草业学报 ›› 2023, Vol. 32 ›› Issue (1): 75-88.DOI: 10.11686/cyxb2022020
张勇1(), 王海娣1, 高玉红1(), 吴兵2, 剡斌1, 王一帆1, 崔政军1, 文泽东1
收稿日期:
2022-01-11
修回日期:
2022-03-17
出版日期:
2023-01-20
发布日期:
2022-11-07
通讯作者:
高玉红
作者简介:
E-mail: gaoyh@gsau.edu.cn基金资助:
Yong ZHANG1(), Hai-di WANG1, Yu-hong GAO1(), Bing WU2, Bin YAN1, Yi-fan WANG1, Zheng-jun CUI1, Ze-dong WEN1
Received:
2022-01-11
Revised:
2022-03-17
Online:
2023-01-20
Published:
2022-11-07
Contact:
Yu-hong GAO
摘要:
为探索西北旱区利于维护农田土壤良好的理化性质的种植制度,采用大田试验,以休闲处理为对照,研究了100% Flax、50% Flax(Ⅰ)、50% Flax(Ⅱ)和25% Flax 4个胡麻种植频率,100% Flax(Cont F),50% Flax(Ⅰ):WFPF、FPFW、PFWF、FWFP,50% Flax(Ⅱ):FWPF、WPFF、PFFW、FFWP,25% Flax:WPWF、PWFW、WFWP、FWPW,其中F为胡麻,P为马铃薯,W为小麦,共13个种植模式下农田土壤团聚体稳定性及其氮素含量的分布状况。结果表明:土壤团聚体平均重量直径(MWD)和几何平均直径(GMD)与分形维数(D)、团聚体破坏率(PAD)之间呈极显著负相关关系,与0.5~1.0 mm粒径中NH4+-N含量和>2 mm粒径中NO3--N含量呈显著正相关关系,团聚体稳定性的增大显著提高了土壤中硝铵态氮含量。50% Flax(Ⅰ)胡麻种植频率以及马铃薯茬口显著增加了>0.25 mm粒径大团聚体含量、MWD和GMD,显著降低了土壤的D、PAD和土壤可蚀性(K);不同轮作模式下FWFP处理显著提高0.25~2.00 mm粒径水稳性大团聚体含量,显著增加土壤团聚体MWD和GMD和抗侵蚀能力,降低分形维数和团聚体破坏率,使其土壤团聚体结构越稳定。由此表明,FWFP轮作模式可显著提高土壤水稳性大团聚体含量,促进土壤大团聚体的形成,增加土壤团聚体稳定性,对我国北方胡麻轮作可持续发展具有重要指导意义。
张勇, 王海娣, 高玉红, 吴兵, 剡斌, 王一帆, 崔政军, 文泽东. 多元胡麻轮作模式对土壤团聚体特征及氮素含量的影响[J]. 草业学报, 2023, 32(1): 75-88.
Yong ZHANG, Hai-di WANG, Yu-hong GAO, Bing WU, Bin YAN, Yi-fan WANG, Zheng-jun CUI, Ze-dong WEN. Effect of multivariate flax rotation mode on soil aggregation characteristics and nitrogen content[J]. Acta Prataculturae Sinica, 2023, 32(1): 75-88.
胡麻频率Frequency of flax | 代码Code | 轮作茬口Crop rotation stubble | 2013-2021 |
---|---|---|---|
100%胡麻Flax | Cont F | 胡麻→胡麻→胡麻→胡麻Flax→Flax→Flax→Flax | 2013-2016,2017-2020,2021胡麻Flax |
50%胡麻Flax (Ⅰ) | WFPF | 小麦→胡麻→马铃薯→胡麻Wheat→Flax→Potato→Flax | 2013-2016,2017-2020,2021小麦Wheat |
FPFW | 胡麻→马铃薯→胡麻→小麦Flax→Potato→Flax→Wheat | 2013-2016,2017-2020,2021胡麻Flax | |
PFWF | 马铃薯→胡麻→小麦→胡麻Potato→Flax→Wheat→Flax | 2013-2016,2017-2020,2021马铃薯Potato | |
FWFP | 胡麻→小麦→胡麻→马铃薯Flax→Wheat→Flax→Potato | 2013-2016,2017-2020,2021胡麻Flax | |
50%胡麻Flax (Ⅱ) | FWPF | 胡麻→小麦→马铃薯→胡麻Flax→Wheat→Potato→Flax | 2013-2016,2017-2020,2021胡麻Flax |
WPFF | 小麦→马铃薯→胡麻→胡麻Wheat→Potato→Flax→Flax | 2013-2016,2017-2020,2021小麦Wheat | |
PFFW | 马铃薯→胡麻→胡麻→小麦Potato→Flax→Flax→Wheat | 2013-2016,2017-2020,2021马铃薯Potato | |
FFWP | 胡麻→胡麻→小麦→马铃薯Flax→Flax→Wheat→Potato | 2013-2016,2017-2020,2021胡麻Flax | |
25%胡麻Flax | WPWF | 小麦→马铃薯→小麦→胡麻Wheat→Potato→Wheat→Flax | 2013-2016,2017-2020,2021小麦Wheat |
PWFW | 马铃薯→小麦→胡麻→小麦Potato→Wheat→Flax→Wheat | 2013-2016,2017-2020,2021马铃薯Potato | |
WFWP | 小麦→胡麻→小麦→马铃薯Wheat→Flax→Wheat→Potato | 2013-2016,2017-2020,2021小麦Wheat | |
FWPW | 胡麻→小麦→马铃薯→小麦Flax→Wheat→Potato→Wheat | 2013-2016,2017-2020,2021胡麻Flax | |
0 | CK | 休闲→休闲→休闲→休闲Relaxation→Relaxation→Relaxation→Relaxation | 2013-2016,2017-2020,2021休闲Relaxation |
表1 作物种植顺序
Table 1 Crop planting sequence
胡麻频率Frequency of flax | 代码Code | 轮作茬口Crop rotation stubble | 2013-2021 |
---|---|---|---|
100%胡麻Flax | Cont F | 胡麻→胡麻→胡麻→胡麻Flax→Flax→Flax→Flax | 2013-2016,2017-2020,2021胡麻Flax |
50%胡麻Flax (Ⅰ) | WFPF | 小麦→胡麻→马铃薯→胡麻Wheat→Flax→Potato→Flax | 2013-2016,2017-2020,2021小麦Wheat |
FPFW | 胡麻→马铃薯→胡麻→小麦Flax→Potato→Flax→Wheat | 2013-2016,2017-2020,2021胡麻Flax | |
PFWF | 马铃薯→胡麻→小麦→胡麻Potato→Flax→Wheat→Flax | 2013-2016,2017-2020,2021马铃薯Potato | |
FWFP | 胡麻→小麦→胡麻→马铃薯Flax→Wheat→Flax→Potato | 2013-2016,2017-2020,2021胡麻Flax | |
50%胡麻Flax (Ⅱ) | FWPF | 胡麻→小麦→马铃薯→胡麻Flax→Wheat→Potato→Flax | 2013-2016,2017-2020,2021胡麻Flax |
WPFF | 小麦→马铃薯→胡麻→胡麻Wheat→Potato→Flax→Flax | 2013-2016,2017-2020,2021小麦Wheat | |
PFFW | 马铃薯→胡麻→胡麻→小麦Potato→Flax→Flax→Wheat | 2013-2016,2017-2020,2021马铃薯Potato | |
FFWP | 胡麻→胡麻→小麦→马铃薯Flax→Flax→Wheat→Potato | 2013-2016,2017-2020,2021胡麻Flax | |
25%胡麻Flax | WPWF | 小麦→马铃薯→小麦→胡麻Wheat→Potato→Wheat→Flax | 2013-2016,2017-2020,2021小麦Wheat |
PWFW | 马铃薯→小麦→胡麻→小麦Potato→Wheat→Flax→Wheat | 2013-2016,2017-2020,2021马铃薯Potato | |
WFWP | 小麦→胡麻→小麦→马铃薯Wheat→Flax→Wheat→Potato | 2013-2016,2017-2020,2021小麦Wheat | |
FWPW | 胡麻→小麦→马铃薯→小麦Flax→Wheat→Potato→Wheat | 2013-2016,2017-2020,2021胡麻Flax | |
0 | CK | 休闲→休闲→休闲→休闲Relaxation→Relaxation→Relaxation→Relaxation | 2013-2016,2017-2020,2021休闲Relaxation |
轮作模式 Rotation mode | 粒径Particle size (mm) | ||||
---|---|---|---|---|---|
0.053~0.250 | 0.25~0.50 | 0.5~1.0 | 1~2 | >2 | |
Cont F | 54.59±0.79def | 4.19±0.26cd | 3.19±0.43b | 0.54±0.11bcd | 0.46±0.07b |
FWPF | 51.56±0.41gh | 3.73±0.09cde | 6.21±0.21a | 0.82±0.09a | 0.65±0.04b |
WFPF | 49.76±0.93hi | 6.16±0.81a | 5.30±0.16a | 1.11±0.12abc | 0.65±0.17b |
WPWF | 54.01±0.87ef | 5.72±0.28ab | 2.54±0.78bc | 0.54±0.19cde | 0.18±0.01b |
WPFF | 57.55±1.18abc | 2.86±0.48efg | 1.49±0.33cd | 0.48±0.21de | 0.60±0.20b |
FPFW | 59.11±0.26ab | 1.88±0.07g | 1.29±0.09cd | 0.39±0.05e | 0.30±0.05b |
PWFW | 56.09±0.82cde | 4.77±0.44bc | 1.35±0.22cd | 0.43±0.21de | 0.34±0.17b |
PFFW | 57.98±1.26abc | 2.41±0.57fg | 1.82±0.82bcd | 0.57±0.12de | 0.20±0.08b |
PFWF | 59.67±0.83a | 1.74±0.71g | 0.75±0.13d | 0.27±0.17e | 0.55±0.17b |
WFWP | 49.52±1.52hi | 3.48±0.39def | 5.83±1.16a | 2.88±0.64ab | 1.26±0.11a |
FFWP | 53.38±0.25fg | 4.07±0.26cd | 3.26±0.55b | 0.97±0.22bcd | 1.30±0.37b |
FWFP | 47.99±0.98i | 5.54±0.81ab | 6.22±1.40a | 2.86±1.09a | 0.37±0.19a |
FWPW | 56.53±1.70cd | 2.70±0.82efg | 2.23±0.74bcd | 0.55±0.15de | 0.97±0.34b |
CK | 57.29±0.70bc | 2.42±0.50fg | 2.36±0.13bc | 0.53±0.09de | 1.02±0.14b |
表2 水稳性团聚体含量分布
Table 2 Water-stable aggregates content distribution (g)
轮作模式 Rotation mode | 粒径Particle size (mm) | ||||
---|---|---|---|---|---|
0.053~0.250 | 0.25~0.50 | 0.5~1.0 | 1~2 | >2 | |
Cont F | 54.59±0.79def | 4.19±0.26cd | 3.19±0.43b | 0.54±0.11bcd | 0.46±0.07b |
FWPF | 51.56±0.41gh | 3.73±0.09cde | 6.21±0.21a | 0.82±0.09a | 0.65±0.04b |
WFPF | 49.76±0.93hi | 6.16±0.81a | 5.30±0.16a | 1.11±0.12abc | 0.65±0.17b |
WPWF | 54.01±0.87ef | 5.72±0.28ab | 2.54±0.78bc | 0.54±0.19cde | 0.18±0.01b |
WPFF | 57.55±1.18abc | 2.86±0.48efg | 1.49±0.33cd | 0.48±0.21de | 0.60±0.20b |
FPFW | 59.11±0.26ab | 1.88±0.07g | 1.29±0.09cd | 0.39±0.05e | 0.30±0.05b |
PWFW | 56.09±0.82cde | 4.77±0.44bc | 1.35±0.22cd | 0.43±0.21de | 0.34±0.17b |
PFFW | 57.98±1.26abc | 2.41±0.57fg | 1.82±0.82bcd | 0.57±0.12de | 0.20±0.08b |
PFWF | 59.67±0.83a | 1.74±0.71g | 0.75±0.13d | 0.27±0.17e | 0.55±0.17b |
WFWP | 49.52±1.52hi | 3.48±0.39def | 5.83±1.16a | 2.88±0.64ab | 1.26±0.11a |
FFWP | 53.38±0.25fg | 4.07±0.26cd | 3.26±0.55b | 0.97±0.22bcd | 1.30±0.37b |
FWFP | 47.99±0.98i | 5.54±0.81ab | 6.22±1.40a | 2.86±1.09a | 0.37±0.19a |
FWPW | 56.53±1.70cd | 2.70±0.82efg | 2.23±0.74bcd | 0.55±0.15de | 0.97±0.34b |
CK | 57.29±0.70bc | 2.42±0.50fg | 2.36±0.13bc | 0.53±0.09de | 1.02±0.14b |
轮作茬口Crop stubble rotation | 0.053~0.250 mm | 0.25~0.50 mm | 0.5~1.0 mm | 1~2 mm | >2 mm |
---|---|---|---|---|---|
F | 54.52±0.09b | 4.07±0.06a | 3.25±0.04b | 0.62±0.00b | 0.52±0.05b |
W | 57.42±0.81a | 2.94±0.41b | 1.68±0.24d | 0.49±0.12b | 0.45±0.02b |
P | 50.30±0.60c | 4.36±0.25a | 5.11±0.29a | 2.23±0.50a | 0.98±0.19a |
CK | 57.29±0.69a | 2.42±0.50b | 2.36±0.13c | 0.53±0.09b | 1.01±0.14a |
表3 不同茬口对团聚体粒径分布的影响
Table 3 Effect of different stubble on aggregate size distribution (g)
轮作茬口Crop stubble rotation | 0.053~0.250 mm | 0.25~0.50 mm | 0.5~1.0 mm | 1~2 mm | >2 mm |
---|---|---|---|---|---|
F | 54.52±0.09b | 4.07±0.06a | 3.25±0.04b | 0.62±0.00b | 0.52±0.05b |
W | 57.42±0.81a | 2.94±0.41b | 1.68±0.24d | 0.49±0.12b | 0.45±0.02b |
P | 50.30±0.60c | 4.36±0.25a | 5.11±0.29a | 2.23±0.50a | 0.98±0.19a |
CK | 57.29±0.69a | 2.42±0.50b | 2.36±0.13c | 0.53±0.09b | 1.01±0.14a |
胡麻频率Frequency flax | 0.053~0.250 mm | 0.25~0.50 mm | 0.5~1.0 mm | 1~2 mm | >2 mm |
---|---|---|---|---|---|
100%胡麻Flax | 54.59±0.79b | 4.19±0.26a | 3.19±0.43ab | 0.54±0.10b | 0.46±0.07c |
50%胡麻Flax (Ⅰ) | 54.13±0.25b | 3.83±0.17ab | 3.39±0.27a | 1.15±0.31a | 0.47±0.03c |
50%胡麻Flax (Ⅱ) | 55.12±0.24b | 3.26±0.10b | 3.20±0.28ab | 0.71±0.08ab | 0.69±0.02b |
25%胡麻Flax | 54.03±1.00b | 4.16±0.29a | 2.99±0.53ab | 1.10±0.27a | 0.69±0.06b |
CK | 57.29±0.69a | 2.42±0.50c | 2.36±0.13b | 0.53±0.09b | 1.01±0.13a |
表4 不同胡麻种植频率对团聚体粒径分布的影响
Table 4 Effects of different planting frequencies of flax on aggregate size distribution (g)
胡麻频率Frequency flax | 0.053~0.250 mm | 0.25~0.50 mm | 0.5~1.0 mm | 1~2 mm | >2 mm |
---|---|---|---|---|---|
100%胡麻Flax | 54.59±0.79b | 4.19±0.26a | 3.19±0.43ab | 0.54±0.10b | 0.46±0.07c |
50%胡麻Flax (Ⅰ) | 54.13±0.25b | 3.83±0.17ab | 3.39±0.27a | 1.15±0.31a | 0.47±0.03c |
50%胡麻Flax (Ⅱ) | 55.12±0.24b | 3.26±0.10b | 3.20±0.28ab | 0.71±0.08ab | 0.69±0.02b |
25%胡麻Flax | 54.03±1.00b | 4.16±0.29a | 2.99±0.53ab | 1.10±0.27a | 0.69±0.06b |
CK | 57.29±0.69a | 2.42±0.50c | 2.36±0.13b | 0.53±0.09b | 1.01±0.13a |
轮作模式Rotation mode | 平均重量直径MWD | 几何平均直径GMD | 分形维数D | 团聚体破坏率PAD | 土壤可蚀性K |
---|---|---|---|---|---|
Cont F | 0.20±0.01cd | 0.84±0.00c | 2.75±0.03cde | 0.19±0.008cd | 0.84±0.000c |
FWPF | 0.24±0.01b | 0.85±0.00b | 2.65±0.01fg | 0.23±0.004b | 0.85±0.000b |
WFPF | 0.25±0.01b | 0.85±0.00b | 2.59±0.03gh | 0.24±0.009b | 0.85±0.000b |
WPWF | 0.19±0.01de | 0.84±0.00c | 2.73±0.03de | 0.19±0.008de | 0.84±0.000c |
WPFF | 0.18±0.02de | 0.84±0.00c | 2.84±0.04ab | 0.17±0.012de | 0.83±0.000c |
FPFW | 0.16±0.00e | 0.83±0.00c | 2.89±0.01a | 0.16±0.002e | 0.83±0.000c |
PWFW | 0.18±0.01de | 0.84±0.00c | 2.80±0.03bcd | 0.17±0.008de | 0.83±0.000c |
PFFW | 0.17±0.01de | 0.84±0.00c | 2.86±0.04ab | 0.17±0.012de | 0.83±0.000c |
PFWF | 0.16±0.00e | 0.83±0.00c | 2.91±0.02a | 0.16±0.008e | 0.83±0.000c |
WFWP | 0.30±0.03a | 0.86±0.00a | 2.58±0.05h | 0.29±0.015a | 0.85±0.000a |
FFWP | 0.23±0.00bc | 0.85±0.00b | 2.71±0.01ef | 0.23±0.002bc | 0.84±0.000b |
FWFP | 0.28±0.03a | 0.86±0.00a | 2.53±0.04h | 0.28±0.009a | 0.85±0.000a |
FWPW | 0.20±0.02cd | 0.84±0.00c | 2.81±0.05bc | 0.19±0.017cd | 0.84±0.000c |
CK | 0.20±0.01cd | 0.84±0.00c | 2.82±0.02bc | 0.19±0.006cd | 0.84±0.000c |
表5 不同轮作模式下土壤团聚体稳定性特征
Table 5 Stability characteristics of soil aggregates under different cropping patterns
轮作模式Rotation mode | 平均重量直径MWD | 几何平均直径GMD | 分形维数D | 团聚体破坏率PAD | 土壤可蚀性K |
---|---|---|---|---|---|
Cont F | 0.20±0.01cd | 0.84±0.00c | 2.75±0.03cde | 0.19±0.008cd | 0.84±0.000c |
FWPF | 0.24±0.01b | 0.85±0.00b | 2.65±0.01fg | 0.23±0.004b | 0.85±0.000b |
WFPF | 0.25±0.01b | 0.85±0.00b | 2.59±0.03gh | 0.24±0.009b | 0.85±0.000b |
WPWF | 0.19±0.01de | 0.84±0.00c | 2.73±0.03de | 0.19±0.008de | 0.84±0.000c |
WPFF | 0.18±0.02de | 0.84±0.00c | 2.84±0.04ab | 0.17±0.012de | 0.83±0.000c |
FPFW | 0.16±0.00e | 0.83±0.00c | 2.89±0.01a | 0.16±0.002e | 0.83±0.000c |
PWFW | 0.18±0.01de | 0.84±0.00c | 2.80±0.03bcd | 0.17±0.008de | 0.83±0.000c |
PFFW | 0.17±0.01de | 0.84±0.00c | 2.86±0.04ab | 0.17±0.012de | 0.83±0.000c |
PFWF | 0.16±0.00e | 0.83±0.00c | 2.91±0.02a | 0.16±0.008e | 0.83±0.000c |
WFWP | 0.30±0.03a | 0.86±0.00a | 2.58±0.05h | 0.29±0.015a | 0.85±0.000a |
FFWP | 0.23±0.00bc | 0.85±0.00b | 2.71±0.01ef | 0.23±0.002bc | 0.84±0.000b |
FWFP | 0.28±0.03a | 0.86±0.00a | 2.53±0.04h | 0.28±0.009a | 0.85±0.000a |
FWPW | 0.20±0.02cd | 0.84±0.00c | 2.81±0.05bc | 0.19±0.017cd | 0.84±0.000c |
CK | 0.20±0.01cd | 0.84±0.00c | 2.82±0.02bc | 0.19±0.006cd | 0.84±0.000c |
图1 不同轮作茬口和胡麻种植频率下土壤团聚体稳定性特征F: 胡麻Flax; W: 小麦Wheat; P: 马铃薯Potato; CK: 休闲Relaxation; MWD: 平均重量直径Mean weight diameter; GMD: 几何平均直径Geometric mean diameter; D: 分形维数Fractal dimension; PAD: 团聚体破坏率Percentage of aggregate destruction; K: 土壤可蚀性Soil erodibility K-factor. 不同小写字母表示处理间差异显著(P<0.05)。Different lowercase letters indicate significant differences among treatments (P<0.05).下同The same below.
Fig.1 Characteristics of soil aggregate stability at different crop stubble and flax planting frequencies
轮作模式Rotation mode | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 全氮 Total nitrogen (g·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
<0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | |
Cont F | 6.29±0.18bcd | 5.78±0.36ab | 1.95±0.20a | 3.02±0.31bcde | 4.80±0.30f | 3.18±0.24cd | 0.90±0.02bc | 0.84±0.00d | 0.57±0.03de |
FWPF | 7.63±0.77a | 6.04±0.25ab | 2.20±0.26a | 3.94±0.44abc | 5.27±0.56def | 3.82±0.23bc | 0.82±0.00fgh | 0.80±0.02d | 0.70±0.05cd |
WFPF | 5.77±0.57bcd | 5.35±0.55b | 1.98±0.46a | 3.53±0.35abcde | 3.09±0.17g | 2.46±0.55d | 0.91±0.05cde | 0.99±0.02a | 0.52±0.01g |
WPWF | 6.78±0.18ab | 5.70±0.30b | 2.20±0.26a | 3.34±0.36abcde | 6.21±0.94bcd | 2.61±0.18d | 1.06±0.00b | 0.90±0.00bc | 0.77±0.00b |
WPFF | 2.43±0.46e | 5.81±0.29ab | 1.78±0.10a | 3.18±0.70abcde | 5.35±0.50cdef | 2.42±0.60d | 0.76±0.05h | 0.73±0.06e | 0.95±0.05a |
FPFW | 6.60±0.53abc | 5.81±0.41ab | 1.99±0.46a | 3.75±0.63abcde | 5.61±0.45cdef | 3.12±0.39cd | 0.89±0.07efg | 0.85±0.01cd | 0.95±0.00a |
PWFW | 4.86±1.14d | 5.91±0.65ab | 1.97±0.30a | 4.01±0.64ab | 5.31±0.22def | 3.27±0.37cd | 0.99±0.02bcd | 0.71±0.05e | 0.75±0.00bc |
PFFW | 5.16±0.12cd | 6.12±0.63ab | 1.92±0.24a | 3.80±0.46abcd | 5.48±0.65cdef | 2.71±0.38d | 1.00±0.00bc | 0.80±0.00d | 0.80±0.00b |
PFWF | 5.73±0.27bcd | 5.20±0.83b | 1.87±0.24a | 2.55±0.39e | 4.97±0.61ef | 2.59±0.59d | 1.22±0.09a | 0.84±0.00cd | 0.52±0.02g |
WFWP | 6.15±0.35bcd | 6.97±0.95a | 1.95±0.13a | 4.38±0.63a | 8.23±0.45a | 4.03±0.45bc | 0.58±0.04i | 0.94±0.02ab | 0.77±0.05b |
FFWP | 7.14±0.92ab | 5.87±0.30ab | 1.96±0.28a | 4.09±0.84ab | 6.01±0.38bcde | 5.12±0.08a | 1.02±0.00b | 0.85±0.00cd | 0.73±0.00bcd |
FWFP | 7.65±0.29a | 6.33±0.36ab | 2.07±0.09a | 3.32±0.43abcde | 7.01±0.06b | 4.53±0.53ab | 0.90±0.03def | 0.56±0.08f | 0.62±0.05ef |
FWPW | 6.41±1.17abc | 5.76±0.30ab | 2.40±0.40a | 2.76±0.31cde | 7.14±0.79b | 2.42±0.36d | 0.59±0.00i | 0.53±0.00f | 0.59±0.04f |
CK | 6.40±0.32abc | 5.70±0.09b | 2.42±0.09a | 1.81±1.28de | 6.51±0.10bc | 2.43±0.09d | 0.81±0.04gh | 0.50±0.00f | 0.47±0.02g |
表6 不同轮作模式对土壤团聚体中氮素含量分布特征的影响
Table 6 Effect of different rotation patterns on the distribution characteristics of nitrogen content in soil aggregates
轮作模式Rotation mode | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 全氮 Total nitrogen (g·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
<0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | |
Cont F | 6.29±0.18bcd | 5.78±0.36ab | 1.95±0.20a | 3.02±0.31bcde | 4.80±0.30f | 3.18±0.24cd | 0.90±0.02bc | 0.84±0.00d | 0.57±0.03de |
FWPF | 7.63±0.77a | 6.04±0.25ab | 2.20±0.26a | 3.94±0.44abc | 5.27±0.56def | 3.82±0.23bc | 0.82±0.00fgh | 0.80±0.02d | 0.70±0.05cd |
WFPF | 5.77±0.57bcd | 5.35±0.55b | 1.98±0.46a | 3.53±0.35abcde | 3.09±0.17g | 2.46±0.55d | 0.91±0.05cde | 0.99±0.02a | 0.52±0.01g |
WPWF | 6.78±0.18ab | 5.70±0.30b | 2.20±0.26a | 3.34±0.36abcde | 6.21±0.94bcd | 2.61±0.18d | 1.06±0.00b | 0.90±0.00bc | 0.77±0.00b |
WPFF | 2.43±0.46e | 5.81±0.29ab | 1.78±0.10a | 3.18±0.70abcde | 5.35±0.50cdef | 2.42±0.60d | 0.76±0.05h | 0.73±0.06e | 0.95±0.05a |
FPFW | 6.60±0.53abc | 5.81±0.41ab | 1.99±0.46a | 3.75±0.63abcde | 5.61±0.45cdef | 3.12±0.39cd | 0.89±0.07efg | 0.85±0.01cd | 0.95±0.00a |
PWFW | 4.86±1.14d | 5.91±0.65ab | 1.97±0.30a | 4.01±0.64ab | 5.31±0.22def | 3.27±0.37cd | 0.99±0.02bcd | 0.71±0.05e | 0.75±0.00bc |
PFFW | 5.16±0.12cd | 6.12±0.63ab | 1.92±0.24a | 3.80±0.46abcd | 5.48±0.65cdef | 2.71±0.38d | 1.00±0.00bc | 0.80±0.00d | 0.80±0.00b |
PFWF | 5.73±0.27bcd | 5.20±0.83b | 1.87±0.24a | 2.55±0.39e | 4.97±0.61ef | 2.59±0.59d | 1.22±0.09a | 0.84±0.00cd | 0.52±0.02g |
WFWP | 6.15±0.35bcd | 6.97±0.95a | 1.95±0.13a | 4.38±0.63a | 8.23±0.45a | 4.03±0.45bc | 0.58±0.04i | 0.94±0.02ab | 0.77±0.05b |
FFWP | 7.14±0.92ab | 5.87±0.30ab | 1.96±0.28a | 4.09±0.84ab | 6.01±0.38bcde | 5.12±0.08a | 1.02±0.00b | 0.85±0.00cd | 0.73±0.00bcd |
FWFP | 7.65±0.29a | 6.33±0.36ab | 2.07±0.09a | 3.32±0.43abcde | 7.01±0.06b | 4.53±0.53ab | 0.90±0.03def | 0.56±0.08f | 0.62±0.05ef |
FWPW | 6.41±1.17abc | 5.76±0.30ab | 2.40±0.40a | 2.76±0.31cde | 7.14±0.79b | 2.42±0.36d | 0.59±0.00i | 0.53±0.00f | 0.59±0.04f |
CK | 6.40±0.32abc | 5.70±0.09b | 2.42±0.09a | 1.81±1.28de | 6.51±0.10bc | 2.43±0.09d | 0.81±0.04gh | 0.50±0.00f | 0.47±0.02g |
图2 不同茬口对土壤团聚体粒径中氮素含量分布特征的影响不同小写字母表示相同粒径不同处理间差异显著(P<0.05),下同。Different lowercase letters indicate significant differences among different treatments of the same particle size (P<0.05), the same below.
Fig.2 Effects of different stubble on the distribution characteristics of nitrogen content in soil aggregates
项目 Item | 几何平均 直径GMD | 分形维数 D | 团聚体破坏率PAD | 土壤可蚀性K | NH4+-N | NO3--N | TN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | |||||
平均重量直径MWD | 0.98** | -0.95** | -0.94** | -0.47 | 0.45 | 0.63* | 0.10 | 0.41 | 0.38 | 0.63* | -0.44 | 0.09 | -0.23 |
几何平均直径GMD | -0.99** | -0.99** | -0.52 | 0.47 | 0.57* | 0.10 | 0.42 | 0.27 | 0.61* | -0.35 | 0.12 | -0.23 | |
分形维数D | 0.99** | 0.53 | -0.46 | -0.50 | -0.09 | -0.40 | -0.17 | -0.56* | 0.27 | -0.17 | 0.23 | ||
团聚体破坏率PAD | 0.57 | -0.45 | -0.52 | -0.09 | -0.43 | -0.19 | -0.58* | 0.31 | -0.17 | 0.18 | |||
土壤可蚀性K | -0.47 | -0.56* | -0.11 | -0.41 | -0.27 | -0.60* | 0.36 | -0.13 | 0.24 | ||||
NH4+-N | |||||||||||||
<0.25 mm | 0.16 | 0.54* | 0.12 | 0.28 | 0.52 | 0.06 | -0.05 | -0.39 | |||||
0.5~1.0 mm | -0.05 | 0.64* | 0.71** | 0.56* | -0.55* | -0.02 | 0.36 | ||||||
>2 mm | -0.32 | 0.37 | -0.16 | -0.36 | -0.58* | -0.49 | |||||||
NO3--N | |||||||||||||
<0.25 mm | 0.13 | 0.60* | -0.16 | 0.49 | 0.51 | ||||||||
0.5~1.0 mm | 0.35 | -0.54* | -0.40 | 0.10 | |||||||||
>2 mm | 0.00 | 0.09 | 0.13 | ||||||||||
TN | |||||||||||||
<0.25 mm | 0.30 | -0.12 | |||||||||||
0.5~1.0 mm | 0.29 |
表7 不同轮作模式下土壤稳定性指标与氮素分布的相关性分析
Table 7 Correlation analysis of nitrogen distribution in soil aggregate particle size and stability index under different cropping rotation modes
项目 Item | 几何平均 直径GMD | 分形维数 D | 团聚体破坏率PAD | 土壤可蚀性K | NH4+-N | NO3--N | TN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | <0.25 mm | 0.5~1.0 mm | >2 mm | |||||
平均重量直径MWD | 0.98** | -0.95** | -0.94** | -0.47 | 0.45 | 0.63* | 0.10 | 0.41 | 0.38 | 0.63* | -0.44 | 0.09 | -0.23 |
几何平均直径GMD | -0.99** | -0.99** | -0.52 | 0.47 | 0.57* | 0.10 | 0.42 | 0.27 | 0.61* | -0.35 | 0.12 | -0.23 | |
分形维数D | 0.99** | 0.53 | -0.46 | -0.50 | -0.09 | -0.40 | -0.17 | -0.56* | 0.27 | -0.17 | 0.23 | ||
团聚体破坏率PAD | 0.57 | -0.45 | -0.52 | -0.09 | -0.43 | -0.19 | -0.58* | 0.31 | -0.17 | 0.18 | |||
土壤可蚀性K | -0.47 | -0.56* | -0.11 | -0.41 | -0.27 | -0.60* | 0.36 | -0.13 | 0.24 | ||||
NH4+-N | |||||||||||||
<0.25 mm | 0.16 | 0.54* | 0.12 | 0.28 | 0.52 | 0.06 | -0.05 | -0.39 | |||||
0.5~1.0 mm | -0.05 | 0.64* | 0.71** | 0.56* | -0.55* | -0.02 | 0.36 | ||||||
>2 mm | -0.32 | 0.37 | -0.16 | -0.36 | -0.58* | -0.49 | |||||||
NO3--N | |||||||||||||
<0.25 mm | 0.13 | 0.60* | -0.16 | 0.49 | 0.51 | ||||||||
0.5~1.0 mm | 0.35 | -0.54* | -0.40 | 0.10 | |||||||||
>2 mm | 0.00 | 0.09 | 0.13 | ||||||||||
TN | |||||||||||||
<0.25 mm | 0.30 | -0.12 | |||||||||||
0.5~1.0 mm | 0.29 |
1 | Dou S, Li K, Guan S. A review on organic matter in soil aggregates. Acta Pedologica Sinica, 2011, 48(2): 412-418. |
窦森, 李凯, 关松. 土壤团聚体中有机质研究进展. 土壤学报, 2011, 48(2): 412-418. | |
2 | Zhang X Y, Chen L D, Fu B J, et al. Effects of land use and management practice on farmland soil quality in Yanhuai basin of Beijing. Chinese Journal of Applied Ecology, 2007, 18(2): 303-309. |
张心昱, 陈利顶, 傅伯杰, 等. 农田生态系统不同土地利用方式与管理措施对土壤质量的影响. 应用生态学报, 2007, 18(2): 303-309. | |
3 | Doran J W, Zeiss M R. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology, 2000, 15(1): 3-11. |
4 | Bronick C J, Lal R. Soil structure and management: A review. Geoderma, 2005, 124(1/2): 3-22. |
5 | Bai Y J, Liu Y L, Li Y, et al. Effects of different long-term rotation patterns on aggregate composition and organic carbon in yellow soil. Soils, 2021, 53(1): 161-167. |
白怡婧, 刘彦伶, 李渝, 等. 长期不同轮作模式对黄壤团聚体组成及有机碳的影响. 土壤, 2021, 53(1): 161-167. | |
6 | Gao J H, Zhang C Z. The effects of different conservation tillage on soil physical structures of dry farmland in the Loess Plateau. Agricultural Research in the Arid Areas, 2010, 28(4): 192-196. |
高建华, 张承中. 不同保护性耕作措施对黄土高原旱作农田土壤物理结构的影响. 干旱地区农业研究, 2010, 28(4): 192-196. | |
7 | Zhang H L, Zheng X Q, He Q Y, et al. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems. Journal of Soil and Water Conservation, 2016, 30(4): 216-220. |
张翰林, 郑宪清, 何七勇, 等. 不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响. 水土保持学报, 2016, 30(4): 216-220. | |
8 | Chen X F, Li Z P, Liu M, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical china. Scientia Agricultura Sinica, 2013, 46(5): 950-960. |
陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013, 46(5): 950-960. | |
9 | Jiang B W, Liang S P, Zhang D, et al. Effect of tillage and fertilization on particle size distribution and water stability of black soil aggregate. Journal of Northeast Agricultural University, 2019, 50(7): 76-86. |
姜佰文, 梁世鹏, 张迪, 等. 耕作与施肥对黑土团聚体粒级分布及水稳定性的影响. 东北农业大学学报, 2019, 50(7): 76-86. | |
10 | Li W, Dai Z, Zhang G X, et al. Combination of biochar and nitrogen fertilizer to improve soil aggregate stability and crop yield in Lou soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 782-791. |
李伟, 代镇, 张光鑫, 等. 生物炭和氮肥配施提高塿土团聚体稳定性及作物产量. 植物营养与肥料学报, 2019, 25(5): 782-791. | |
11 | Qi Z C, Chang P J, Li Y S, et al. Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland. Arid Zone Research, 2021, 38(1): 87-94. |
祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响. 干旱区研究, 2021, 38(1): 87-94. | |
12 | Wang X J, Sun Y Q, Wang Y, et al. Effects of long-term positioning fertilization on soil aggregates and nutrients in dryland. Jiangsu Agricultural Sciences, 2019, 47(17): 276-280. |
王晓军, 孙玉琴, 王勇, 等. 长期定位施肥对旱作土壤团聚体及养分的影响. 江苏农业科学, 2019, 47(17): 276-280. | |
13 | Sun H Y, Ji Q, Wang Y, et al. The distribution of water-stable aggregate-associated organic carbon and its oxidation stability under different straw returning modes. Journal of Agro-Environment Science, 2012, 31(2): 369-376. |
孙汉印, 姬强, 王勇, 等. 不同秸秆还田模式下水稳性团聚体有机碳的分布及其氧化稳定性研究. 农业环境科学学报, 2012, 31(2): 369-376. | |
14 | Yin W, Guo Y, Chen G P, et al. Response of composition of soil aggregates and distribution of organic carbon and total nitrogen to straw returning in an oasis area. Agricultural Research in the Arid Areas, 2019, 37(3): 139-148. |
殷文, 郭瑶, 陈桂平, 等. 绿洲农田土壤团聚体组成及有机碳和全氮分布对秸秆还田方式的响应. 干旱地区农业研究, 2019, 37(3): 139-148. | |
15 | He S L, Huang S S, Zhong Y J, et al. Effects of tillage depth on the characteristics of soil water-stable aggregates in sloping farmland of red soil. Research of Soil and Water Conservation, 2019, 26(6): 127-132. |
何绍浪, 黄尚书, 钟义军, 等. 耕作深度对红壤坡耕地土壤水稳性团聚体特征的影响. 水土保持研究, 2019, 26(6): 127-132. | |
16 | Cao L Y, Zhang L, Jiang X J, et al. Effects of long-term ridge tillage on distributions of different nitrogen forms of soft water stable aggregates. Plant Nutrition and Fertilizer Science, 2009, 15(4): 824-830. |
曹良元, 张磊, 蒋先军, 等. 长期垄作免耕对不同大小土壤团聚体中几种氮素形态分布的影响. 植物营养与肥料学报, 2009, 15(4): 824-830. | |
17 | Cui H Y, Xu W C, Sun Y M, et al. Effects of different organic manures application on soil moisture, yield and quality of oil flax. Journal of Soil and Water Conservation, 2014, 28(3): 307-312. |
崔红艳, 许维成, 孙毓民, 等. 施用有机肥对土壤水分、胡麻产量和品质的影响. 水土保持学报, 2014, 28(3): 307-312. | |
18 | Dang Z H, Zhao R Y, Wang M, et al. Visualization analysis on oil flax research-based on the view of internationalization. Plant Fiber Sciences in China, 2010, 32(6): 305-313. |
党占海, 赵蓉英, 王敏, 等. 国际视野下胡麻研究的可视化分析. 中国麻业科学, 2010, 32(6): 305-313. | |
19 | Liu D, Cui Z J, Gao Y H, et al. Effect of rotation sequence on stability of soil organic carbon in dry-land oil flax. Acta Prataculturae Sinica, 2018, 27(12): 45-57. |
刘栋, 崔政军, 高玉红, 等. 不同轮作序列对旱地胡麻土壤有机碳稳定性的影响. 草业学报, 2018, 27(12): 45-57. | |
20 | Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50(3): 627-633. |
21 | Liang W, Cui D J, Liu X W, et al. Effect of conservation tillage on soil aggregates and microorganism under double cropping cultivation mode. Shandong Agricultural Sciences, 2019, 51(1): 98-103, 127. |
梁伟, 崔德杰, 柳新伟, 等. 一年两作栽培模式下保护性耕作对土壤团聚体及微生物的影响. 山东农业科学, 2019, 51(1): 98-103, 127. | |
22 | Bao S D. Soil agrochemical analysis (Version 3). Beijing: China Agricultural Press, 2000. |
鲍士旦. 土壤农化分析 (3版). 北京: 中国农业出版社, 2000. | |
23 | Huang Z S, Yu L F, Fu Y H, et al. Characteristics of soil mineralizable carbon pool in natural restoration process of Karst forest vegetation. Chinese Journal of Applied Ecology, 2012, 23(8): 2165-2170. |
黄宗胜, 喻理飞, 符裕红. 喀斯特森林植被自然恢复过程中土壤可矿化碳库特征. 应用生态学报, 2012, 23(8): 2165-2170. | |
24 | Wang Y J. Effects of grass on soil aggregates and organic C∶N in apple orchard in Weibei. Xianyang: Northwest A&F University, 2013. |
王英俊. 生草对渭北苹果园土壤团聚体及其有机C∶N的影响. 咸阳: 西北农林科技大学, 2013. | |
25 | Yoder R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agronomy Journal, 1936, 28(5): 337-351. |
26 | Xu X R, Wang J K. A review on different stabilized mechanisms of soil aggregates and organic carbon. Chinese Journal of Soil Science, 2017, 48(6): 1523-1529. |
徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展. 土壤通报, 2017, 48(6): 1523-1529. | |
27 | Ma X H, Jiao J Y, Wen Z M, et al. The changes of soil physical properties in abandoned lands during vegetation restoration in hilly and gully regions on the Loess Plateau. Journal of Soil and Water Conservation, 2005, 12(1): 17-21. |
马祥华, 焦菊英, 温仲明, 等. 黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究. 水土保持研究, 2005, 12(1): 17-21. | |
28 | Six J, Elliott E T, Paustian K. Soil structure and soil organic matter: Ⅱ. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 2000, 64(3): 1042-1049. |
29 | Zhang Q, Yu E J, Lin H B, et al. Distribution and stability of aggregate affected by continuous different green manures cultivation. Journal of Tropical Crops, 2018, 39(9): 1708-1717. |
张钦, 于恩江, 林海波, 等. 连续种植不同绿肥作物的土壤团聚体空间分布及稳定性特征. 热带作物学报, 2018, 39(9): 1708-1717. | |
30 | Wang H X, Sun H X, Han Q F, et al. Effects of straw mulching on soil aggregates in dryland wheat field under no-tillage. Chinese Journal of Applied Ecology, 2012, 23(4): 1025-1030. |
王海霞, 孙红霞, 韩清芳, 等. 免耕条件下秸秆覆盖对旱地小麦田土壤团聚体的影响. 应用生态学报, 2012, 23(4): 1025-1030. | |
31 | Cheng Y, Ren H, Liu P, et al. Effects of different cultivation practices on composition, carbon and nitrogen distribution of soil aggregates in farmlands. Chinese Journal of Applied Ecology, 2016, 27(11): 3521-3528. |
程乙, 任昊, 刘鹏, 等. 不同栽培管理模式对农田土壤团聚体组成及其碳、氮分布的影响. 应用生态学报, 2016, 27(11) : 3521-3528. | |
32 | Cui R M, Li R, Han Q F, et al. Effects of different organic manure with fertilization on soil aggregates in dry farmland. Journal of Northwest A & F University (Natural Science Edition), 2011, 39(11): 124-132. |
崔荣美, 李儒, 韩清芳, 等. 不同有机肥培肥对旱作农田土壤团聚体的影响. 西北农林科技大学学报(自然科学版), 2011, 39(11): 124-132. | |
33 | Wang H T, Jiang C Q, Jiang Y J, et al. Relationship between soil aggregate composition with yield and quality of flue-cured tobacco under different rice-tobacco rotation years in Yangtse plain South Anhui. Soils, 2020, 52(5): 1057-1067. |
王浩田, 姜超强, 蒋瑀霁, 等. 皖南沿江平原不同年限烟-稻轮作土壤团聚体组成与烤烟产质量的关系. 土壤, 2020, 52(5): 1057-1067. | |
34 | Zhang S T, Ren T, Zhou X Q, et al. Effects of oil/wheat-rice rotation and fertilization on soil nutrients and aggregate carbon and nitrogen distribution. Acta Pedologica Sinica, 2022, 59(1): 194-205. |
张顺涛, 任涛, 周橡棋, 等. 油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响. 土壤学报, 2022, 59(1): 194-205. | |
35 | An W L, Gao D Z, Pan T, et al. Effect of rice straw returning on paddy soil water-stable aggregate distribution and stability in the paddy field of Fuzhou plain. Acta Scientiae Circumstantiae, 2016, 36(5): 1833-1840. |
安婉丽, 高灯州, 潘婷, 等. 水稻秸秆还田对福州平原稻田土壤水稳性团聚体分布及稳定性影响. 环境科学学报, 2016, 36(5): 1833-1840. | |
36 | Gao F, Jia Z K, Han Q F, et al. Effects of different organic fertilizer treatments on distribution and stability of soil aggregates in the semiarid area of South Ningxia. Agricultural Research in the Arid Areas, 2010, 28(3): 100-106. |
高飞, 贾志宽, 韩清芳, 等. 有机肥不同施用量对宁南土壤团聚体粒级分布和稳定性的影响. 干旱地区农业研究, 2010, 28(3): 100-106. |
[1] | 王海娣, 张勇, 高玉红, 吴兵, 剡斌, 崔政军, 王一帆, 张雪. 胡麻籽粒产量及相关农艺性状对多元化轮作模式的响应[J]. 草业学报, 2022, 31(12): 52-65. |
[2] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[3] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
[4] | 杨婷, 张建平, 刘自刚, 齐燕妮, 李闻娟, 谢亚萍. 胡麻异质型ACCase亚基基因的克隆与表达分析[J]. 草业学报, 2020, 29(4): 111-120. |
[5] | 马晓静, 郭艳菊, 张嘉玉, 许爱云, 刘金龙, 许冬梅. 宁夏盐池县沙化草地土壤团聚体分异特征[J]. 草业学报, 2020, 29(3): 27-37. |
[6] | 李明, 秦洁, 红雨, 杨殿林, 周广帆, 王宇, 王丽娟. 氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响[J]. 草业学报, 2019, 28(12): 29-40. |
[7] | 李闻娟, 齐燕妮, 王利民, 党照, 赵利, 赵玮, 谢亚萍, 王斌, 张建平, 李淑洁. 不同胡麻品种TAG合成途径关键基因表达与含油量、脂肪酸组分的相关性分析[J]. 草业学报, 2019, 28(1): 138-149. |
[8] | 李玥, 武凌, 高珍妮, 牛俊义. 基于APSIM的胡麻光合生产与干物质积累模拟模型[J]. 草业学报, 2018, 27(3): 57-66. |
[9] | 蒋腊梅, 杨晓东, 杨建军, 何学敏, 吕光辉. 不同管理模式对干旱区草地土壤有机碳氮库的影响及其影响因素探究[J]. 草业学报, 2018, 27(12): 22-33. |
[10] | 刘栋, 崔政军, 高玉红, 剡斌, 张中凯, 吴兵, 谢亚萍, 牛俊义. 不同轮作序列对旱地胡麻土壤有机碳稳定性的影响[J]. 草业学报, 2018, 27(12): 45-57. |
[11] | 杨萍, 李杰, 张中凯, 崔政军, 杨天庆, 牛俊义. 施氮对胡麻/大豆间作体系作物间作优势及种间关系的影响[J]. 草业学报, 2016, 25(3): 181-190. |
[12] | 罗珠珠, 李玲玲, 牛伊宁, 蔡立群, 张仁陟, 谢军红. 土壤团聚体稳定性及有机碳组分对苜蓿种植年限的响应[J]. 草业学报, 2016, 25(10): 40-47. |
[13] | 张赛, 王龙昌, 杜娟, 赵琳璐, 陈娇, 石超, 黄召存, 熊瑛, 贾会娟. 西南“旱三熟”区不同作物和秸秆覆盖对土壤团聚体及固碳潜力的影响[J]. 草业学报, 2016, 25(1): 98-107. |
[14] | 宋丽萍, 罗珠珠, 李玲玲, 蔡立群, 张仁陟, 牛伊宁. 陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响[J]. 草业学报, 2015, 24(7): 12-20. |
[15] | 孙小花,谢亚萍,牛俊义,李爱荣. 不同施钾水平对胡麻钾素营养转运分配及产量的影响[J]. 草业学报, 2015, 24(4): 30-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||