草业学报 ›› 2021, Vol. 30 ›› Issue (4): 68-79.DOI: 10.11686/cyxb2020371
张丽星1,2(), 海春兴1(), 常耀文1,2, 高晓媚1,2, 高文邦3, 解云虎4
收稿日期:
2020-08-03
修回日期:
2020-11-02
出版日期:
2021-04-20
发布日期:
2021-03-16
通讯作者:
海春兴
作者简介:
Corresponding author. E-mail: chunxinghai@163.com基金资助:
Li-xing ZHANG1,2(), Chun-xing HAI1(), Yao-wen CHANG1,2, Xiao-mei GAO1,2, Wen-bang GAO3, Yun-hu XIE4
Received:
2020-08-03
Revised:
2020-11-02
Online:
2021-04-20
Published:
2021-03-16
Contact:
Chun-xing HAI
摘要:
为了解典型草原植被群落土壤质量情况,选择镶黄旗羊草及芨芨草草原和西北针茅草原土壤为研究对象。选取10项土壤理化指标作为总数据集,利用主成分分析及相关性分析方法结合Norm值构建评价指标最小数据集,通过非线性评价方法对该区羊草及芨芨草草原和西北针茅草原土壤质量进行综合评价。结果表明:1)羊草及芨芨草草原土壤水分和电导率在A2~Bk层显著高于针茅草原(P<0.05),在A2和AB层羊草及芨芨草草原土壤pH显著低于西北针茅草原(P<0.05),在A层羊草及芨芨草草原土壤平均养分含量大于西北针茅草原(P<0.05),但在Bk~C层则相反;2)土壤质量评价最小数据集由土壤有机质、电导率和容重这3个土壤指标组成,可以反映草原土壤质量有效信息,经总数据集验证具有较好准确性;3)土壤质量指数表现为:A1层羊草及芨芨草草原>西北针茅草原,A2~C层羊草及芨芨草草原<西北针茅草原(P<0.05)。研究结果可为草地可持续发展提供科学参数。
张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79.
Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland[J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79.
样地 Plot | 海拔 Altitude (m) | 地理位置 Location | 物种组成/盖度 Community types/coverage | 物种组成/优势度 Community types/dominance |
---|---|---|---|---|
羊草+芨芨草草原 L. chinensis and A.splendens grassland | 1337.6 | 42°16′19.40″ N 113°48′36.85″ E | 羊草L. chinensis/50%、芨芨草A.splendens/31%, 阿尔泰狗娃花H. altaicus/8%, 二裂委陵菜P. bifurca/6%, 木地肤K. prostrate/5%, 骆驼蓬P. harmala/2%, 冷蒿A. frigida/1% | 羊草L. chinensis/39%, 芨芨草A.splendens/32%, 阿尔泰狗娃花H. altaicus/8%, 冷蒿A. frigida/6%, 二裂委陵菜P. bifurca/5%, 木地肤K. prostrate/5%, 骆驼蓬P. harmala/5% |
西北针茅草原S.sareptana grassland | 1341.4 | 42°16′19.40″ N 113°48′37.39″ E | 西北针茅S.sareptana/46%, 糙隐子草C. squarrosa/6%, 木地肤K. prostrate/1%, 野韭菜A. japonicurn/1%, 蒙古韭(沙葱)A. mongolicum/1%, 猪毛菜Salsolacollina/1%, 尖齿糙苏P. dentosa/1%, 寸苔草 C. duriuscula/1% | 西北针茅S.sareptana/56%, 糙隐子草C. squarrosa/10%, 尖齿糙苏P. dentosa/9%, 猪毛菜S. collina/7%, 木地肤K. prostrate/5%, 野韭菜A. japonicurn/5%, 蒙古韭(沙葱)A. mongolicum/5%, 寸苔草C. duriuscula/3% |
表1 样地位置及群落信息
Table 1 Plot location and information of plant community about sampling sites
样地 Plot | 海拔 Altitude (m) | 地理位置 Location | 物种组成/盖度 Community types/coverage | 物种组成/优势度 Community types/dominance |
---|---|---|---|---|
羊草+芨芨草草原 L. chinensis and A.splendens grassland | 1337.6 | 42°16′19.40″ N 113°48′36.85″ E | 羊草L. chinensis/50%、芨芨草A.splendens/31%, 阿尔泰狗娃花H. altaicus/8%, 二裂委陵菜P. bifurca/6%, 木地肤K. prostrate/5%, 骆驼蓬P. harmala/2%, 冷蒿A. frigida/1% | 羊草L. chinensis/39%, 芨芨草A.splendens/32%, 阿尔泰狗娃花H. altaicus/8%, 冷蒿A. frigida/6%, 二裂委陵菜P. bifurca/5%, 木地肤K. prostrate/5%, 骆驼蓬P. harmala/5% |
西北针茅草原S.sareptana grassland | 1341.4 | 42°16′19.40″ N 113°48′37.39″ E | 西北针茅S.sareptana/46%, 糙隐子草C. squarrosa/6%, 木地肤K. prostrate/1%, 野韭菜A. japonicurn/1%, 蒙古韭(沙葱)A. mongolicum/1%, 猪毛菜Salsolacollina/1%, 尖齿糙苏P. dentosa/1%, 寸苔草 C. duriuscula/1% | 西北针茅S.sareptana/56%, 糙隐子草C. squarrosa/10%, 尖齿糙苏P. dentosa/9%, 猪毛菜S. collina/7%, 木地肤K. prostrate/5%, 野韭菜A. japonicurn/5%, 蒙古韭(沙葱)A. mongolicum/5%, 寸苔草C. duriuscula/3% |
植被类型 Vegetation types | 土壤发生层 Soil horizon (cm) | 土壤水分 Water content (%) | 容重 Bulk density (g·cm-3) | 有机质 Organic matter (g·kg-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | pH | 电导率 Electrical conductivity (dS·m-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
羊草及芨芨草草原 L. chinensis and A. splendens grassland | A1 (0~20) | 6.12±0.16a | 0.70±0.01a | 25.30±0.35a | 75.20±3.71a | 6.04±0.18a | 276.22±3.59a | 2.84±0.17a | 1.08±0.09a | 8.21±0.04a | 0.12±0.01a |
A2 (20~32) | 8.45±0.16a | 0.77±0.01a | 21.29±0.52a | 71.87±0.40a | 5.30±0.01a | 62.91±1.80a | 2.53±0.12a | 1.38±0.03a | 8.09±0.01a | 1.26±0.01a | |
AB (32~44) | 9.11±0.10a | 0.75±0.01a | 17.75±0.40a | 70.05±9.05a | 5.19±0.14a | 50.31±1.09a | 1.03±0.08a | 1.36±0.03a | 8.11±0.03a | 1.52±0.09a | |
Bk (44~77) | 10.92±0.05a | 0.75±0.03a | 7.55±0.15a | 38.27±6.91a | 4.87±0.13a | 43.46±0.41a | 0.70±0.02a | 1.27±0.02a | 8.95±0.05a | 0.97±0.01a | |
Bb (77~130) | 7.59±0.48A | 0.81±0.03A | 1.41±0.30A | 35.47±5.90A | 4.91±0.05A | 57.16±1.95A | 1.35±0.13A | 1.19±0.06A | 9.29±0.02A | 0.22±0.01A | |
C (>130) | 5.99±0.20Aa | 0.76±0.02Aa | 1.61±0.13Aa | 29.33±1.78Aa | 4.72±0.07Aa | 65.89±1.49Aa | 2.63±0.14Aa | 1.31±0.05Aa | 8.89±0.01Aa | 0.24±0.02Aa | |
西北针茅草原 S. sareptana grassland | A1 (0~15) | 6.89±0.30a | 0.76±0.01b | 25.34±0.90a | 73.13±2.64b | 5.69±0.09b | 239.08±1.09b | 2.35±0.21b | 1.03±0.11b | 7.91±0.01b | 0.06±0.01b |
A2 (15~32) | 6.29±0.16b | 0.78±0.02a | 17.10±0.29b | 63.56±0.62a | 5.17±0.38a | 99.49±4.20a | 2.69±0.07b | 1.16±0.02b | 8.33±0.04b | 0.11±0.04b | |
AB (32~60) | 5.89±0.58b | 0.80±0.02b | 15.72±0.23b | 59.83±1.78a | 5.15±0.22a | 86.56±1.22a | 2.01±0.19b | 1.31±0.05b | 8.31±0.02b | 0.10±0.02b | |
Bk (60~90) | 2.51±0.18b | 0.84±0.01b | 11.02±0.11b | 44.47±1.04a | 5.02±0.24a | 81.03±0.23b | 1.09±0.41b | 1.35±0.24a | 8.35±0.13b | 0.09±0.01b | |
C (>90) | 3.19±0.08a | 0.78±0.06a | 10.93±0.31b | 48.35±3.55a | 5.11±0.07a | 87.11±0.68b | 1.40±0.10a | 1.13±0.01a | 8.32±0.07b | 0.13±0.01a |
表2 羊草及芨芨草草原和西北针茅草原土壤剖面各发生层土壤指标分析
Table 2 Analysis of soil indicators in the soil profiles of L. chinensis and A. splendens grassland and S.sareptana grassland
植被类型 Vegetation types | 土壤发生层 Soil horizon (cm) | 土壤水分 Water content (%) | 容重 Bulk density (g·cm-3) | 有机质 Organic matter (g·kg-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | pH | 电导率 Electrical conductivity (dS·m-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
羊草及芨芨草草原 L. chinensis and A. splendens grassland | A1 (0~20) | 6.12±0.16a | 0.70±0.01a | 25.30±0.35a | 75.20±3.71a | 6.04±0.18a | 276.22±3.59a | 2.84±0.17a | 1.08±0.09a | 8.21±0.04a | 0.12±0.01a |
A2 (20~32) | 8.45±0.16a | 0.77±0.01a | 21.29±0.52a | 71.87±0.40a | 5.30±0.01a | 62.91±1.80a | 2.53±0.12a | 1.38±0.03a | 8.09±0.01a | 1.26±0.01a | |
AB (32~44) | 9.11±0.10a | 0.75±0.01a | 17.75±0.40a | 70.05±9.05a | 5.19±0.14a | 50.31±1.09a | 1.03±0.08a | 1.36±0.03a | 8.11±0.03a | 1.52±0.09a | |
Bk (44~77) | 10.92±0.05a | 0.75±0.03a | 7.55±0.15a | 38.27±6.91a | 4.87±0.13a | 43.46±0.41a | 0.70±0.02a | 1.27±0.02a | 8.95±0.05a | 0.97±0.01a | |
Bb (77~130) | 7.59±0.48A | 0.81±0.03A | 1.41±0.30A | 35.47±5.90A | 4.91±0.05A | 57.16±1.95A | 1.35±0.13A | 1.19±0.06A | 9.29±0.02A | 0.22±0.01A | |
C (>130) | 5.99±0.20Aa | 0.76±0.02Aa | 1.61±0.13Aa | 29.33±1.78Aa | 4.72±0.07Aa | 65.89±1.49Aa | 2.63±0.14Aa | 1.31±0.05Aa | 8.89±0.01Aa | 0.24±0.02Aa | |
西北针茅草原 S. sareptana grassland | A1 (0~15) | 6.89±0.30a | 0.76±0.01b | 25.34±0.90a | 73.13±2.64b | 5.69±0.09b | 239.08±1.09b | 2.35±0.21b | 1.03±0.11b | 7.91±0.01b | 0.06±0.01b |
A2 (15~32) | 6.29±0.16b | 0.78±0.02a | 17.10±0.29b | 63.56±0.62a | 5.17±0.38a | 99.49±4.20a | 2.69±0.07b | 1.16±0.02b | 8.33±0.04b | 0.11±0.04b | |
AB (32~60) | 5.89±0.58b | 0.80±0.02b | 15.72±0.23b | 59.83±1.78a | 5.15±0.22a | 86.56±1.22a | 2.01±0.19b | 1.31±0.05b | 8.31±0.02b | 0.10±0.02b | |
Bk (60~90) | 2.51±0.18b | 0.84±0.01b | 11.02±0.11b | 44.47±1.04a | 5.02±0.24a | 81.03±0.23b | 1.09±0.41b | 1.35±0.24a | 8.35±0.13b | 0.09±0.01b | |
C (>90) | 3.19±0.08a | 0.78±0.06a | 10.93±0.31b | 48.35±3.55a | 5.11±0.07a | 87.11±0.68b | 1.40±0.10a | 1.13±0.01a | 8.32±0.07b | 0.13±0.01a |
评价指标Evaluation index | 分组Grouping | PC1 | PC2 | PC3 | Norm |
---|---|---|---|---|---|
有机质Organic matter | 1 | 0.910 | 0.281 | 0.230 | 2.06 |
速效氮Available nitrogen | 1 | 0.860 | 0.387 | 0.219 | 1.97 |
速效磷Available phosphorus | 1 | 0.910 | 0.016 | -0.048 | 1.99 |
速效钾Available potassium | 1 | 0.880 | -0.309 | -0.210 | 1.99 |
电导率Electrical conductivity | 2 | -0.180 | 0.959 | 0.019 | 1.50 |
pH | 1 | -0.768 | -0.231 | -0.496 | 1.82 |
容重Bulk density | 3 | -0.519 | -0.296 | 0.641 | 1.42 |
土壤水分Water content | 2 | -0.101 | 0.763 | -0.499 | 1.31 |
全氮Total nitrogen | 1 | 0.612 | -0.212 | -0.097 | 1.38 |
全磷Total phosphorus | 1 | -0.564 | 0.499 | 0.422 | 1.52 |
主成分特征值Eigen value | 4.766 | 2.263 | 1.306 | - | |
主成分方差贡献率Variance (%) | 47.659 | 22.634 | 13.061 | - | |
主成分累积贡献率Cumulative (%) | 47.659 | 70.293 | 83.354 | - |
表3 土壤指标主成分分析的结果及公因子方差和Norm值及分组
Table 3 Results of principal component analysis of the soil indicators and their Norm values and groups
评价指标Evaluation index | 分组Grouping | PC1 | PC2 | PC3 | Norm |
---|---|---|---|---|---|
有机质Organic matter | 1 | 0.910 | 0.281 | 0.230 | 2.06 |
速效氮Available nitrogen | 1 | 0.860 | 0.387 | 0.219 | 1.97 |
速效磷Available phosphorus | 1 | 0.910 | 0.016 | -0.048 | 1.99 |
速效钾Available potassium | 1 | 0.880 | -0.309 | -0.210 | 1.99 |
电导率Electrical conductivity | 2 | -0.180 | 0.959 | 0.019 | 1.50 |
pH | 1 | -0.768 | -0.231 | -0.496 | 1.82 |
容重Bulk density | 3 | -0.519 | -0.296 | 0.641 | 1.42 |
土壤水分Water content | 2 | -0.101 | 0.763 | -0.499 | 1.31 |
全氮Total nitrogen | 1 | 0.612 | -0.212 | -0.097 | 1.38 |
全磷Total phosphorus | 1 | -0.564 | 0.499 | 0.422 | 1.52 |
主成分特征值Eigen value | 4.766 | 2.263 | 1.306 | - | |
主成分方差贡献率Variance (%) | 47.659 | 22.634 | 13.061 | - | |
主成分累积贡献率Cumulative (%) | 47.659 | 70.293 | 83.354 | - |
土壤指标 Index | 有机质 Organic matter | 速效氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 电导率 Electrical conductivity | pH | 容重 Bulk density | 土壤水分 Water content | 全氮 Total nitrogen |
---|---|---|---|---|---|---|---|---|---|
速效氮Available nitrogen | 0.931** | ||||||||
速效磷Available phosphorus | 0.815** | 0.733** | |||||||
速效钾Available potassium | 0.683** | 0.547** | 0.828** | ||||||
电导率Electrical conductivity | 0.100 | 0.200 | -0.130 | -0.456** | |||||
pH | -0.885** | -0.845** | -0.627** | -0.477** | -0.100 | ||||
容重Bulk density | -0.366* | -0.357* | -0.462** | -0.467** | -0.180 | 0.190 | |||
土壤水分Water content | 0.040 | 0.120 | -0.060 | -0.200 | 0.706** | 0.210 | -0.351* | ||
全氮Total nitrogen | 0.442** | 0.393** | 0.448** | 0.549** | -0.336* | -0.330* | -0.341* | -0.150 | |
全磷Total phosphorus | -0.302* | -0.260 | -0.520** | -0.713** | 0.557** | 0.130 | 0.309* | 0.170 | -0.270 |
表 4 土壤质量评价指标相关系数
Table 4 Correlation coefficient matrix of indicators for soil quality evaluation
土壤指标 Index | 有机质 Organic matter | 速效氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 电导率 Electrical conductivity | pH | 容重 Bulk density | 土壤水分 Water content | 全氮 Total nitrogen |
---|---|---|---|---|---|---|---|---|---|
速效氮Available nitrogen | 0.931** | ||||||||
速效磷Available phosphorus | 0.815** | 0.733** | |||||||
速效钾Available potassium | 0.683** | 0.547** | 0.828** | ||||||
电导率Electrical conductivity | 0.100 | 0.200 | -0.130 | -0.456** | |||||
pH | -0.885** | -0.845** | -0.627** | -0.477** | -0.100 | ||||
容重Bulk density | -0.366* | -0.357* | -0.462** | -0.467** | -0.180 | 0.190 | |||
土壤水分Water content | 0.040 | 0.120 | -0.060 | -0.200 | 0.706** | 0.210 | -0.351* | ||
全氮Total nitrogen | 0.442** | 0.393** | 0.448** | 0.549** | -0.336* | -0.330* | -0.341* | -0.150 | |
全磷Total phosphorus | -0.302* | -0.260 | -0.520** | -0.713** | 0.557** | 0.130 | 0.309* | 0.170 | -0.270 |
评价指标 Evaluation index | 总数据集Total data set (TDS) | 最小数据集Minimum data set (MDS) | ||
---|---|---|---|---|
公因子方差Communality | 权重Weight | 公因子方差Communality | 权重Weight | |
有机质Organic matter | 0.967 | 0.12 | 0.571 | 0.39 |
速效氮Available nitrogen | 0.930 | 0.11 | - | - |
速效磷Available phosphorus | 0.835 | 0.10 | - | - |
速效钾Available potassium | 0.911 | 0.11 | - | - |
电导率Electrical conductivity | 0.952 | 0.11 | 0.232 | 0.16 |
pH | 0.931 | 0.11 | - | - |
容重Bulk density | 0.768 | 0.09 | 0.650 | 0.45 |
土壤水分Water content | 0.865 | 0.10 | - | - |
全氮Total nitrogen | 0.429 | 0.05 | - | - |
全磷Total phosphorus | 0.748 | 0.09 | - | - |
表5 土壤指标的公因子方差及权重
Table 5 Communality and weight of soil quality indicators
评价指标 Evaluation index | 总数据集Total data set (TDS) | 最小数据集Minimum data set (MDS) | ||
---|---|---|---|---|
公因子方差Communality | 权重Weight | 公因子方差Communality | 权重Weight | |
有机质Organic matter | 0.967 | 0.12 | 0.571 | 0.39 |
速效氮Available nitrogen | 0.930 | 0.11 | - | - |
速效磷Available phosphorus | 0.835 | 0.10 | - | - |
速效钾Available potassium | 0.911 | 0.11 | - | - |
电导率Electrical conductivity | 0.952 | 0.11 | 0.232 | 0.16 |
pH | 0.931 | 0.11 | - | - |
容重Bulk density | 0.768 | 0.09 | 0.650 | 0.45 |
土壤水分Water content | 0.865 | 0.10 | - | - |
全氮Total nitrogen | 0.429 | 0.05 | - | - |
全磷Total phosphorus | 0.748 | 0.09 | - | - |
参数 Parameter | 有机质 Organic matter | 速效氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 电导率 Electrical conductivity | pH | 容重 Bulk density | 土壤水分 Water content | 全氮 Total nitrogen | 全磷 Total phosphorus |
---|---|---|---|---|---|---|---|---|---|---|
平均值Mean | 14.08 | 27.71 | 5.20 | 104.48 | 0.44 | 8.43 | 0.77 | 0.07 | 1.87 | 1.23 |
归一化方程 Normalization equation |
表6 各土壤指标平均值以及非线性赋分方程
Table 6 Mean of soil quality indicators and normalization equations of the scoring curves
参数 Parameter | 有机质 Organic matter | 速效氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 电导率 Electrical conductivity | pH | 容重 Bulk density | 土壤水分 Water content | 全氮 Total nitrogen | 全磷 Total phosphorus |
---|---|---|---|---|---|---|---|---|---|---|
平均值Mean | 14.08 | 27.71 | 5.20 | 104.48 | 0.44 | 8.43 | 0.77 | 0.07 | 1.87 | 1.23 |
归一化方程 Normalization equation |
图3 最小数据集和总数据集土壤质量指数同一土壤发生层不同小写字母表示羊草及芨芨草草原与西北针茅草原土壤质量指数差异显著(P<0.05);不同大写字母表示羊草及芨芨草草原Bb层和C层差异显著(P<0.05)。Different lowercase letters indicate significant difference between L. chinensis and A. splendens grassland and S. sareptana grassland soil quality index in the same soil horizon at the 0.05 level, and different capital letters indicate significant difference between Bb and C horizon in the L. chinensis and A. splendens grassland at the 0.05 level.
Fig.3 Soil quality index of minimum data set (MDS) and total data set (TDS)
项目 Item | <250 μS·cm-1 | 250~600 μS·cm-1 | 600~800 μS·cm-1 | 800~1000 μS·cm-1 | ≥1000 μS·cm-1 |
---|---|---|---|---|---|
极低盐度 Very low salinity | 低盐度 Low salinity | 中盐度 Medium salinity | 高盐度 High salinity | 极高盐度 Very high salinity | |
对作物的影响 Impact on crops | 一般作物生长正常 General crops grow normally | 对敏感作物有障碍 Obstacles to sensitive crops | 多数作物生长受阻Most crops are blocked | 仅耐盐作物能生长 Only salt-tolerant crops can grow | 仅极耐盐作物能生长 Only extremely salt-tolerant crops can grow |
表7 电导率和等级[31]
Table 7 Electrical conductivity and class
项目 Item | <250 μS·cm-1 | 250~600 μS·cm-1 | 600~800 μS·cm-1 | 800~1000 μS·cm-1 | ≥1000 μS·cm-1 |
---|---|---|---|---|---|
极低盐度 Very low salinity | 低盐度 Low salinity | 中盐度 Medium salinity | 高盐度 High salinity | 极高盐度 Very high salinity | |
对作物的影响 Impact on crops | 一般作物生长正常 General crops grow normally | 对敏感作物有障碍 Obstacles to sensitive crops | 多数作物生长受阻Most crops are blocked | 仅耐盐作物能生长 Only salt-tolerant crops can grow | 仅极耐盐作物能生长 Only extremely salt-tolerant crops can grow |
1 | Fu Z Y, Jiang H, Wang G Q, et al. Effects of soil properties on plant community structure in a semi-arid grassland. Chinese Journal of Ecology, 2018, 37(3): 823-830. |
傅致远, 姜宏, 王国强, 等. 半干旱草原区土壤性质对植物群落结构的影响. 生态学杂志, 2018, 37(3): 823-830. | |
2 | Qu H, Zhao X Y, Wang S K, et al. Effects so different vegetation communities on soil carbon and nitrogen contents in Urad desert steppe. Pratacultural Science, 2014, 31(3): 355-360. |
曲浩, 赵学勇, 王少昆, 等.乌拉特荒漠草原不同植被群落对土壤碳、氮的影响. 草业科学, 2014, 31(3): 355-360. | |
3 | Wang X Q. Studies on the effects of nitrogen application and irrigation on seed production of Leymus chinensis, soil total nitrogen, pH, and electrical conductivity. Changchun: Northeast Normal University, 2012. |
王晓强. 水肥调控对羊草种子生产及土壤全氮、pH、电导率影响的研究.长春: 东北师范大学, 2012. | |
4 | Wang Y F, Han B, Zhang Z X. Study of the change of drought-resistant physiology of Stipa krylovii in Xilinguole steppe. Pratacultural Science, 2006, 23(2): 22-26. |
王艳芳, 韩冰, 张占雄. 锡林郭勒草原克氏针茅抗旱生理变化的研究.草业科学, 2006, 23(2): 22-26. | |
5 | Liu S L, Fu B J, Ma K M, et al. Effects of vegetation types and landscape features on soil properties at the plateau in the upper reaches of Min jiang River. Chinese Journal of Applied Ecology, 2004, 15(1): 26-30. |
刘世梁, 傅伯杰, 马克明, 等. 岷江上游高原植被类型与景观特征对土壤性质的影响. 应用生态学报, 2004, 15(1): 26-30. | |
6 | Finzi A C, Canham C, Van B N. Canopy tree-soil interactions within temperate forests: Species effects on soil carbon and nitrogen. Ecological Applications, 1998, 8(2): 440-446. |
7 | Nie M H. Spatial distribution and health assessment of vegetation and soil characteristics of different communication in desert steppe of Yanchi county, Ningxia. Yinchuan: Ningxia University, 2019. |
聂明鹤. 宁夏盐池县荒漠草原不同群落植被及土壤特征空间分布与健康评价. 银川: 宁夏大学, 2019. | |
8 | Wan Q Z, Zhu G F, Guo H W, et al. Influence of vegetation coverage and climate environment on soil organic carbon in the qilian mountains. Scientific Reports, 2019, 9(3): 473-513. |
9 | Yue L. The source and degradation characteristics of plant organic matter in soil of main steppe community in Inner Mongolia. Hohhot: Inner Mongolia University, 2019. |
岳丽. 内蒙古草原主要群落土壤中植物性有机质的来源及其降解特征. 呼和浩特: 内蒙古大学, 2019. | |
10 | Liu Z F, Fu B J, Liu G H, et al. Soil quality: Concept, indicators and its assessment. Acta Ecologica Sinica, 2006, 26(3): 901-913. |
刘占锋, 傅伯杰, 刘国华, 等.土壤质量与土壤质量指标及其评价. 生态学报, 2006, 26(3): 901-913. | |
11 | Andrews S S, Mitchell J P, Mancinelli R, et al. On-farm assessment of soil quality in California’s central valley. Agronomy Journal, 2002, 94(1): 12-23. |
12 | Jin H F, Shi D M, Chen Z F, et al. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 155-164. |
金慧芳, 史东梅, 陈正发, 等.基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标. 农业工程学报, 2018, 34(7): 155-164. | |
13 | Li P F, Zhang X C, Hao M D, et al. Soil quality evaluation for reclamation of mining area on Loess Plateau based on minimum data set. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 265-273. |
李鹏飞, 张兴昌, 郝明德, 等. 基于最小数据集的黄土高原矿区复垦土壤质量评价. 农业工程学报, 2019, 35(16): 265-273. | |
14 | Fernando S F, Antonio M G, Carmelo A Z, et al. Comparison of methods for evaluating soil quality of semiarid ecosystem and evaluation of the effects of physico-chemical properties and factor soil erodibility (Northern Plateau, Spain). Geoderma, 2019, 354: 113872 |
15 | Zhao L T. The research of soil diagnostic characteristics and systematic classification in arid and semi-arid grasslands in Inner Mongolia. Shenyang: Shenyang Agricultural University, 2018. |
赵丽婷. 内蒙古干旱半干旱草原典型土壤诊断特征及系统分类研究. 沈阳: 沈阳农业大学, 2018. | |
16 | Qiu X C, Peng D L, Wang H B, et al. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecological Indicators, 2019, 103: 236-247. |
17 | Liu T Y, Zhao X, Shen H H, et al. Spectral feature differences between shrub and grass communities and shrub coverage retrieval in shrub-encroached grassland in Xianghuang Banner, Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 969-979. |
刘涛宇, 赵霞, 沈海花, 等.灌丛化草原灌木和草本植物光谱特征差异及灌木盖度反演——以内蒙古镶黄旗为例.植物生态学报, 2016, 40(10): 969-979. | |
18 | Gong Z T, Zhang G L, Chen Z C. Pedogenesis and soil taxonomy. Beijing: Science Press, 2007: 21-33. |
龚子同, 张甘霖, 陈志诚. 土壤发生与系统分类. 北京: 科学出版社, 2007: 21-33. | |
19 | Zhang G L, Li D C. Manual of soil description and sampling. Beijing: Science Press, 2016: 33-125. |
张甘霖, 李德成. 野外土壤描述与采样手册. 北京: 科学出版社, 2016: 33-125. | |
20 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000: 22-114. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 22-114. | |
21 | Xue F N. Study on spatial distribution characteristics of phosphorus and potassium elements in grassland watershed based on LIBS technology. Hohhot: Inner Mongolia Normal University, 2017. |
薛凤娜. 基于LIBS技术的草地小流域磷钾元素空间分布特征研究. 呼和浩特: 内蒙古师范大学, 2017. | |
22 | Li G L, Chen J, Sun Z Y, et al. Establishing a minimum data set for soil quality assessment based on soil properties and land use change. Acta Ecologica Sinica, 2007, 27(7): 2715-2724. |
李桂林, 陈杰, 孙志英, 等. 基于土壤特征和土地利用变化的土壤质量评价最小数据集确定. 生态学报, 2007, 27(7): 2715-2724. | |
23 | Li X J, Zhou R P, Jiang H T, et al. Quantitative analysis of how different checkerboard sand barrier materials influence soil properties: A study from the eastern edge of the Tengger Desert, China. Environmental Earth Sciences, 2018, 77(13): 1-15. |
24 | Liu G M, Yang J S. Study on the correlation of soil salt content with electric conductivity and soil water content. Chinese Journal of Soil Science, 2001, 32(S1): 85-87. |
刘广明, 杨劲松. 土壤含盐量与土壤电导率及水分含量关系的试验研究. 土壤通报, 2001, 32(增刊1): 85-87. | |
25 | Zhu J B, He H D, Li H Q, et al. Characteristics of soil bulk density and soil water-holding capacity in alpine meadow under grazing gradients. Research of Soil and Water Conservation, 2018, 25(5): 66-71. |
祝景彬, 贺慧丹, 李红琴, 等. 牧压梯度下高寒草甸土壤容重及持水能力的变化特征. 水土保持研究, 2018, 25(5): 66-71. | |
26 | Fu H, Chen Y M, Wang Y R, et al. Organic carbon content in major grassland types in Alex, Inner Mongolia. Acta Ecologica Sinica, 2004, 24(3): 469-476. |
傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素. 生态学报, 2004, 24(3): 469-476. | |
27 | Gile L H, Peterson F F, Grossman R B. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science, 1966, 101(5): 347-360. |
28 | Peng H Y, Tong S Y, Li X Y. Effects of thicketization of rangeland on soil and soil hydrological processes in Inner Mongolia. Journal of Natural Resources, 2017, 32(4): 642-653. |
彭海英, 童绍玉, 李小雁. 内蒙古典型草原土壤及其水文过程对灌丛化的响应. 自然资源学报, 2017, 32(4): 642-653. | |
29 | Ge H. A study on community characteristics and ecological adaptability of Allium polyrhizum in Inner Mongolia plateau. Hohhot: Inner Mongolia University, 2015. |
葛欢. 内蒙古高原多根葱草原群落特征及其建群种生态适应性研究. 呼和浩特: 内蒙古大学, 2015. | |
30 | Xu J, Chen Y J, Liu J Z. Research progress of the effects of halophyte shrubs on spatial distribution of soil nutrients and salts and their mechanisms.Journal of Anhui Agricultural Sciences, 2020, 48(1): 19-23, 69. |
许婕, 陈永金, 刘加珍. 盐生植物灌丛对土壤养分和盐分空间分布的影响及其机制研究进展. 安徽农业科学, 2020, 48(1): 19-23, 69. | |
31 | Zhou D W, Li Q, Song Y T, et al. Salinization-alkalization of Leymus chinensis grassland in Songnen Plain of Northeast China. Chinese Journal of Applied Ecology, 2011, 22(6): 1423-1430. |
周道玮, 李强, 宋彦涛, 等. 松嫩平原羊草草地盐碱化过程. 应用生态学报, 2011, 22(6): 1423-1430. | |
32 | Zhang W Z. The relationship between vegetation degeneration and soil salinization in an Aneurolepidium Chinensegrassland in Songnen Plain. China Journal of Plant Ecology, 1994, 18(1): 50-55. |
张为政. 松嫩平原羊草草地植被退化与土壤盐渍化的关系. 植物生态学报, 1994, 18(1): 50-55. | |
33 | Ding H, Hu H B, Wang R C. The relationships between soil enzyme activity and soil physical-chemical properties or microbial biomass in semi-arid area. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(2): 13-18. |
丁菡, 胡海波, 王人潮. 半干旱区土壤酶活性与其理化及微生物的关系. 南京林业大学学报(自然科学版), 2007, 31(2): 13-18. | |
34 | Zhang X N, Meng Z J, Yang Z Q. Soil quality assessment under different exclusion measures in desert steppe in Xilamuren, Inner Mongolia. Chinese Journal of Soil Science, 2018, 49(4): 788-793. |
张晓娜, 蒙仲举, 杨振奇. 不同封育措施下希拉穆仁荒漠草原土壤质量评价. 土壤通报, 2018, 49(4): 788-793. | |
35 | Gao L, Zhang S W, Zhao H B, et al. Spatial heterogeneity of soil physical and chemical properties in degraded grassland and its effect on soil moisture. Arid Zone Research, 2020, 37(3): 607-617. |
高露, 张圣微, 赵鸿彬, 等.退化草原土壤理化性质空间异质性及其对土壤水分的影响. 干旱区研究, 2020, 37(3): 607-617. | |
36 | Huang S W, Wang Y J, Jin J Y, et al. Status of salinity, pH and nutrients in soils in main vegetable production regions in China. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 906-918. |
黄绍文, 王玉军, 金继运, 等. 我国主要菜区土壤盐分、酸碱性和肥力状况. 植物营养与肥料学报, 2011, 17(4): 906-918. | |
37 | Wang F. Study on soil microbial molecular diversity and organic matter transformation under soil salinization condition. Shihezi: Shihezi University, 2011. |
王飞. 盐分对土壤微生物多样性及土壤有机物转化的影响. 石河子: 石河子大学, 2011. |
[1] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[2] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[3] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[4] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[5] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[6] | 刘江, 吕涛, 张立欣, 叶丽娜, 刘向阳, 代香荣, 王伟伟, 丁茹. 基于主成分分析的不同种植年限甘草地土壤质量评价[J]. 草业学报, 2020, 29(6): 162-171. |
[7] | 常海涛, 赵娟, 刘佳楠, 刘任涛, 罗雅曦, 张静. 退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例[J]. 草业学报, 2019, 28(7): 14-25. |
[8] | 宿婷婷, 马红彬, 周瑶, 贾希洋, 张蕊, 张双乔, 胡艳莉. 黄土丘陵典型草原土壤理化性质对生态恢复措施的响应[J]. 草业学报, 2019, 28(4): 34-46. |
[9] | 刘玉祯, 曹文侠, 王金兰, 李文, 辛雨琼, 王世林, 王小军. 祁连山东段不同类型灌丛斑块土壤特征对围封的响应[J]. 草业学报, 2019, 28(11): 32-45. |
[10] | 秦燕, 刘文辉, 何峰, 仝宗永, 李向林. 施肥与切根对退化羊草草原土壤理化性质和酶活性的影响[J]. 草业学报, 2019, 28(1): 5-14. |
[11] | 赵涛,马春晖,王栋,景永元,席琳乔. 冬小麦套种草木樨土壤中根瘤菌分布与土壤理化性质的相关性分析[J]. 草业学报, 2018, 27(4): 45-55. |
[12] | 周天阳, 高景, 王金牛, 孙建, 徐波, 薛晶月, 贺俊东, 谢雨, 吴彦. 基于群落结构及土壤理化性质对围封7年青藏高原东南缘高山草地的综合评价[J]. 草业学报, 2018, 27(12): 1-11. |
[13] | 赛牙热木·哈力甫, 艾克拜尔·伊拉洪, 宋瑞清, 阿不都赛买提·乃合买提. 察布查尔县草原土壤微生物量与土壤理化性质相关性研究[J]. 草业学报, 2017, 26(9): 36-44. |
[14] | 刘红梅, 李洁, 于丽, 皇甫超河, 杨殿林. 养分添加对贝加尔针茅草原6种植物叶片性状的影响[J]. 草业学报, 2017, 26(5): 81-91. |
[15] | 吕文强, 党宏忠, 王立, 党汉瑾, 何修道. 黄土高原带状植被土壤理化性质空间分异特征[J]. 草业学报, 2016, 25(10): 21-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||