
类群Group | MG1∶2 | MG1∶4 | MG1∶6 | SG | YG | CK |
---|---|---|---|---|---|---|
螨总科 Acaroidae | 37.04 | 34.63 | 34.33 | 36.03 | 34.77 | 41.92 |
走螨总科 Eupodoidae | 1.16 | 0.72 | 0.28 | 1.11 | 1.10 | 0.73 |
隐额螨科 Cryptognathidae | / | 1.30 | 0.01 | 0.61 | 0.78 | 0.34 |
甲螨总科 Oiibatida | 41.33 | 44.20 | 42.92 | 41.38 | 39.27 | 38.44 |
蜱科 Ixodidae | 1.52 | 0.67 | 0.30 | 0.82 | 0.86 | 0.63 |
寄螨科 Parasitoidae | 2.29 | 3.96 | 5.18 | 4.41 | 10.74 | 9.04 |
厉螨科 Laelapidae | / | 0.02 | 0.32 | 0.21 | 0.78 | 0.46 |
吉圆跳科 Yosiides | / | 0.04 | / | / | 0.79 | 0.65 |
棘跳属 Onychiurus | 1.26 | 0.86 | 0.82 | 1.27 | 0.92 | 0.23 |
土跳属 Tullbergia | / | 0.05 | 0.39 | 0.55 | 0.98 | 0.51 |
驼跳属 Cyphoderus | / | / | 0.10 | / | / | 0.04 |
等节跳科 Isotomidae | / | / | / | / | 0.01 | 0.01 |
类符跳属 Folsomina | / | / | / | / | 0.10 | / |
裔符跳属 Folsomides | 8.80 | 11.36 | 9.23 | 8.60 | 3.93 | 4.76 |
拟缺跳属 Pseudanurophorus | / | / | / | 0.03 | 0.32 | 0.04 |
四刺跳属 Tetracanthella | / | / | / | / | 0.75 | 0.16 |
库跳属 Coloburella | / | / | 0.24 | 0.11 | / | 0.46 |
原铗趴科 Projapygidae | 0.44 | 0.15 | 0.30 | 0.27 | / | / |
管蓟马科 Phlaeothripida | 1.38 | 0.25 | 0.90 | 0.55 | 0.19 | 0.17 |
叶蝉科 Cicadellidae | 0.27 | 0.02 | / | / | / | 0.03 |
冬大蚊科 Trichoceridae | 0.37 | / | 0.18 | 0.38 | / | 0.03 |
大蚊科 Tipulidae | 0.44 | 0.20 | 0.77 | 0.76 | 0.51 | 0.11 |
蠓科 Ceratopogonidae | 0.33 | 0.07 | / | / | 1.01 | 0.12 |
蚋科 Simuliidae | 0.40 | 0.09 | 0.52 | 0.24 | 0.61 | / |
蕈蚊科 Mycetophilidae | 1.47 | 0.96 | 1.54 | 1.38 | 0.51 | 0.65 |
瘿蚊科 Cecidomyiidae | / | 0.02 | 0.15 | 0.26 | / | 0.12 |
粘蕈蚊科 Cecidomyiidae | / | / | / | / | / | 0.07 |
毛蚊科 Bibionidae | 0.90 | 0.29 | 0.75 | 0.78 | / | 0.08 |
长角毛蚊科 Hesperinidae | / | / | 0.08 | / | / | / |
长足虻科 Dolichopodidae | / | 0.01 | 0.14 | 0.07 | 0.56 | / |
蝇科 Muscidae | 0.32 | 0.01 | 0.14 | 0.10 | 0.18 | / |
粪蝇科 Scathophagidae | 0.16 | 0.12 | 0.33 | 0.08 | 0.24 | / |
扁足蝇科 Platypezide | / | / | 0.04 | / | / | / |
地蛛科 Atypidae | 0.12 | / | 0.04 | / | 0.09 | 0.10 |
表4 不同放牧方式下土壤节肢动物群落组成比例
Table 4 Composition of soil arthropod communities under different grazing modes (%)
类群Group | MG1∶2 | MG1∶4 | MG1∶6 | SG | YG | CK |
---|---|---|---|---|---|---|
螨总科 Acaroidae | 37.04 | 34.63 | 34.33 | 36.03 | 34.77 | 41.92 |
走螨总科 Eupodoidae | 1.16 | 0.72 | 0.28 | 1.11 | 1.10 | 0.73 |
隐额螨科 Cryptognathidae | / | 1.30 | 0.01 | 0.61 | 0.78 | 0.34 |
甲螨总科 Oiibatida | 41.33 | 44.20 | 42.92 | 41.38 | 39.27 | 38.44 |
蜱科 Ixodidae | 1.52 | 0.67 | 0.30 | 0.82 | 0.86 | 0.63 |
寄螨科 Parasitoidae | 2.29 | 3.96 | 5.18 | 4.41 | 10.74 | 9.04 |
厉螨科 Laelapidae | / | 0.02 | 0.32 | 0.21 | 0.78 | 0.46 |
吉圆跳科 Yosiides | / | 0.04 | / | / | 0.79 | 0.65 |
棘跳属 Onychiurus | 1.26 | 0.86 | 0.82 | 1.27 | 0.92 | 0.23 |
土跳属 Tullbergia | / | 0.05 | 0.39 | 0.55 | 0.98 | 0.51 |
驼跳属 Cyphoderus | / | / | 0.10 | / | / | 0.04 |
等节跳科 Isotomidae | / | / | / | / | 0.01 | 0.01 |
类符跳属 Folsomina | / | / | / | / | 0.10 | / |
裔符跳属 Folsomides | 8.80 | 11.36 | 9.23 | 8.60 | 3.93 | 4.76 |
拟缺跳属 Pseudanurophorus | / | / | / | 0.03 | 0.32 | 0.04 |
四刺跳属 Tetracanthella | / | / | / | / | 0.75 | 0.16 |
库跳属 Coloburella | / | / | 0.24 | 0.11 | / | 0.46 |
原铗趴科 Projapygidae | 0.44 | 0.15 | 0.30 | 0.27 | / | / |
管蓟马科 Phlaeothripida | 1.38 | 0.25 | 0.90 | 0.55 | 0.19 | 0.17 |
叶蝉科 Cicadellidae | 0.27 | 0.02 | / | / | / | 0.03 |
冬大蚊科 Trichoceridae | 0.37 | / | 0.18 | 0.38 | / | 0.03 |
大蚊科 Tipulidae | 0.44 | 0.20 | 0.77 | 0.76 | 0.51 | 0.11 |
蠓科 Ceratopogonidae | 0.33 | 0.07 | / | / | 1.01 | 0.12 |
蚋科 Simuliidae | 0.40 | 0.09 | 0.52 | 0.24 | 0.61 | / |
蕈蚊科 Mycetophilidae | 1.47 | 0.96 | 1.54 | 1.38 | 0.51 | 0.65 |
瘿蚊科 Cecidomyiidae | / | 0.02 | 0.15 | 0.26 | / | 0.12 |
粘蕈蚊科 Cecidomyiidae | / | / | / | / | / | 0.07 |
毛蚊科 Bibionidae | 0.90 | 0.29 | 0.75 | 0.78 | / | 0.08 |
长角毛蚊科 Hesperinidae | / | / | 0.08 | / | / | / |
长足虻科 Dolichopodidae | / | 0.01 | 0.14 | 0.07 | 0.56 | / |
蝇科 Muscidae | 0.32 | 0.01 | 0.14 | 0.10 | 0.18 | / |
粪蝇科 Scathophagidae | 0.16 | 0.12 | 0.33 | 0.08 | 0.24 | / |
扁足蝇科 Platypezide | / | / | 0.04 | / | / | / |
地蛛科 Atypidae | 0.12 | / | 0.04 | / | 0.09 | 0.10 |
图3 不同放牧方式土壤节肢动物群落密度和多样性不同小写字母表示不同处理之间差异显著(P<0.05)。Different lowercase letter indicated significant differences among treatments at P<0.05 level.
Fig.3 Densities and diversity of soil arthropod communities under different grazing modes
群落多样性 Community diversities | 全氮 Total nitrogen | 全磷 Total phosphorus | 全碳 Total carbon | 速效氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 有机质 Organic matter | pH | 土壤含水量 Soil water content |
---|---|---|---|---|---|---|---|---|---|
均匀度指数Pielou index | -0.29* | 0.02 | -0.35** | -0.22 | 0.05 | -0.35** | 0.41** | 0.32* | 0.05 |
丰富度指数Margalef index | 0.46** | 0.06 | 0.22 | 0.53** | -0.01 | 0.24 | 0.52** | -0.59** | 0 |
多样性指数Shannon-Weinner index | 0.30* | 0.15 | -0.10 | 0.38** | 0.45** | 0.22 | 0.43** | -0.38** | 0.15 |
平均密度Mean density | 0.56** | 0.06 | 0.22 | 0.42** | 0.22 | 0.53** | 0.61** | -0.64** | -0.04 |
总类群数Group number | 0.47** | 0.08 | 0.15 | 0.50** | 0.19 | 0.32* | 0.59** | -0.59** | 0.06 |
表5 土壤节肢动物群落多样性与土壤理化特性的相关系数
Table 5 Correlation index between soil arthropods community diversity and soil physical and chemical properties
群落多样性 Community diversities | 全氮 Total nitrogen | 全磷 Total phosphorus | 全碳 Total carbon | 速效氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 有机质 Organic matter | pH | 土壤含水量 Soil water content |
---|---|---|---|---|---|---|---|---|---|
均匀度指数Pielou index | -0.29* | 0.02 | -0.35** | -0.22 | 0.05 | -0.35** | 0.41** | 0.32* | 0.05 |
丰富度指数Margalef index | 0.46** | 0.06 | 0.22 | 0.53** | -0.01 | 0.24 | 0.52** | -0.59** | 0 |
多样性指数Shannon-Weinner index | 0.30* | 0.15 | -0.10 | 0.38** | 0.45** | 0.22 | 0.43** | -0.38** | 0.15 |
平均密度Mean density | 0.56** | 0.06 | 0.22 | 0.42** | 0.22 | 0.53** | 0.61** | -0.64** | -0.04 |
总类群数Group number | 0.47** | 0.08 | 0.15 | 0.50** | 0.19 | 0.32* | 0.59** | -0.59** | 0.06 |
1 | Yin W Y. Soil animals in China. Beijing: Science Press, 2000. |
尹文英. 中国土壤动物. 北京: 科学出版社, 2000. | |
2 | Zhang R Z, Cui Z D. Soil animals and terrestrial ecosystems. Chinese Journal of Ecology, 1983(4): 23-26. |
张荣祖, 崔振东. 土壤动物与陆地生态系统. 生态学杂志, 1983(4): 23-26. | |
3 | Bezemer T M, Dam N M V. Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution, 2005, 20(11): 617-624. |
4 | Li Y, Wu P F, Long W, et al. Effects of different forage species on soil arthropod communities on the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2019, 39(20): 7697-7708. |
李雨, 吴鹏飞, 龙伟, 等. 高寒地区种植不同种类牧草对土壤节肢动物群落的影响.生态学报, 2019, 39(20): 7697-7708. | |
5 | Wu Q, Wu P F, Wang Q, et al. Effects of grazing intensity on the community structure and diversity of different soil fauna in alpine meadow. Scientia Agricultura Sinica, 2016, 49(9): 1826-1834. |
武崎, 吴鹏飞, 王群, 等. 放牧强度对高寒草地不同类群土壤动物的群落结构和多样性的影响. 中国农业科学, 2016, 49(9): 1826-1834. | |
6 | Xiao H Y, Liu H, Li B, et al. A study on the influence of grazing disturbance on soil fauna communities in subalpine meadows. Acta Prataculturae Sinica, 2012, 21(2): 26-33. |
肖红艳, 刘红, 李波, 等. 放牧干扰对亚高山草甸土壤动物群落影响的研究. 草业学报, 2012, 21(2): 26-33. | |
7 | Fonderflick J, Besnard A, Beuret A, et al. The impact of grazing management on Orthoptera abundance varies over the season in Mediterranean steppe-like grassland. Acta Oecologica, 2014, 60: 7-16. |
8 | Liu X, Zhao D, Chen J W, et al. Effects of grazing and mowing on macrofauna communities in a typical steppe of Inner Mongolia. Chinese Journal of Applied Ecology, 2017, 28(6): 1869-1878. |
刘霞, 赵东, 程建伟, 等. 放牧和刈割对内蒙古典型草原大型土壤动物的影响. 应用生态学报, 2017, 28(6): 1869-1878. | |
9 | Zhang Z H, Zhou H K, Zhao X Q, et al. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiversity Science, 2018, 26(2): 111-129. |
张中华, 周华坤, 赵新全, 等. 青藏高原高寒草地生物多样性与生态系统功能的关系. 生物多样性, 2018, 26(2): 111-129. | |
10 | Liu R T, Zhao H L, Zhao X Y. Changes in functional groups of soil macro-faunal community in degraded sandy grassland under post-grazing natural restoration in Hoqin Sand Land. Ecology and Environmental Sciences, 2011, 20(12): 1794-1798. |
刘任涛, 赵哈林, 赵学勇. 放牧干扰后自然恢复沙质草地大型土壤动物功能群变化特征. 生态环境学报, 2011, 20(12): 1794-1798. | |
11 | Gao Y M. Effects of alpine meadow degradation on epigeic arthropod diversity in Zoigê. Chengdu: Southwest Minzu University, 2015. |
高艳美. 若尔盖高寒草甸退化对表栖性节肢动物多样性的影响. 成都: 西南民族大学, 2015. | |
12 | Zhang H Z, Wu P F, Yang D X, et al. Dynamics of soil meso-and microfauna communities in Zoigê alpine meadows on the eastern edge of Qinghai-Tibet Plateau, China. Acta Ecologica Sinica, 2011, 31(15): 4385-4397. |
张洪芝, 吴鹏飞, 杨大星, 等. 青藏东缘若尔盖高寒草甸中小型土壤动物群落特征及季节变化. 生态学报, 2011, 31(15): 4385-4397. | |
13 | Yang Z N, Zhu Q, Zhan W, et al. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 110: 128-136. |
14 | Ma W, Ding K, Li Z. Comparison of soil carbon and nitrogen stocks at grazing-excluded and yak grazed alpine meadow sites in Qinghai-Tibetan Plateau, China. Ecological Engineering, 2016, 87: 203-211. |
15 | Hilario M C, Wrage-Mönnig N, Isselstein J. Behavioral patterns of (co-)grazing cattle and sheep on swards differing in plant diversity. Applied Animal Behaviour Science, 2017, 191(6):17-23. |
16 | Dong Q M, Zhao X Q, Wu G L, et al. Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China. Environmental Earth Sciences, 2015, 73(5): 2497-2503. |
17 | Yin X Q, Song B, Dong W H, et al. A review on the eco-geography of soil fauna in China. Acta Geographica Sinica, 2010, 65(1): 91-102. |
殷秀琴, 宋博, 董炜华, 等. 我国土壤动物生态地理研究进展. 地理学报, 2010, 65(1): 91-102. | |
18 | Yang X X, Dong Q M, Chu H, et al. Different responses of soil element contents and their stoichiometry (C:N:P) to yak grazing and Tibetan sheep grazing in an alpine grassland on the eastern Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 2019, 285: 106628. |
19 | Feng B, Yang X X, Dong Q M, et al. Response of major species to grazing mode in an alpine grassland. Pratacultural Science, 2021, 38(3): 531-543. |
冯斌, 杨晓霞, 董全民, 等. 高寒草地主要物种对放牧方式的响应. 草业科学, 2021, 38(3): 531-543. | |
20 | Zhang Y F, Yang X X, Dong Q M, et al. Effects of mixed grazing of yak and Tibetan sheep on feed intake of grazing livestock and plant compensation growth. Acta Agrestia Sinica, 2019, 27(6): 1607-1614. |
张艳芬, 杨晓霞, 董全民, 等. 牦牛和藏羊混合放牧对放牧家畜采食量和植物补偿性生长的影响. 草地学报, 2019, 27(6): 1607-1614. | |
21 | Yin W Y. Pictorical keys to soil animals of China. Beijing: Science Press, 1998. |
尹文英. 中国土壤动物检索图鉴. 北京: 科学出版社, 1998. | |
22 | Li H X, Sui J Z, Zhou S X, et al. Insect taxonomic retrieval. Beijing: China Agriculture Press, 1987. |
李鸿兴, 隋敬之, 周士秀, 等. 昆虫分类检索. 北京: 中国农业出版社, 1987. | |
23 | Lu R K. Soil argrochemistry analysis protocoes. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
24 | Lin Y H, Zhang F D, Yang X Y, et al. Study on the relationship between agricultural soil fauna and soil physicochemical properties. Scientia Agricultura Sinica, 2004, 37(6): 871-877. |
林英华, 张夫道, 杨学云, 等. 农田土壤动物与土壤理化性质关系的研究. 中国农业科学, 2004, 37(6): 871-877. | |
25 | Li X H, Liu S R, Wei X, et al. Soil microarthropod diversity in six subtropical forest plantations. Chinese Journal of Ecology, 2021, 40(5): 1458-1468. |
李小涵, 刘世荣, 魏雪, 等. 南亚热带6种人工林小型土壤节肢动物群落多样性. 生态学杂志, 2021, 40(5): 1458-1468. | |
26 | Xu G L, Fang B Z, Zhou L X, et al. Effects of forest rehabilitation managements on soil fauna community in southern subtropical Heshan. Journal of Guangzhou University (Natural Science Edition), 2016, 15(5): 56-66. |
徐国良, 方碧真, 周丽霞, 等.广东鹤山南亚热带植被重建对土壤动物群落的影响. 广州大学学报(自然科学版), 2016, 15(5): 56-66. | |
27 | Sun C C, Dong Q M, Liu W T, et al. Research progress on community structure and diversity of grassland soil animals. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2021, 51(3): 57-61. |
孙彩彩, 董全民, 刘文亭, 等. 草地土壤动物群落结构及多样性的研究进展. 青海畜牧兽医杂志, 2021, 51(3): 57-61. | |
28 | Zhang W, Gu C L, Li F, et al. Wetland soil faunal community characteristics on different types of tundra environment in Daxing’an Mountain. Journal of Northeast Forestry University, 2014, 42(5): 101-104. |
张武, 顾成林, 李富, 等. 大兴安岭不同冻土环境湿地土壤动物群落特征. 东北林业大学学报, 2014, 42(5): 101-104. | |
29 | Du Z Y, Cai Y J, Wang X D, et al. Research progress on yak grazing behavior and its influence on the soil properties of alpine grassland. Acta Prataculturae Sinica, 2019, 28(7): 186-197. |
杜子银, 蔡延江, 王小丹, 等. 放牧牦牛行为及其对高寒草地土壤特性的影响研究进展. 草业学报, 2019, 28(7): 186-197. | |
30 | Du W C. Grazing management effects on intaking behaviour and body weight of Tibetan sheep. Lanzhou: Lanzhou University, 2016. |
杜鹉辰. 放牧管理对藏羊采食行为与体重的影响. 兰州: 兰州大学, 2016. | |
31 | Cui L W, Liu S R, Liu X L, et al. Soil meso-micro faunal diversity in different restoration types of forest ecosystems in Miyaluo. Chinese Journal of Ecology, 2011, 30(6): 1153-1162. |
崔丽巍, 刘世荣, 刘兴良, 等. 米亚罗林区不同森林恢复方式下中小型土壤动物多样性. 生态学杂志, 2011, 30(6): 1153-1162. | |
32 | Tie L H, Bai W Y, Feng M S, et al. Effects of reforming low-efficient cypress forest on meso-and micro-soil faunal community. Journal of Ecology and Rural Environment, 2016, 32(5): 767-773. |
铁烈华, 白文玉, 冯茂松, 等. 不同改造措施对柏木低效林中小型土壤动物群落结构的影响. 生态与农村环境学报, 2016, 32(5): 767-773. | |
33 | Liu J, Feng C, Wang D, et al. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. Journal of Applied Ecology, 2015, 52(4): 1053-1062. |
34 | Cai Y J, Du Y Z, Yan Y, et al. Greater stimulation of greenhouse gas emissions by stored yak urine than urea in an alpine steppe soil from the Qinghai‐Tibetan Plateau: A laboratory study. Grassland Science, 2017, 63(3): 196-207. |
35 | La H, Luo Z H, Li H. Analysis on treatment and resource utilization of yak and tibetan sheep manure in Qinghai pastoral area. Animal Industry and Environment, 2019(8): 50-52. |
拉环, 罗增海, 李浩. 青海牧区牦牛藏羊粪便处理及资源化利用浅析. 畜牧业环境, 2019(8): 50-52. | |
36 | Zhong Z W, Wang D L, Zhu H, et al. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity. Ecology, 2014, 95(4): 1055-1064. |
37 | Brelin B. Mixed grazing with sheep and cattle compared with single grazing. Swedish Journal of Agricultural Research, 1979, 9: 113-120. |
38 | Zhang Y F. Effects of grazing regime on feed intake and apparent digestibility of yak and Tibetan sheep. Xining: QingHai University, 2020. |
张艳芬. 放牧方式对牦牛和藏羊采食量和表观消化率影响的研究. 西宁: 青海大学, 2020. | |
39 | Scrimgeo G J, Kendall S. Effects of livestock grazing on benthic invertebrates from a native grassland ecosystem. Freshwater Biology, 2010, 48(2): 347-362. |
40 | Bueno C G, Jiménez J J. Livestock grazing activities and wild boar rooting affect alpine earthworm communities in the Central Pyrenees (Spain). Applied Soil Ecology, 2014, 83: 71-78. |
41 | Luo J M, Yin X R, Ye Y J, et al. Response of soil large-and mesofauna to edaphic characterization along vegetation second succession sequence of inland saline marsh. Acta Prataculturae Sinica, 2014, 23(2): 287-295. |
罗金明, 尹雄锐, 叶雅杰, 等. 大中型土壤动物对内陆盐沼沿退化序列环境的指示研究. 草业学报, 2014, 23(2): 287-295. | |
42 | Li W N, Hu Q L, Hao Z, et al. Study on the diversity of small and medium-sized soil animals in spring in the Yellow River wetland of Shaanxi Province under different land use patterns. Hubei Agricultural Sciences, 2020, 59(13): 47-50. |
李维娜, 胡庆玲, 郝转, 等. 陕西省黄河湿地春季不同土地利用方式下中小型土壤动物多样性研究. 湖北农业科学, 2020, 59(13): 47-50. | |
43 | Ren X T, Qin F C, Wang D H, et al. Community composition and structure of soil animals under cropping patterns in orchards of loess residual plateau and gully area. Soil and Fertilizer Sciences in China, 2020(1): 188-194. |
任小同, 秦富仓, 王迪海, 等. 残塬沟壑区果园复合种植对土壤动物群落特征的影响. 中国土壤与肥料, 2020(1): 188-194. | |
44 | Long W, Gao Y M, Wu P F. Effects of alpine meadow degradation on epigeic arthropod communities in Zoigê. Chinese Journal of Ecology, 2018, 37(1):128-138. |
龙伟, 高艳美, 吴鹏飞. 若尔盖高寒草甸退化对表栖节肢动物群落的影响. 生态学杂志, 2018, 37(1): 128-138. | |
45 | Chen Q L, Li Z, Li J P, et al. Effects of NPK application on degraded grassland productivity and community structure on Bashang plateau. Journal of Hebei Agricultural University, 2020, 43(5): 63-70. |
陈奇乐, 李智, 李瑾璞, 等. 氮磷钾配施对坝上退化草地生产力及群落特征的影响. 河北农业大学学报, 2020, 43(5): 63-70. | |
46 | Jin Y, Liang C Z, Cui L J. Effects of different nutrient additions on the stoichiometric characteristics of leaves of dominant plants in grassland communities. Journal of Northern Agriculture, 2019, 47(2): 59-65. |
金月, 梁存柱, 崔利剑. 不同养分添加对草地群落优势植物叶片化学计量特征的影响. 北方农业学报, 2019, 47(2): 59-65. |
[1] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[2] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[3] | 石明明, 王晓敏, 陈奇, 韩炳宏, 周秉荣, 肖建设, 肖宏斌. 高寒草地干湿生态系统土壤水分及入渗对降水的响应[J]. 草业学报, 2021, 30(12): 49-58. |
[4] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
[5] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
[6] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[7] | 宋梅玲, 王玉琴, 鲍根生, 王宏生. 狼毒防除对高寒草地群落植物养分重吸收的影响[J]. 草业学报, 2020, 29(10): 47-57. |
[8] | 刘雪儿, 马金凤, 杨成德, 李统华. 青海高寒草地针茅根际土壤细菌拮抗功能评价及鉴定[J]. 草业学报, 2019, 28(8): 161-169. |
[9] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[10] | 张建贵, 王理德, 姚拓, 李海云, 高亚敏, 杨晓玫, 李昌宁, 李琦, 冯影, 胡彦婷. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究[J]. 草业学报, 2019, 28(5): 15-25. |
[11] | 雷玮倩, 胡玉福, 杨泽鹏, 何剑锋, 肖海华, 舒向阳, 阳帆, 李正青. 垦殖对川西北高寒草地土壤中不同磷组分含量的影响[J]. 草业学报, 2019, 28(5): 36-45. |
[12] | 焦婷, 吴铁成, 吴建平, 赵生国, 雷赵民, 梁建勇, 冉福, 九麦扎西, 刘振恒. 不同类型藏羊消化率与采食量的比较研究[J]. 草业学报, 2019, 28(5): 100-108. |
[13] | 张苗苗, 陈伟, 林丽, 张德罡, 吴玉鑫, 肖海龙. 青海省不同高寒草地土壤主要养分及可溶性有机碳特性研究[J]. 草业学报, 2019, 28(3): 20-28. |
[14] | 王学霞, 董世魁, 高清竹, 张勇, 胡国铮, 罗文蓉. 青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究[J]. 草业学报, 2018, 27(6): 1-9. |
[15] | 栗文瀚, 干珠扎布, 曹旭娟, 闫玉龙, 李钰, 罗文蓉, 胡国铮, 旦久罗布, 何世丞, 高清竹. 海拔梯度对藏北高寒草地生产力和物种多样性的影响[J]. 草业学报, 2017, 26(9): 200-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||