草业学报 ›› 2023, Vol. 32 ›› Issue (10): 93-103.DOI: 10.11686/cyxb2023019
刘牧野1(), 郭丽珠2, 岳跃森2, 武菊英2, 范希峰2, 肖国增1(), 滕珂2()
收稿日期:
2023-01-06
修回日期:
2023-03-03
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
肖国增,滕珂
作者简介:
E-mail: tengke.123@163.com基金资助:
Mu-ye LIU1(), Li-zhu GUO2, Yue-sen YUE2, Ju-ying WU2, Xi-feng FAN2, Guo-zeng XIAO1(), Ke TENG2()
Received:
2023-01-06
Revised:
2023-03-03
Online:
2023-10-20
Published:
2023-07-26
Contact:
Guo-zeng XIAO,Ke TENG
摘要:
干旱是制约植物生长的重要胁迫因素之一,目前对于不同性别野牛草抗旱的生理及分子差异机制的研究较少,为探究干旱胁迫下野牛草雌、雄株抗氧化酶活性以及基因表达差异,以野牛草“Texoka”品种为试验材料,测定干旱第0、7、14天以及复水7 d后野牛草雌、雄株叶片相对含水量(RWC)、叶绿素含量(Chl)、PSII最大光化学量子效率(Fv/Fm)以及抗氧化酶活性,利用qRT-PCR技术研究了野牛草雌、雄株抗氧化酶基因在不同干旱时间下的表达差异。结果表明,干旱胁迫下野牛草雌、雄株坪观质量随着干旱时间的延长而降低,复水后恢复,且雌株坪观质量强于雄株。野牛草雌、雄株RWC都随着干旱处理时间增加而下降,复水后恢复,在干旱第7天雌株RWC高于雄株。野牛草雌、雄株Chl含量随着干旱-复水处理都呈下降趋势;Fv/Fm在干旱-复水处理过程中呈相同的趋势,在干旱第14天均显著降低。雌、雄株Chl和Fv/Fm除第7天外均没有显著差异,两者在长期干旱胁迫以及复水后光合特性相似。野牛草雌株超氧化物歧化酶(SOD)活性在干旱第7、14天以及复水7 d后都高于雄株,雌株抗坏血酸过氧化物酶(APX)活性变化更加明显,证明野牛草雌株应对干旱胁迫时APX更快积累;在干旱胁迫下雌、雄株过氧化物酶(POD)活性变化一致,两者没有显著差异。干旱第7天后,野牛草雌、雄株过氧化氢酶(CAT)活性变化趋势完全相反。实时荧光定量PCR分析表明,野牛草雌株抗氧化酶基因表达量在复水后达到峰值,与抗氧化酶活性变化并不一致;雄株FeSOD、Zn/Cu-SOD、POD相对表达量在干旱第14天达到峰值,与抗氧化酶活性变化相同。雄株APX以及CAT相对表达量在干旱第0天最高后下降,复水后上升,与抗氧化酶活性变化不一致。总体而言,野牛草雌、雄株之间在生理及分子水平上对干旱胁迫的响应存在一定差异,且野牛草雌株抗旱性强于雄株。本研究丰富了野牛草抗氧化系统响应干旱胁迫的认识,并为研究雌雄异株植物的抗旱机制提供了参考。
刘牧野, 郭丽珠, 岳跃森, 武菊英, 范希峰, 肖国增, 滕珂. 干旱胁迫下不同性别野牛草生理及抗氧化酶基因表达差异[J]. 草业学报, 2023, 32(10): 93-103.
Mu-ye LIU, Li-zhu GUO, Yue-sen YUE, Ju-ying WU, Xi-feng FAN, Guo-zeng XIAO, Ke TENG. Physiological and antioxidant enzyme gene expression differences between female and male Buchloe dactyloides plants under drought stress[J]. Acta Prataculturae Sinica, 2023, 32(10): 93-103.
基因 Gene | GenBank登录号 GenBank No. | 引物名称 Primer name | 引物序列 Primer sequences (5'-3') | 扩增产物大小 Amplication product size (bp) |
---|---|---|---|---|
Actin | OQ129407 | BdActin-F BdActin-R | AAGGAGAAGCTCGCATACGTTGC TCTTCCAGCCATCCATGATTGGT | 168 |
Cu/Zn-SOD | OQ129402 | BdCu/Zn-SOD-F BdCu/Zn-SOD-R | TCGTCACGCTCACTCAGGAGG GGGTGCATATCAACTGGCGC | 133 |
FeSOD | OQ129403 | BdFeSOD-F BdFeSOD-R | AATCTACTCCTGGTCTCCTCCTCA ATATGAGCAGGAGGACAGTGGAG | 243 |
CAT | OQ129404 | BdCAT-F BdCAT-R | AAGTTCCCGGACATGGTGCA CACCTACACGCTCGTCAACCG | 197 |
APX | OQ129405 | BdAPX-F BdAPX-R | GGCCTGGACTAGAAACCCTTTGG CCAAGTGACAAAGCCCTGCTGAA | 108 |
POD | OQ129406 | BdPOD-F BdPOD-R | CGCTGCTCAGGCTTCACTTCCAT AAGTCATCGCCAACATCAAGTCGC | 153 |
表 1 实时荧光定量引物信息
Table 1 Primer information for qRT-PCR analysis
基因 Gene | GenBank登录号 GenBank No. | 引物名称 Primer name | 引物序列 Primer sequences (5'-3') | 扩增产物大小 Amplication product size (bp) |
---|---|---|---|---|
Actin | OQ129407 | BdActin-F BdActin-R | AAGGAGAAGCTCGCATACGTTGC TCTTCCAGCCATCCATGATTGGT | 168 |
Cu/Zn-SOD | OQ129402 | BdCu/Zn-SOD-F BdCu/Zn-SOD-R | TCGTCACGCTCACTCAGGAGG GGGTGCATATCAACTGGCGC | 133 |
FeSOD | OQ129403 | BdFeSOD-F BdFeSOD-R | AATCTACTCCTGGTCTCCTCCTCA ATATGAGCAGGAGGACAGTGGAG | 243 |
CAT | OQ129404 | BdCAT-F BdCAT-R | AAGTTCCCGGACATGGTGCA CACCTACACGCTCGTCAACCG | 197 |
APX | OQ129405 | BdAPX-F BdAPX-R | GGCCTGGACTAGAAACCCTTTGG CCAAGTGACAAAGCCCTGCTGAA | 108 |
POD | OQ129406 | BdPOD-F BdPOD-R | CGCTGCTCAGGCTTCACTTCCAT AAGTCATCGCCAACATCAAGTCGC | 153 |
图1 干旱胁迫条件下野牛草雌、雄株表型的变化D表示干旱处理,R表示复水,♀表示野牛草雌株,♂表示野牛草雄株。下同。D represents drought treatment, R represents re-watering, ♀ represents female buffalograss, and ♂ represents male buffalograss. The same below.
Fig.1 Phenotypic changes of female and male buffalograss plants under drought stress
图2 干旱胁迫条件下野牛草雌、雄株叶片相对含水量、PSII最大光化学量子效率以及叶绿素含量的变化不同小写字母代表处理之间差异显著(P<0.05)。下同。The different lowercase letters indicate significant differences among treatments (P<0.05). The same below.
Fig.2 Detection of relative leaf water content, the maximum quantum yield of PSII and chlorophyll content of female and male buffalograss under drought stress
图4 干旱胁迫条件下野牛草抗氧化酶系统相关基因相对表达量检测
Fig.4 Detection of relative expression levels of genes related to antioxidant enzyme system in buffalograss under drought stress
指标Index | ※D0d | ※D7d | ※D14d | ※R7d |
---|---|---|---|---|
叶绿素含量Chlorophyll content | 0.845 | 0.043* | 0.496 | 0.483 |
叶片相对含水量Relative leaf water content | 0.516 | 0.010** | 0.101 | 0.230 |
PSII最大光化学量子效率The maximum quantum yield of PSII | 0.588 | 0.140 | 0.346 | 0.231 |
过氧化物酶活性Peroxidase activity | 0.502 | 0.243 | 0.224 | 0.001*** |
超氧化物歧化酶活性Superoxide dismutase activity | 0.316 | 0.001*** | 0.004** | 0.001*** |
抗坏血酸过氧化物酶活性Ascorbate peroxidase activity | 0.871 | 0.024* | 0.191 | 0.195 |
过氧化氢酶活性Catalase activity | 0.001*** | 0.006** | 0.018* | 0.001*** |
FeSOD表达量FeSOD expression | 0.033* | 0.052 | 0.001*** | 0.359 |
Cu/Zn-SOD 表达量Cu/Zn-SOD expression | 0.001*** | 0.001*** | 0.007** | 0.032* |
POD 表达量POD expression | 0.226 | 0.214 | 0.001*** | 0.482 |
APX 表达量APX expression | 0.002** | 0.298 | 0.007** | 0.062 |
CAT 表达量CAT expression | 0.004** | 0.014* | 0.454 | 0.104 |
表 2 野牛草雌、雄株同一处理天数之间的差异
Table 2 Difference between female and male buffalograss for the same treatment days
指标Index | ※D0d | ※D7d | ※D14d | ※R7d |
---|---|---|---|---|
叶绿素含量Chlorophyll content | 0.845 | 0.043* | 0.496 | 0.483 |
叶片相对含水量Relative leaf water content | 0.516 | 0.010** | 0.101 | 0.230 |
PSII最大光化学量子效率The maximum quantum yield of PSII | 0.588 | 0.140 | 0.346 | 0.231 |
过氧化物酶活性Peroxidase activity | 0.502 | 0.243 | 0.224 | 0.001*** |
超氧化物歧化酶活性Superoxide dismutase activity | 0.316 | 0.001*** | 0.004** | 0.001*** |
抗坏血酸过氧化物酶活性Ascorbate peroxidase activity | 0.871 | 0.024* | 0.191 | 0.195 |
过氧化氢酶活性Catalase activity | 0.001*** | 0.006** | 0.018* | 0.001*** |
FeSOD表达量FeSOD expression | 0.033* | 0.052 | 0.001*** | 0.359 |
Cu/Zn-SOD 表达量Cu/Zn-SOD expression | 0.001*** | 0.001*** | 0.007** | 0.032* |
POD 表达量POD expression | 0.226 | 0.214 | 0.001*** | 0.482 |
APX 表达量APX expression | 0.002** | 0.298 | 0.007** | 0.062 |
CAT 表达量CAT expression | 0.004** | 0.014* | 0.454 | 0.104 |
1 | Chai Q, Jin F, Merewitz E, et al. Growth and physiological traits associated with drought survival and post-drought recovery in perennial turfgrass species. Journal of the American Society for Horticultural Science, 2010, 135: 1-9. |
2 | Saud S, Fahad S, Cui G W, et al. Determining nitrogen isotopes discrimination under drought stress on enzymatic activities, nitrogen isotope abundance and water contents of Kentucky bluegrass. Scientific Reports, 2020, 10(1): 6415. |
3 | Lee S, Park C-M. Regulation of reactive oxygen species generation under drought conditions in Arabidopsis. Plant Signaling & Behavior, 2012, 7(6): 599-601. |
4 | Cruz Dr Carvalho M H. Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signaling & Behavior, 2008, 3(3): 156-165. |
5 | Scandalios J G. Oxygen stress and superoxide dismutases. Plant Physiology, 1993, 101(1): 7-12. |
6 | Yu F. Research of subcellular localization of antioxidant system in the leaves of Sabina under low temperature stress. Lanzhou: Lanzhou Jiaotong University, 2013. |
于飞. 低温胁迫下圆柏属植物抗氧化系统在叶片中的亚细胞定位研究. 兰州: 兰州交通大学, 2013. | |
7 | Suo Y F, Du C, Li N N, et al. Cloning and function analysis of RtSOD gene in the rare recretohalophyte Reaumuria trigyna. Acta Prataculturae Sinica, 2018, 27(4): 98-110. |
索雅飞, 杜超, 李宁宁, 等. 珍稀泌盐植物长叶红砂RtSOD基因的克隆及功能分析. 草业学报, 2018, 27(4): 98-110. | |
8 | Chainy G B, Samanta L, Rout N B. Effect of aluminum on superoxide dismutase, catalase and lipid peroxidation of rat liver. Research Communications in Molecular Pathology and Pharmacology, 1996, 94(2): 217-220. |
9 | Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9): 405-410. |
10 | Yang S Y, Chen X Y, Hui W K, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5): 481-489. |
杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展. 福建农林大学学报(自然科学版), 2016, 45(5): 481-489. | |
11 | Nasirzadeh L, Sorkhilaleloo B, Hervan E M, et al. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Research Communications, 2021, 49(1): 83-89. |
12 | Tian Y S, Wang Z J, Yu H, et al. Response of antioxidant enzyme activities and gene expression in different drought resistance cotton varieties under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2483-2490. |
田又升, 王志军, 于航, 等. 干旱胁迫对不同抗旱性棉花品种抗氧化酶活性及基因表达的影响. 西北植物学报, 2015, 35(12): 2483-2490. | |
13 | Zhang Y, Li Z, Peng Y, et al. Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments. Molecules, 2015, 20(11): 20939-20954. |
14 | Lian L, Xu H B, He W, et al. Expression of antioxidant enzyme genes in rice under PEG-simulated drought-stress. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. |
连玲, 许惠滨, 何炜, 等. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响. 福建农业学报, 2019, 34(3): 255-263. | |
15 | Li H B, Bian X J, Zhao B X. A review on turf-type buffalograss research. Grassland and Turf, 2005(3): 9-12. |
李会彬, 边秀举, 赵炳祥. 坪用野牛草研究进展. 草原与草坪, 2005(3): 9-12. | |
16 | Guo L Z, Meng H Z, Teng K, et al. Effects of nitrogen forms on the growth and nitrogen accumulation in Buchloe dactyloides seedlings. Plants, 2022, 11(16): 2086. |
17 | Tan Y X, Liu R T, Wang X G, et al. A study on the evapotranspiration and drought resistance of 12 buffalograss [Buchloe dactyloides (Nutt.) Engelm] accessions. Chinese Journal of Grassland, 2010, 32(1): 40-47. |
谭玉霞, 刘荣堂, 王显国, 等. 12份野牛草材料蒸散量及抗旱性的研究. 中国草地学报, 2010, 32(1): 40-47. | |
18 | Peng D, Wu Z Q. Progress on sex determination of dioecious plants. Biodiversity Science, 2022, 30(3): 135-146. |
彭丹, 武志强. 植物雌雄异株性别决定研究进展. 生物多样性, 2022, 30(3): 135-146. | |
19 | Renner S S, Ricklefs R E. Dioecy and its correlates in the flowering plants. American Journal of Botany, 1995, 82: 596-606. |
20 | Guo L Z, Meng H Z, Fan X F, et al. Physiological responses of female and male Buchloe dactyloides plants to different nitrogen forms. Acta Prataculturae Sinica, 2023, 32(2): 65-74. |
郭丽珠, 孟慧珍, 范希峰, 等. 野牛草雌雄株对不同形态氮素的生理响应差异. 草业学报, 2023, 32(2): 65-74. | |
21 | Quinn J A, Engel J. Life history strategies and sex ratios for a cultivar and a wild population of Buchloe dactyloides (Gramineae). American Journal of Botany, 1986, 73: 874-881. |
22 | Johnson P G, Riordan T P, Johnson-cicalese J M. Low-mowing tolerance in buffalograss. Crop Science, 2000, 40: 1339-1343. |
23 | Li D Y. Different response to water deficient female and male plants of buffalograss. Acta Horticulturae Sinica, 1996(1): 62-66. |
李德颖. 野牛草雌雄单性植株对水分胁迫反应的差异. 园艺学报, 1996(1): 62-66. | |
24 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408. |
25 | Riaz A, Younis A, Hameed M, et al. Morphological and biochemical responses of turfgrasses to water deficit conditions. Pakistan Journal of Botany, 2010, 42(5): 3441-3448. |
26 | Han R H, Mao K, Gan Y M, et al. The influence of drought to turfgrass. Grassland and Turf, 2003(1): 8-11. |
韩瑞宏, 毛凯, 干友民, 等. 干旱对草坪草的影响. 草原与草坪, 2003(1): 8-11. | |
27 | Jiang Y W, Watkins E, Liu S W, et al. Antioxidative responses and candidate gene expression in prairie june grass under drought stress. Journal of the American Society for Horticultural Science, 2010, 135(4): 303-309. |
28 | Javed A, Ahmad N, Ahmed J, et al. Grain yield, chlorophyll and protein contents of elite wheat genotypes under drought stress. Journal of King Saud University Science, 2022, 34(7): 102279. |
29 | Li X, Sun C, Bi Z Z, et al. Effects of different drought scenarios on photosynthetic characteristics and drought tolerance of potato. Plant Physiology Journal, 2019, 55(8): 1197-1210. |
李鑫, 孙超, 毕真真, 等. 不同干旱水平对马铃薯光合特性和耐旱性的影响. 植物生理学报, 2019, 55(8): 1197-1210. | |
30 | Jin W T, Liu W H, Liu K Q, et al. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
金祎婷, 刘文辉, 刘凯强, 等. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响. 草业学报, 2022, 31(6): 112-126. | |
31 | Nazar R, Umar S, Khan N A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 2015, 10(3): e1003751. |
32 | Ma S W, Liu G H, Wang L, et al. Effect of drought stress on growth and physiological characteristics of male and female Salix gordejevii cuttings. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(7): 1250-1258. |
马少薇, 刘果厚, 王蕾, 等. 干旱胁迫对黄柳雌雄扦插苗生长和生理特性的影响. 西北植物学报, 2019, 39(7): 1250-1258. | |
33 | Jia Y, Xiang Y F, Wang L L, et al. Effects of salt stress on the growth and physiological characteristics of Primula forbesii. Acta Prataculturae Sinica, 2020, 29(10): 119-128. |
贾茵, 向元芬, 王琳璐, 等. 盐胁迫对小报春生长及生理特性的影响. 草业学报, 2020, 29(10): 119-128. | |
34 | Wen Z B, Zhang M L. Photosynthetic enzymes and antioxidant enzymes activities in two photosynthetic subtypes of C4 desert plants under soil drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1815-1822. |
闻志彬, 张明理. 干旱胁迫对2种光合类型C4荒漠植物叶片光合特征酶和抗氧化酶活性的影响. 西北植物学报, 2015, 35(9): 1815-1822. | |
35 | Xiao G Z, Teng K, Li L J, et al. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress. Acta Prataculturae Sinica, 2016, 25(9): 74-82. |
肖国增, 滕珂, 李林洁, 等. 盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究. 草业学报, 2016, 25(9): 74-82. | |
36 | Liang G Q, Sun J W, Zhou W, et al. Effects of calcium on activities and gene expressions of superoxide dismutase and catalase in apple (Malus pumila Mill.) fruits. Plant Nutrition and Fertilizer Science, 2011, 17(2): 438-444. |
梁国庆, 孙静文, 周卫, 等. 钙对苹果果实超氧化物歧化酶、过氧化氢酶活性及其基因表达的影响. 植物营养与肥料学报, 2011, 17(2): 438-444. | |
37 | Zeng L S, Li P Y, Sun Z J, et al. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
曾令霜, 李培英, 孙宗玖, 等. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析. 草业学报, 2022, 31(7): 122-132. | |
38 | Xu L X, Han L B, Huang B R. Antioxidant enzyme activities and gene expression patterns in leaves of kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticultural Science, 2011, 136: 247-255. |
[1] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
[2] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
[3] | 张一龙, 李雯, 喻启坤, 李培英, 孙宗玖. 狗牙根叶与根氮代谢对不同干旱胁迫的响应机制[J]. 草业学报, 2023, 32(7): 175-187. |
[4] | 张浩, 胡海英, 李惠霞, 贺海明, 马霜, 马风华, 宋柯辰. 荒漠草原优势植物牛枝子对干旱胁迫的生理响应与转录组分析[J]. 草业学报, 2023, 32(7): 188-205. |
[5] | 梁佳, 胡朝阳, 谢志明, 马刘峰, 陈芸, 方志刚. 外源褪黑素缓解甜高粱幼苗干旱胁迫的生理效应[J]. 草业学报, 2023, 32(7): 206-215. |
[6] | 管瑾, 郭一荻, 刘凌云, 尹淑霞, 滕珂. 结缕草叶肉细胞原生质体瞬时基因表达系统的构建[J]. 草业学报, 2023, 32(7): 61-71. |
[7] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[8] | 李艳鹏, 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111. |
[9] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
[10] | 张一龙, 喻启坤, 李雯, 李培英, 孙宗玖. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J]. 草业学报, 2023, 32(3): 163-178. |
[11] | 郭丽珠, 孟慧珍, 范希峰, 滕珂, 滕文军, 温海峰, 岳跃森, 张辉, 武菊英. 野牛草雌雄株对不同形态氮素的生理响应差异[J]. 草业学报, 2023, 32(2): 65-74. |
[12] | 陆姣云, 田宏, 张鹤山, 熊军波, 刘洋, 王振南. H2O2浸种对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(10): 141-152. |
[13] | 单贵莲, 马祖艳, 李嘉懿, 刘洋, 谢勇, 刘佳, 初晓辉. 大狼毒对紫花苜蓿幼苗生理及内源激素含量的影响[J]. 草业学报, 2023, 32(10): 153-161. |
[14] | 王占军, 季波, 纪童, 蒋齐. 5种豆科牧草抗旱性研究与评价[J]. 草业学报, 2023, 32(10): 187-199. |
[15] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||