草业学报 ›› 2022, Vol. 31 ›› Issue (5): 40-50.DOI: 10.11686/cyxb2021129
田英1,2,4(), 许喆1, 朱丽珍1,2, 王俊1, 温学飞3,4()
收稿日期:
2021-04-07
修回日期:
2021-06-09
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
温学飞
作者简介:
Corresponding author. E-mail: wenxuefei1973@126.com基金资助:
Ying TIAN1,2,4(), Zhe XU1, Li-zhen ZHU1,2, Jun WANG1, Xue-fei WEN3,4()
Received:
2021-04-07
Revised:
2021-06-09
Online:
2022-05-20
Published:
2022-03-30
Contact:
Xue-fei WEN
摘要:
柠条是豆科锦鸡儿属植物栽培种的通称,其中,中间锦鸡儿是中国西北地区重要的生态恢复型柠条灌木,平茬是促进柠条植株再生的重要手段。为了探讨生长季不同月份平茬对柠条人工林地土壤细菌群落结构和多样性的影响,基于Illumina Hiseq测序平台对宁夏盐池荒漠草原人工柠条林生长季不同月份平茬土壤细菌16S rDNA基因V3~V4区片段进行了序列测定,结合土壤理化因子,分析了人工柠条生长季不同月份平茬土壤细菌群落多样性与土壤理化因子的相关性。结果表明:变形菌门、放线菌门、酸杆菌门、绿弯菌门是生长季4-10月平茬的柠条人工林地土壤的优势细菌门,7个不同月份平茬分组之间在变形菌门、放线菌门、芽单胞菌门、己科河菌门、硝化螺旋菌门存在差异,其中第一优势细菌门变形菌门排序为:Y9>Y8>Y4>Y5>Y7>Y6>Y10,9月最高,为29.74%,显著高于10月(P<0.05),其他各月之间差异不显著(P>0.05);5月平茬的放线菌门相对丰度最高,且显著高于4、6、7、8、9月(P<0.05);9月平茬的酸杆菌门丰度最低。土壤细菌多样性指数也在不同月份平茬之间具有一定差异,细菌群落丰富度指数依次为:Y8>Y7>Y4>Y5>Y6>Y9>Y10,多样性较高的是4、6月平茬,9月平茬显著低于其他各月(P<0.05)。冗余分析(RDA)表明,不同月份平茬影响柠条人工林地土壤细菌分布的主要土壤环境因子是全磷、速效氮、有机质。放线菌纲、酸微菌纲与土壤pH正相关;α变形菌纲与土壤有机质正相关;δ-变形菌纲与含水量、全钾呈显著正相关;γ-变形菌纲、芽单胞菌纲与有机质、速效氮、全磷呈显著正相关。综合分析,平茬各月土壤细菌群落特性存在差异,土壤细菌优势菌群分布丰富、土壤养分含量较高的柠条旺盛生长季的4-8月平茬优于生长期末的9-10月,对于维持柠条的生态效益和开发利用柠条饲草料具有实际参考价值。
田英, 许喆, 朱丽珍, 王俊, 温学飞. 生长季不同月份平茬对柠条人工林地土壤细菌群落特性的影响[J]. 草业学报, 2022, 31(5): 40-50.
Ying TIAN, Zhe XU, Li-zhen ZHU, Jun WANG, Xue-fei WEN. Effect of cutting time during the growing season on the soil bacterial community under an artificial Caragana intermedia plantation[J]. Acta Prataculturae Sinica, 2022, 31(5): 40-50.
土壤性质 Soil properties | 处理Treatment | ||||||
---|---|---|---|---|---|---|---|
Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | |
含水量 WC (%) | 10.52±0.48ab | 9.50±0.58b | 10.55±0.96ab | 10.42±0.80ab | 10.90±0.57a | 11.04±0.39a | 10.45±0.71ab |
pH | 8.38±0.07c | 8.53±0.02a | 8.52±0.01a | 8.46±0.03b | 8.25±0.05d | 8.37±0.01c | 8.32±0.03c |
有机质SOM (g·kg-1) | 0.31±0.02b | 0.31±0.02b | 0.24±0.04c | 0.32±0.02ab | 0.36±0.02a | 0.34±0.03ab | 0.34±0.01ab |
全盐TS (g·kg-1) | 2.14±0.02d | 1.82±0.04e | 1.86±0.06e | 2.20±0.03d | 3.60±0.03a | 2.40±0.12c | 2.87±0.06b |
全氮TN (g·kg-1) | 0.13±0.01c | 0.14±0.01c | 0.14±0.01c | 0.18±0.01b | 0.27±0.02a | 0.18±0.01b | 0.17±0.02b |
全磷TP (g·kg-1) | 0.34±0.06bc | 0.28±0.01c | 0.33±0.03bc | 0.34±0.02bc | 0.45±0.06a | 0.34±0.02bc | 0.36±0.04b |
全钾TK (g·kg-1) | 16.67±0.41ab | 16.88±0.39ab | 16.85±0.33ab | 16.88±0.29ab | 16.97±0.43a | 16.28±0.16bc | 16.03±0.17c |
速效氮AN (mg·kg-1) | 6.78±0.40d | 4.95±0.06e | 4.88±0.20e | 7.00±0.03d | 12.90±0.21a | 8.99±0.22b | 7.94±0.06c |
速效磷AP (mg·kg-1) | 1.74±0.07a | 0.49±0.03d | 1.15±0.05b | 0.92±0.07c | 0.89±0.04c | 0.91±0.04c | 1.10±0.06b |
速效钾AK (mg·kg-1) | 121.49±0.94b | 95.24±0.64e | 83.60±0.83g | 125.76±1.65a | 107.10±0.64c | 102.72±1.38d | 87.25±1.07f |
表1 土壤理化性质比较
Table 1 Comparison of soil physical and chemical properties
土壤性质 Soil properties | 处理Treatment | ||||||
---|---|---|---|---|---|---|---|
Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | |
含水量 WC (%) | 10.52±0.48ab | 9.50±0.58b | 10.55±0.96ab | 10.42±0.80ab | 10.90±0.57a | 11.04±0.39a | 10.45±0.71ab |
pH | 8.38±0.07c | 8.53±0.02a | 8.52±0.01a | 8.46±0.03b | 8.25±0.05d | 8.37±0.01c | 8.32±0.03c |
有机质SOM (g·kg-1) | 0.31±0.02b | 0.31±0.02b | 0.24±0.04c | 0.32±0.02ab | 0.36±0.02a | 0.34±0.03ab | 0.34±0.01ab |
全盐TS (g·kg-1) | 2.14±0.02d | 1.82±0.04e | 1.86±0.06e | 2.20±0.03d | 3.60±0.03a | 2.40±0.12c | 2.87±0.06b |
全氮TN (g·kg-1) | 0.13±0.01c | 0.14±0.01c | 0.14±0.01c | 0.18±0.01b | 0.27±0.02a | 0.18±0.01b | 0.17±0.02b |
全磷TP (g·kg-1) | 0.34±0.06bc | 0.28±0.01c | 0.33±0.03bc | 0.34±0.02bc | 0.45±0.06a | 0.34±0.02bc | 0.36±0.04b |
全钾TK (g·kg-1) | 16.67±0.41ab | 16.88±0.39ab | 16.85±0.33ab | 16.88±0.29ab | 16.97±0.43a | 16.28±0.16bc | 16.03±0.17c |
速效氮AN (mg·kg-1) | 6.78±0.40d | 4.95±0.06e | 4.88±0.20e | 7.00±0.03d | 12.90±0.21a | 8.99±0.22b | 7.94±0.06c |
速效磷AP (mg·kg-1) | 1.74±0.07a | 0.49±0.03d | 1.15±0.05b | 0.92±0.07c | 0.89±0.04c | 0.91±0.04c | 1.10±0.06b |
速效钾AK (mg·kg-1) | 121.49±0.94b | 95.24±0.64e | 83.60±0.83g | 125.76±1.65a | 107.10±0.64c | 102.72±1.38d | 87.25±1.07f |
处理 Treatment | 分类操作单元 Operational taxonomic unit (OTU) | Ace指数 Ace index | Chao 1 指数 Chao1 index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖率 Coverage (%) |
---|---|---|---|---|---|---|
Y4 | 1838±4ab | 1911±3a | 1920±17a | 6.62±0.01a | 0.0027±0b | 99.8 |
Y5 | 1793±43ab | 1834±42a | 1912±42a | 6.46±0.02ab | 0.0028±0b | 99.8 |
Y6 | 1812±21abc | 1812±15ab | 1895±34ab | 6.63±0.01a | 0.0026±0b | 99.7 |
Y7 | 1829±12ab | 1939±23a | 1933±31a | 6.46±0.01ab | 0.0028±0b | 99.7 |
Y8 | 1869±11a | 1946±4a | 1958±5a | 6.51±0.08a | 0.0032±0b | 99.7 |
Y9 | 1728±24c | 1801±27b | 1845±28b | 6.32±0.04b | 0.0041±0a | 99.7 |
Y10 | 1757±44bc | 1802±57b | 1839±62b | 6.61±0.02a | 0.0027±0b | 99.7 |
表2 土壤细菌α多样性
Table 2 α diversity of bacteria communities
处理 Treatment | 分类操作单元 Operational taxonomic unit (OTU) | Ace指数 Ace index | Chao 1 指数 Chao1 index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖率 Coverage (%) |
---|---|---|---|---|---|---|
Y4 | 1838±4ab | 1911±3a | 1920±17a | 6.62±0.01a | 0.0027±0b | 99.8 |
Y5 | 1793±43ab | 1834±42a | 1912±42a | 6.46±0.02ab | 0.0028±0b | 99.8 |
Y6 | 1812±21abc | 1812±15ab | 1895±34ab | 6.63±0.01a | 0.0026±0b | 99.7 |
Y7 | 1829±12ab | 1939±23a | 1933±31a | 6.46±0.01ab | 0.0028±0b | 99.7 |
Y8 | 1869±11a | 1946±4a | 1958±5a | 6.51±0.08a | 0.0032±0b | 99.7 |
Y9 | 1728±24c | 1801±27b | 1845±28b | 6.32±0.04b | 0.0041±0a | 99.7 |
Y10 | 1757±44bc | 1802±57b | 1839±62b | 6.61±0.02a | 0.0027±0b | 99.7 |
项目 Item | 含水量 WC | pH | 有机质 SOM | 全盐 TS | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|---|---|
分类操作单元Operational taxonomic unit (OTU) | -0.064 | 0.007 | -0.086 | -0.013 | 0.093 | 0.046 | 0.512* | 0.010 | 0.084 | 0.326 |
Ace指数Ace index | -0.012 | -0.005 | -0.024 | 0.063 | 0.207 | 0.157 | 0.630** | 0.123 | 0.011 | 0.364 |
Chao 1 指数Chao1 index | -0.029 | -0.013 | 0.017 | 0.062 | 0.202 | 0.185 | 0.635** | 0.137 | 0.041 | 0.406 |
辛普森指数Simpson index | -0.025 | -0.198 | 0.301 | 0.176 | 0.259 | 0.181 | -0.137 | 0.418 | -0.204 | 0.042 |
香农指数Shannon index | 0.019 | 0.168 | -0.338 | -0.195 | -0.308 | -0.206 | 0.103 | -0.431 | 0.308 | -0.040 |
表3 土壤细菌α多样性与土壤性质的相关性
Table 3 Correlation between soil bacteria α diversity and soil properties
项目 Item | 含水量 WC | pH | 有机质 SOM | 全盐 TS | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|---|---|
分类操作单元Operational taxonomic unit (OTU) | -0.064 | 0.007 | -0.086 | -0.013 | 0.093 | 0.046 | 0.512* | 0.010 | 0.084 | 0.326 |
Ace指数Ace index | -0.012 | -0.005 | -0.024 | 0.063 | 0.207 | 0.157 | 0.630** | 0.123 | 0.011 | 0.364 |
Chao 1 指数Chao1 index | -0.029 | -0.013 | 0.017 | 0.062 | 0.202 | 0.185 | 0.635** | 0.137 | 0.041 | 0.406 |
辛普森指数Simpson index | -0.025 | -0.198 | 0.301 | 0.176 | 0.259 | 0.181 | -0.137 | 0.418 | -0.204 | 0.042 |
香农指数Shannon index | 0.019 | 0.168 | -0.338 | -0.195 | -0.308 | -0.206 | 0.103 | -0.431 | 0.308 | -0.040 |
门Phylum | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 |
---|---|---|---|---|---|---|---|
变形菌门Proteobacteria | 27.12±0.30ab | 26.02±0.87ab | 25.40±0.69ab | 25.95±0.59ab | 28.67±2.56ab | 29.74±1.99a | 24.61±0.56b |
放线菌门Actinobacteria | 23.03±0.51b | 26.34±0.83a | 22.64±0.20b | 22.02±0.78b | 22.31±1.36b | 23.28±1.02b | 24.14±0.80ab |
酸杆菌门Acidobacteria | 19.32±0.38bc | 18.61±0.27c | 20.93±0.40a | 21.25±0.58a | 18.49±0.71c | 15.53±0.53d | 20.18±0.41ab |
绿弯菌门Chloroflexi | 10.69±0.22a | 11.17±0.52a | 10.77±0.18a | 12.02±0.18a | 11.29±0.49a | 11.98±0.56a | 11.79±0.38a |
芽单胞菌门Gemmatimonadetes | 6.52±0.03cd | 6.59±0.06cd | 7.21±0.12cd | 7.46±0.08bc | 11.29±0.49a | 8.22±0.52b | 6.47±0.25d |
拟杆菌门Bacteroidetes | 3.44±0.14a | 3.60±0.05a | 3.11±0.08a | 2.98±0.20a | 3.58±0.50a | 3.13±0.17a | 2.87±0.12a |
己科河菌门Rokubacteria | 1.76±0.07b | 1.55±0.10bc | 2.38±0.06a | 2.14±0.11a | 2.33±0.17a | 1.36±0.10c | 2.30±0.12a |
疣微菌门Verrucomicrobia | 1.67±0.03a | 1.44±0.08a | 1.74±0.07a | 1.58±0.09a | 1.55±0.14a | 1.60±0.05a | 1.69±0.15a |
硝化螺旋菌门Nitrospirae | 1.30±0.07ab | 0.90±0.02bc | 1.19±0.08abc | 1.21±0.04abc | 1.12±0.07abc | 0.84±0.08c | 1.51±0.31a |
厚壁菌门Firmicutes | 1.37±0.05a | 1.21±0.08a | 1.22±0.18a | 1.12±0.03a | 1.11±0.04a | 1.23±0.64a | 1.33±0.38a |
表4 门水平下的细菌群落组成差异(相对丰度排序前十)
Table 4 Difference of bacterial community composition (top ten) of relative abundance at phylum level
门Phylum | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 |
---|---|---|---|---|---|---|---|
变形菌门Proteobacteria | 27.12±0.30ab | 26.02±0.87ab | 25.40±0.69ab | 25.95±0.59ab | 28.67±2.56ab | 29.74±1.99a | 24.61±0.56b |
放线菌门Actinobacteria | 23.03±0.51b | 26.34±0.83a | 22.64±0.20b | 22.02±0.78b | 22.31±1.36b | 23.28±1.02b | 24.14±0.80ab |
酸杆菌门Acidobacteria | 19.32±0.38bc | 18.61±0.27c | 20.93±0.40a | 21.25±0.58a | 18.49±0.71c | 15.53±0.53d | 20.18±0.41ab |
绿弯菌门Chloroflexi | 10.69±0.22a | 11.17±0.52a | 10.77±0.18a | 12.02±0.18a | 11.29±0.49a | 11.98±0.56a | 11.79±0.38a |
芽单胞菌门Gemmatimonadetes | 6.52±0.03cd | 6.59±0.06cd | 7.21±0.12cd | 7.46±0.08bc | 11.29±0.49a | 8.22±0.52b | 6.47±0.25d |
拟杆菌门Bacteroidetes | 3.44±0.14a | 3.60±0.05a | 3.11±0.08a | 2.98±0.20a | 3.58±0.50a | 3.13±0.17a | 2.87±0.12a |
己科河菌门Rokubacteria | 1.76±0.07b | 1.55±0.10bc | 2.38±0.06a | 2.14±0.11a | 2.33±0.17a | 1.36±0.10c | 2.30±0.12a |
疣微菌门Verrucomicrobia | 1.67±0.03a | 1.44±0.08a | 1.74±0.07a | 1.58±0.09a | 1.55±0.14a | 1.60±0.05a | 1.69±0.15a |
硝化螺旋菌门Nitrospirae | 1.30±0.07ab | 0.90±0.02bc | 1.19±0.08abc | 1.21±0.04abc | 1.12±0.07abc | 0.84±0.08c | 1.51±0.31a |
厚壁菌门Firmicutes | 1.37±0.05a | 1.21±0.08a | 1.22±0.18a | 1.12±0.03a | 1.11±0.04a | 1.23±0.64a | 1.33±0.38a |
项目 Item | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 |
---|---|---|---|---|---|---|
Y5 | 0.185 | |||||
Y6 | 0.174 | 0.971 | ||||
Y7 | 0.313 | 0.732 | 0.705 | |||
Y8 | 0.149 | 0.896 | 0.925 | 0.637 | ||
Y9 | 0.000 | 0.001 | 0.001 | 0.001 | 0.002 | |
Y10 | 0.001 | 0.017 | 0.018 | 0.008 | 0.022 | 0.225 |
表5 不同分组之间的细菌群落差异Permanova分析P值
Table 5 Bacterial community difference P value between different treats (Permanova)
项目 Item | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 |
---|---|---|---|---|---|---|
Y5 | 0.185 | |||||
Y6 | 0.174 | 0.971 | ||||
Y7 | 0.313 | 0.732 | 0.705 | |||
Y8 | 0.149 | 0.896 | 0.925 | 0.637 | ||
Y9 | 0.000 | 0.001 | 0.001 | 0.001 | 0.002 | |
Y10 | 0.001 | 0.017 | 0.018 | 0.008 | 0.022 | 0.225 |
图3 细菌群落(排序前十细菌纲)和土壤理化因子的冗余分析排序前十的细菌纲Top ten bacteria at class level: 1. α变形菌纲Alphaproteobacteria;2. γ-变形菌纲Gammaproteobacteria;3. Subgroup_6;4. 嗜热油菌纲Thermoleophilia;5. 芽单胞菌纲Gemmatimonadetes;6. 微酸菌纲Acidimicrobiia;7. δ-变形菌纲Deltaproteobacteria;8. Blastocatellia_Subgroup_4;9. 放线菌纲Acitinobacteria;10. MB-A2-108.
Fig.3 Redundancy analysis for bacterial community (top ten bacteria at class level) and soil physical and chemical factors
1 | Cui J, Chen Y M, Cao Y, et al. Soil carbon sequestration characteristics of Caragana microphylla forest and its influencing factors in loess hilly semiarid region. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1197-1203. |
崔静, 陈云明, 曹扬, 等. 黄土丘陵半干旱区人工柠条林土壤固碳特征及其影响因素. 中国生态农业学报, 2012, 20(9): 1197-1203. | |
2 | Yu R X, Wang L, Yang X G, et al. Soil moisture dynamics and physiological characteristics of moving of Caragana intermedia. Acta Ecologica Sinica, 2019, 39(19): 7249-7257. |
于瑞鑫, 王磊, 杨新国, 等. 平茬柠条的土壤水分动态及生理特征. 生态学报, 2019, 39(19): 7249-7257. | |
3 | Ma C C, Gao Y B, Guo H Y, et al. Physiological adaptations of four dominant Caragana species in the desert region of the Inner Mongolia Plateau. Journal of Arid Environments, 2007, 72(3): 247-254. |
4 | Yang Y S, Bu C F, Gao G X. Effect of pruning measure on physiology character and soil waters of Caragana korshinskii. Acta Ecologica Sinica, 2012, 32(4): 1327-1336. |
杨永胜, 卜崇峰, 高国雄. 平茬措施对柠条生理特征及土壤水分的影响. 生态学报, 2012, 32(4): 1327-1336. | |
5 | Zhang H N. Ecophysiology compensatory mechanisms of Caragana korshinskii after clipping. Lanzhou: Gansu Agricultural University, 2011. |
张海娜. 柠条锦鸡儿平茬后补偿生长的生理生态机制. 兰州: 甘肃农业大学, 2011. | |
6 | Zhou J J. Effects of different cropping patterns on feeding characteristics and habitat of artificial Caragena intermedia in desert steppe in Ningxia. Yinchuan: Ningxia University, 2017. |
周静静. 不同平茬方式对宁夏荒漠草原人工柠条饲用特性及生境的影响. 银川: 宁夏大学, 2017. | |
7 | Yu W T. Effect of pruning measure on physiology character and soil physicochemical properties Caragana korshinskii. Xianyang: Northwest A&F Univertity, 2016. |
于文涛. 平茬措施对柠条生理特性及土壤理化性质的影响. 咸阳: 西北农林科技大学, 2016. | |
8 | Wen X F. Stumping of Caragana korshinskii Kom during growth period:Effects on the storage of nutrients in roots. Chinese Agricultural Science Bulletin, 2020, 36(5): 53-59. |
温学飞. 柠条生长季平茬对根系贮藏营养物质的影响. 中国农学通报, 2020, 36(5): 53-59. | |
9 | Zhou B. Bacteria community composition and isolation and characterization in PGPR in rhizosphere of Caragana spp. Yinchuan: Ningxia University, 2017. |
周波. 柠条根际细菌群落组成及促生菌的分离筛选和特性研究. 银川: 宁夏大学, 2017. | |
10 | Niu S F. The characteristics of different soil type in rhizosphere microbial community structure and diversity of artificial Caragana korshinskii shrubland in desert steppe. Yinchuan: Ningxia University, 2018. |
牛宋芳. 荒漠草原不同土壤类型人工柠条林根际微生物群落结构及多样性特征研究. 银川: 宁夏大学, 2018. | |
11 | Shu W H, Jiang Q, Wang Z J, et al. Impact of different density of Caragana korshinskii shrubs on soil microbes in Ningxia Yanchi. Journal of Ningxia University (Natural Science Edition), 2012, 33(2): 205-209. |
舒维花, 蒋齐, 王占军, 等. 宁夏盐池沙地不同密度人工柠条林对土壤微生物的影响. 宁夏大学学报(自然科学版), 2012, 33(2): 205-209. | |
12 | Delmont T O, Prestat E, Keegan K P, et al. Structure, fluctuation and magnitude of a natural grassland soil metagenome. Multidisciplinary Journal of Microbial Ecology, 2012, 6(9): 1677-1687. |
13 | Wei P, An S Z, Dong Y Q, et al. A high-throughput sequencing evaluation of bacterial diversity and community structure of the desert soil in the Junggar Basin. Acta Prataculturae Sinica, 2020, 29(5): 182-190. |
魏鹏, 安沙舟, 董乙强, 等. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征. 草业学报, 2020, 29(5): 182-190. | |
14 | Leblanc N, Kinkel L L, Kistle H C. Soil fungal communities respond to grassland plant community richness and soil edaphics. Microbial Ecology, 2015, 70(1): 188-195. |
15 | Adair K L, Wratten S, Lear G. Soil phosphorus depletion and shift in plant communities change bacterial community structure in a long-term grassland management trial. Environmental Microbiology Reports, 2013, 5(3): 404-413. |
16 | Chen Y L, Hu H W, Han H Y, et al. Abundance and community structure of ammonia-oxidizing Archea and Bacteria in response to fertilization and mowing in a temperate steppe in Inner Mongolia. Tems Microbiol Ecology, 2014, 89(2): 67-79. |
17 | Zheng J H, Zhang F, Yang Y, et al. Effects of stubble height on the structure and diversity of soil microbial community in Stipa grandis steppe. Chinese Journal of Grassland, 2021, 43(1): 68-75. |
郑佳华, 张峰, 杨阳, 等. 刈割留茬高度对大针茅草原土壤微生物群落结构及多样性的影响. 中国草地学报, 2021, 43(1): 68-75. | |
18 | Kateryna Z, Raquel D, Patricia D Q, et al. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 2015, 69(2): 395-406. |
19 | Lgar C K, Vallino J J. Predicting microbial nitrate eduction pathways in coastal sediments. Aquatic Mi-crobial Ecology, 2014, 71(3): 223-238. |
20 | Bao S D. Soil agrochemical analysis (Third edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
21 | Lu R K. Soil agricultural chemical analysis method. Beijing: China Agriculture Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业出版社, 2000. | |
22 | Jia Z, Xiao X, Qian Z, et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients, 2015, 7(8): 6924-6937. |
23 | Magoč T, Salzberg S L. Flash: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963. |
24 | Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society. Biological Sciences, 2005, 360(1642): 1935-1943. |
25 | Yang Y, Jia L X, Qiao J R, et al. Effects of heavy grazing on soil nutrients and microbial diversity in desert steppe. Chinese Journal of Grassland, 2019, 41(4): 72-79. |
杨阳, 贾丽欣, 乔荠瑢, 等. 重度放牧对荒漠草原土壤养分及微生物多样性的影响. 中国草地学报, 2019, 41(4): 72-79. | |
26 | He J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 2013, 21(4): 411-420. |
贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 2013, 21(4): 411-420. | |
27 | Sharma S K, Ramesh A, Sharma M P, et al. Microbial community structure and diversity as indicators for evaluating soil quality. Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. 2010, 5: 317-358. |
28 | Hao G, Wang X P, Ding X F. Effects of pruning on soil microbial community in the Caragana microphylla-encroached grassland. Chinese Journal of Ecology, 2019, 38(11): 3291-3297. |
郝广, 王小平, 丁新峰. 平茬对小叶锦鸡儿灌丛化草原土壤微生物群落的影响. 生态学杂志, 2019, 38(11): 3291-3297. | |
29 | Zheng S G, Jia L M, Pang Q W, et al. Stumping effects on number and distribution of roots of Caragana microphylla Lam. plantations. Journal of Beijing Forestry University, 2010, 32(3): 64-69. |
郑士光, 贾黎明, 庞琪伟, 等. 平茬对柠条林地根系数量和分布的影响. 北京林业大学学报, 2010, 32(3): 64-69. | |
30 | Song P, Ren H, Jia Q, et al. Effects of historical logging on soil microbial communities in a subtropical forest in Southern China. Plant and Soil, 2015, 397(1): 1-12. |
31 | Araújo A S F, Borges C D, Tsai S M, et al. Soil bacterial diversity in degraded and restored lands of Northeast Brazi. Antonie van Leeuwen-hoek, 2014, 106(5): 891-899. |
32 | Aanderud Z, Shulaman M I, Drenovsky R E, et al. Shrubinterspace dynamics alter relationships between microbial community composition and belowground ecosystem characteristics. Soil Biology and Biochemistry, 2008, 40(9): 2206-2216. |
33 | Lange M, Habekost M, Eisenhauer N, et al. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One, 2014, 9(5): e96182. |
34 | Bian Y Y, Chen L, Wang J M, et al. Effect of prune measure on soil properties of artificial Caragana intermedia forest in desert steppe. Acta Agrestia Sinica, 2018, 26(6): 1347-1353. |
卞莹莹, 陈林, 王建明, 等. 平茬对荒漠草原区人工柠条林地土壤理化性质的影响. 草地学报, 2018, 26(6): 1347-1353. | |
35 | Wang F, Zuo Z, Zhang H, et al. Study on Caragana microphylla feed process and its related problem. Pratacultural Science, 2005, 22(6): 75-80. |
王峰, 左忠, 张浩, 等. 柠条饲料加工相关问题的探讨. 草业科学, 2005, 22(6): 75-80. | |
36 | Spain A M, Krumhol L R, Elshahed M S. Abundance, composition, diversity and novelty of soil Proteobacteria. Multidisciplinary Journal of Microbial Ecology, 2009, 3(8): 992-1000. |
37 | Sun H B. Soil bacterial communities diversity and distribution in Alidiqu of Tiaetan Plateau. Nanjing: Nanjing Agricultural University, 2013. |
孙怀博. 青藏高原阿里地区土壤细菌群落多样性及其分布的研究. 南京: 南京农业大学, 2013. | |
38 | Cruz-Martinez K, Rosling A, Zhang Y, et al. Effect of reinfall-induced soil geochenmistry dynamics on grassland soil microbial communities. Applied and Environmental Microbiology, 2012, 78(21): 75-87. |
39 | Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 2016, 32(2): 14-20. |
王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 2016, 32(2): 14-20. | |
40 | Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13(6): 1642-1654. |
41 | Ramirez K S, Craine J M, Fierer N. Consistent effects of nitrogen amedments on soil microbial communities and processes across biome. Global Change Biology, 2012, 18(6): 1918-1927. |
42 | Yin N. Changes in structure and diversity of soil microbial communities across the main grasslands in Northern China. Changchun: Northeast Normal University, 2014. |
尹娜. 中国北方主要草地类型土壤细菌群落结构和多样性变化. 长春: 东北师范大学, 2014. | |
43 | Oliverio A M, Bradford M, Afierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Global Change Biology, 2017, 23(8): 2117-2129. |
44 | Luo D, Chen J X, Cheng L, et al. Analysis of bacteria diversity in the rhizosphere soil of three main plants and its correlation with the soil physical and chemical properties in the desertification area of Northern Shaanxi. Journal of Arid Land Resources and Environment, 2019, 33(3): 151-157. |
罗旦, 陈吉祥, 程琳, 等. 陕北沙化区3种主要植物根际土壤细菌多样性与土壤理化性质相关性分析. 干旱区资源与环境, 2019, 33(3): 151-157. |
[1] | 王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39. |
[2] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[3] | 贺翔, 白梅梅, 徐长林, 宋美娟, 汪鹏斌, 鱼小军. 东祁连山小叶金露梅+杯腺柳灌丛草地植被和土壤对其自然恢复演替的响应[J]. 草业学报, 2021, 30(8): 12-24. |
[4] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[5] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[6] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[7] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[8] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[9] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[10] | 赵文, 尹亚丽, 李世雄, 刘燕, 刘晶晶, 董怡玲, 苏世锋, 吉凌鹤. 祁连山不同类型草地土壤细菌群落特征研究[J]. 草业学报, 2021, 30(12): 161-171. |
[11] | 车昭碧, 徐鹏飞, 郭亚亚, 曹佳敏, 黄星宇, 杨寒珺, 鲁为华. 北方蚁(Formica aquilonia)对山地草甸土壤种子库的影响[J]. 草业学报, 2021, 30(11): 40-51. |
[12] | 程分生, 尤龙辉, 余锦林, 徐惠昌, 游惠明, 聂森, 李建民, 叶功富. 冷季型绿肥对锥栗园土壤生化性质及微生物群落的影响[J]. 草业学报, 2021, 30(11): 62-75. |
[13] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[14] | 魏鹏, 安沙舟, 董乙强, 孙宗玖, 别尔达吾列提·希哈依, 李超. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征[J]. 草业学报, 2020, 29(5): 182-190. |
[15] | 李成一, 李希来, 杨元武, 李宏林, 梁德飞. 氮添加对不同坡度退化高寒草甸土壤细菌多样性的影响[J]. 草业学报, 2020, 29(12): 161-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||