草业学报 ›› 2023, Vol. 32 ›› Issue (4): 142-152.DOI: 10.11686/cyxb2022154
• 研究论文 • 上一篇
收稿日期:
2022-04-06
修回日期:
2022-07-27
出版日期:
2023-04-20
发布日期:
2023-01-29
通讯作者:
李春杰
作者简介:
E-mail: chunjie@lzu.edu.cn基金资助:
Yuan-yuan JIN(), Zhen-jiang CHEN, Tian WANG, Chun-jie LI()
Received:
2022-04-06
Revised:
2022-07-27
Online:
2023-04-20
Published:
2023-01-29
Contact:
Chun-jie LI
摘要:
禾草内生真菌通过影响植物地上部分分解和根系分泌物来影响宿主植物生境土壤化学性质和微生物群落。然而,很少有详细的数据表明Epichlo?内生真菌对宿主植物生境土壤的影响主要是由内生真菌介导的植物地上部分分解还是根系代谢引起的。本研究通过不同田间管理措施(植物刈割返田、刈割移除和自然生长),在刈割和返田3次后测定内生真菌侵染(E+)和未侵染(E-)样地土壤的化学性质和土壤真菌群落丰度和多样性。结果表明:1)内生真菌增加了植物刈割返田后E+样地土壤中有机碳、铵态氮和硝态氮的含量,显著增加了宿主植物自然生长土壤中铵态氮的含量;2)内生真菌显著增加了植物刈割返田后和植物自然生长土壤中真菌群落的Alpha多样性,而Beta多样性在3种处理下都有显著差异;3)内生真菌和管理措施可以直接影响土壤真菌群落的丰度和多样性,也可以通过影响土壤化学性质(有机碳、碳氮比和硝态氮)间接影响土壤真菌群落的丰度和多样性。综上所述,Epichlo?内生真菌介导的植物地上部分分解和根系代谢均会对土壤化学性质和土壤真菌群落丰度、多样性产生影响,其中内生真菌介导的地上部分分解的作用强于根系代谢。
金媛媛, 陈振江, 王添, 李春杰. 内生真菌和田间管理措施对土壤真菌群落丰度和多样性的影响[J]. 草业学报, 2023, 32(4): 142-152.
Yuan-yuan JIN, Zhen-jiang CHEN, Tian WANG, Chun-jie LI. Effects of Epichloë endophyte and field management practices on the abundance and diversity of the soil fungal community[J]. Acta Prataculturae Sinica, 2023, 32(4): 142-152.
裸地 Bare ground | 7.35±0.14c | 8.65±0.17d | 1.90±0.02c | 0.36±0.07b | 1.16±0.03d | 19.09±0.31d | 4.55±0.13a | |
刈割移除 Mowing removal | E+ | 7.67±0.23bc | 9.45±0.34d | 2.61±0.14c | 0.68±0.06ab | 3.01±0.23cd | 27.14±0.66cd | 3.62±0.30b |
E- | 7.87±0.40bc | 9.88±0.32d | 2.78±0.24bc | 0.69±0.14ab | 3.13±0.17c | 29.87±0.78c | 3.55±0.28b | |
刈割返田Mowing back to the field | E+ | 8.41±0.65a | 15.63±0.54b | 4.20±0.23a | 4.87±0.06a | 52.30±1.36a | 3.72±0.50b | |
E- | 8.39±0.57ab | 12.20±0.12c | 3.50±0.05ab | 0.64±0.05ab | 4.12±0.05b | 41.90±0.31b | 3.48±0.08b | |
自然生长 Nature growth | E+ | 7.93±0.13ab | 17.13±0.13a | 4.12±0.04a | 1.02±0.34a | 4.46±0.12a | 49.32±0.33a | 4.15±0.09a |
E- | 7.67±0.32bc | 14.87±0.23b | 3.01±0.27bc | 0.99±0.19a | 4.21±0.20b | 48.97±0.41a | 4.93±0.19a |
表1 内生真菌和管理措施对土壤化学性质的影响
Table 1 Effects of endophytic fungi and management practices on soil chemical properties
裸地 Bare ground | 7.35±0.14c | 8.65±0.17d | 1.90±0.02c | 0.36±0.07b | 1.16±0.03d | 19.09±0.31d | 4.55±0.13a | |
刈割移除 Mowing removal | E+ | 7.67±0.23bc | 9.45±0.34d | 2.61±0.14c | 0.68±0.06ab | 3.01±0.23cd | 27.14±0.66cd | 3.62±0.30b |
E- | 7.87±0.40bc | 9.88±0.32d | 2.78±0.24bc | 0.69±0.14ab | 3.13±0.17c | 29.87±0.78c | 3.55±0.28b | |
刈割返田Mowing back to the field | E+ | 8.41±0.65a | 15.63±0.54b | 4.20±0.23a | 4.87±0.06a | 52.30±1.36a | 3.72±0.50b | |
E- | 8.39±0.57ab | 12.20±0.12c | 3.50±0.05ab | 0.64±0.05ab | 4.12±0.05b | 41.90±0.31b | 3.48±0.08b | |
自然生长 Nature growth | E+ | 7.93±0.13ab | 17.13±0.13a | 4.12±0.04a | 1.02±0.34a | 4.46±0.12a | 49.32±0.33a | 4.15±0.09a |
E- | 7.67±0.32bc | 14.87±0.23b | 3.01±0.27bc | 0.99±0.19a | 4.21±0.20b | 48.97±0.41a | 4.93±0.19a |
处理 Treatment | 链格孢属 Alternaria | 缓霉菌属 Bradymyces | 小毛盘菌属 Cistella | 枝孢属 Cladosporium | 鬼伞属 Coprinopsis | 附球菌属 Epicoccum | |
---|---|---|---|---|---|---|---|
裸地 Bare ground | 1.34±0.52a | 2.62±0.55a | 3.22±1.10a | 0.41±0.11a | 0.07±0.03d | 1.35±0.19a | |
刈割移除 Mowing removal | E+ | 0.39±0.04ab | 0.70±0.36b | 1.65±0.41b | 0.23±0.13bc | 0.48±0.24bc | 0.21±0.03b |
E- | 0.18±0.05b | 0.98±0.18b | 0.68±0.32c | 0.09±0.02c | 1.22±0.26b | 0.26±0.05b | |
刈割返田 Mowing back to the field | E+ | 0.15±0.29b | 1.05±0.15b | 0.54±0.26c | 0.31±0.09b | 0.15±0.09c | 0.31±0.02b |
E- | 0.46±0.16ab | 1.35±0.10ab | 0.64±0.10c | 0.40±0.02a | 2.27±0.23a | 0.48±0.08b | |
自然生长 Nature growth | E+ | 0.08±0.03b | 0.84±0.22b | 0.63±0.16c | 0.06±0.02c | 0.11±0.04c | 0.62±0.07b |
E- | 0.10±0.07b | 1.63±0.21ab | 0.87±0.15bc | 0.05±0.27c | 0.17±0.04c | 0.18±0.01b | |
处理 Treatment | 赤霉菌属 Gibberella | 被孢霉属 Mortierella | 异壳二孢属 Neoascochyta | 光黑壳属 Preussia | 茄子菌属 Solicoccozyma | Tetracladium | |
裸地 Bare ground | 3.38±0.87ab | 18.63±2.60b | 2.69±0.79ab | 2.55±0.55a | 1.74±0.41a | 0.38±0.08b | |
刈割移除 Mowing removal | E+ | 1.47±0.38c | 16.74±5.44b | 5.95±0.16a | 2.72±0.81a | 2.61±0.65a | 2.54±0.14a |
E- | 1.52±0.41c | 28.76±1.87a | 0.92±0.01ab | 2.39±0.26a | 2.23±0.25a | 1.19±0.03ab | |
刈割返田 Mowing back to the field | E+ | 3.97±0.33a | 17.06±1.47b | 3.98±1.90ab | 1.57±0.34a | 2.49±0.39a | 0.63±0.09b |
E- | 3.47±0.31ab | 17.80±3.15b | 5.85±0.68a | 2.33±0.28a | 2.28±0.84a | 0.54±0.15b | |
自然生长 Nature growth | E+ | 1.45±0.55c | 24.96±1.61ab | 0.33±0.07ab | 2.00±0.31a | 2.64±0.87a | 0.43±0.18b |
E- | 1.93±0.62bc | 25.11±0.97ab | 0.01±0.01b | 2.68±0.41a | 4.81±0.22a | 0.29±0.06b |
表2 内生真菌和管理措施对土壤真菌属水平多样性影响的方差分析
Table 2 Analysis of variance for the effect of endophytic fungi and management practices on the soil fungal community at the genus level
处理 Treatment | 链格孢属 Alternaria | 缓霉菌属 Bradymyces | 小毛盘菌属 Cistella | 枝孢属 Cladosporium | 鬼伞属 Coprinopsis | 附球菌属 Epicoccum | |
---|---|---|---|---|---|---|---|
裸地 Bare ground | 1.34±0.52a | 2.62±0.55a | 3.22±1.10a | 0.41±0.11a | 0.07±0.03d | 1.35±0.19a | |
刈割移除 Mowing removal | E+ | 0.39±0.04ab | 0.70±0.36b | 1.65±0.41b | 0.23±0.13bc | 0.48±0.24bc | 0.21±0.03b |
E- | 0.18±0.05b | 0.98±0.18b | 0.68±0.32c | 0.09±0.02c | 1.22±0.26b | 0.26±0.05b | |
刈割返田 Mowing back to the field | E+ | 0.15±0.29b | 1.05±0.15b | 0.54±0.26c | 0.31±0.09b | 0.15±0.09c | 0.31±0.02b |
E- | 0.46±0.16ab | 1.35±0.10ab | 0.64±0.10c | 0.40±0.02a | 2.27±0.23a | 0.48±0.08b | |
自然生长 Nature growth | E+ | 0.08±0.03b | 0.84±0.22b | 0.63±0.16c | 0.06±0.02c | 0.11±0.04c | 0.62±0.07b |
E- | 0.10±0.07b | 1.63±0.21ab | 0.87±0.15bc | 0.05±0.27c | 0.17±0.04c | 0.18±0.01b | |
处理 Treatment | 赤霉菌属 Gibberella | 被孢霉属 Mortierella | 异壳二孢属 Neoascochyta | 光黑壳属 Preussia | 茄子菌属 Solicoccozyma | Tetracladium | |
裸地 Bare ground | 3.38±0.87ab | 18.63±2.60b | 2.69±0.79ab | 2.55±0.55a | 1.74±0.41a | 0.38±0.08b | |
刈割移除 Mowing removal | E+ | 1.47±0.38c | 16.74±5.44b | 5.95±0.16a | 2.72±0.81a | 2.61±0.65a | 2.54±0.14a |
E- | 1.52±0.41c | 28.76±1.87a | 0.92±0.01ab | 2.39±0.26a | 2.23±0.25a | 1.19±0.03ab | |
刈割返田 Mowing back to the field | E+ | 3.97±0.33a | 17.06±1.47b | 3.98±1.90ab | 1.57±0.34a | 2.49±0.39a | 0.63±0.09b |
E- | 3.47±0.31ab | 17.80±3.15b | 5.85±0.68a | 2.33±0.28a | 2.28±0.84a | 0.54±0.15b | |
自然生长 Nature growth | E+ | 1.45±0.55c | 24.96±1.61ab | 0.33±0.07ab | 2.00±0.31a | 2.64±0.87a | 0.43±0.18b |
E- | 1.93±0.62bc | 25.11±0.97ab | 0.01±0.01b | 2.68±0.41a | 4.81±0.22a | 0.29±0.06b |
图5 内生真菌、管理措施、土壤化学性质和土壤真菌群落之间的结构方程模型红线表示正相关,蓝线表示负相关,实线表示相关性,虚线表示没有相关性。R2响应变量表示解释方差的比例,箭头上的数字是标准化路径系数,*表示关系的强度(* P<0.05, ** P<0.01 和 *** P<0.001)。模型拟合结果χ2=28.947,df=28,P=0.415,NFI=0.860,RMSEA=0.057。The red line indicates positive correlation, the blue line indicates negative correlation, the solid line indicates correlation, and the dashed line indicates no correlation. The R2-valued response variable represents the proportion of variance explained, the numbers on the arrows are standardized path coefficients, and the * represents the strength of the relationship (*P<0.05, **P<0.01, and ***P<0.001). Model fitting results χ2=28.947, df=28, P=0.415, NFI=0.860, RMSEA=0.057.
Fig.5 Structural equation modeling of among endophytic fungi,management practices,soil chemistry property,and soil fungal community
1 | Siegel M R, Latch G C M, Johnson M C. Fungal endophytes of grasses. Annual Review of Phytopathology, 1987, 25(1): 293-315. |
2 | Kauppinen M, Saikkonen K, Helander M, et al. Epichloë grass endophytes in sustainable agriculture. Nature Plants, 2016, 2(2): 15224-15231. |
3 | Tian P, Nan Z B. Signaling in the mutualistic symbiotic interaction between endophytes and their hosts. Acta Prataculturae Sinica, 2017, 26(4): 196-210. |
田沛, 南志标. 内生真菌与寄主互惠共生的分子机制. 草业学报, 2017, 26(4): 196-210. | |
4 | Wang R, Luo S, Clarke B B, et al. The Epichloë festucae antifungal protein Efe-AfpA is also a possible effector protein required for the interaction of the fungus with its host grass Festuca rubra subsp. rubra. Microorganisms, 2021, 9(1): 140-155. |
5 | Xie F X, Ren A Z, Wang Y H, et al. A comparative study of the inhibitive effect of fungal endophytes on turf grass fungus pathogens. Acta Ecologica Sinica, 2008, 28(8): 3913-3920. |
谢凤行, 任安芝, 王银华,等. 内生真菌对草坪植物病原真菌抑制作用的比较. 生态学报, 2008, 28(8): 3913-3920. | |
6 | Wang X, Qin J, Chen W, et al. Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment. European Journal of Plant Pathology, 2016, 144(3): 477-486. |
7 | Chen T, Richard J, Chen S, et al. Infection by the fungal endophyte Epichloë bromicola enhances the tolerance of wild barley (Hordeum brevisubulatum) to salt and alkali stresses. Plant and Soil, 2018, 428(1/2): 1-18. |
8 | Chen Z, Jin Y Y, Yao X, et al. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant and Soil, 2020, 452(1): 185-206. |
9 | Li C J, Lang M X, Chen Z J, et al. Advances in artificial inoculation technology for grass-endophytic fungi. Acta Prataculturae Sinica, 2021, 30(7): 179-189. |
李春杰, 郎鸣晓, 陈振江, 等. 禾草-内生真菌人工接种技术研究进展. 草业学报, 2021, 30(7): 179-189. | |
10 | Nan Z B, Li C J. Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. |
南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. | |
11 | Li C J, Wang Z F, Chen T X, et al. Creation of novel barley germplasm using an Epichloë endophyte. Chinese Science Bulletin, 2021, 66(20): 2608-2617. |
李春杰, 王正凤, 陈泰祥, 等. 利用禾草内生真菌创制大麦新种质. 科学通报, 2021, 66(20): 2608-2617. | |
12 | Helander M, Phillips T, Faeth S H, et al. Alkaloid quantities in endophyte-infected tall fescue are affected by the plant-fungus combination and environment. Journal of Chemical Ecology, 2016, 42(2): 118-126. |
13 | Zhong R, Xia C, Ju Y, et al. A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant and Soil, 2021, 458(1): 105-122. |
14 | Chen Z, Jin Y, Yao X, et al. Gene analysis reveals that leaf litter from Epichloë endophyte-infected perennial ryegrass alters diversity and abundance of soil microbes involved in nitrification and denitrification. Soil Biology and Biochemistry, 2021, 154: 108-123. |
15 | Rojas X, Guo J Q, Leff J W, et al. Infection with a shoot-specific fungal endophyte (Epichloë) alters tall fescue soil microbial communities. Microbial Ecology, 2016, 72(18): 197-206. |
16 | Guo J Q, Mcculley R L, Mcnear D H. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Frontiers in Plant Science, 2015, 6: 183-196. |
17 | Wakelin S, Harrison S, Mander C, et al. Impacts of endophyte infection of ryegrass on rhizosphere metabolome and microbial community. Crop and Pasture Science, 2015, 66(10): 1049-1057. |
18 | Iqbal J, Nelson J, Mcculley R. Fungal endophyte presence and genotype affect plant diversity and soil-to-atmosphere trace gas fluxes. Plant and Soil, 2013, 364(1/2): 15-27. |
19 | Dalmannsdottir S, Jørgensen M, Rapacz M, et al. Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense). Physiologia Plantarum, 2017, 160(3): 266-281. |
20 | Chen Z, Li C J, Nan Z B, et al. Segregation of Lolium perenne into a subpopulation with high infection by endophyte Epichloë festucae var. lolii results in improved agronomic performance. Plant and Soil, 2020, 446(1): 595-612. |
21 | Tanveer S K, Zhang J L, Lu X L, et al. Effect of corn residue mulch and N fertilizer application on nitrous oxide (N2O) emission and wheat crop productivity under rain-fed condition of Loess Plateau China. International Journal of Agriculture and Biology, 2014, 16(3): 505-512. |
22 | Zhang L M, Duff A M, Smith C J. Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/sediment) boundaries in two coastal bay ecosystems. Environmental Microbiology, 2018, 20(8): 2834-2853. |
23 | Siahmard O J, Pableo R M B, Novero A U. Molecular identification of rhizospheric fungi associated with ‘Saba’ banana via the amplification of internal transcribed spacer sequence of 5.8S ribosomal DNA. Asian Journal of Plant Sciences, 2017, 16(2): 78-86. |
24 | Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56. |
25 | Wang Y Z, Zheng J Q, Boyd S E, et al. Effects of litter quality and quantity on chemical changes during eucalyptus litter decomposition in subtropical Australia. Plant and Soil, 2019, 442(1/2): 65-78. |
26 | Zhang B, Wang H L, Yao S H, et al. Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana. Soil Biology and Biochemistry, 2013, 57: 556-567. |
27 | Sun Y D, Zhang X X, Gu L J, et al. Antifungal activity of the crude extraction of endophyte-infected and endophyte-free drunken horse grass. Pratacultural Science, 2015, 32(4): 508-514. |
孙一丹, 张兴旭, 古丽君, 等. 醉马草-内生真菌共生体中生物碱的抑菌活性. 草业科学, 2015, 32(4): 508-514. | |
28 | Gundel P E, Helander M, Garibaldi L A, et al. Role of foliar fungal endophytes in litter decomposition among species and population origins. Fungal Ecology, 2016, 21: 50-56. |
29 | Purahong W, Hyde D. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Diversity, 2011, 47(1): 1-7. |
30 | Müller K, Marhan S, Kandeler E, et al. Carbon flow from litter through soil microorganisms: From incorporation rates to mean residence times in bacteria and fungi. Soil Biology and Biochemistry, 2017, 115: 187-196. |
31 | Don A, Kalbitz K. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biology and Biochemistry, 2005, 37(12): 2171-2179. |
32 | Zhou W J, Sha L Q, Schaefer D Q, et al. Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biology and Biochemistry, 2015, 81: 255-258. |
33 | Lemons A, Clay K, Rudgers J A. Connecting plant-microbial inter-actions above and belowground: A fungal endophyte affects decomposition. Oecologia, 2005, 145(4): 595-604. |
34 | Daniel A, Alejandra M, Carlos L, et al. Epichloë fungal endophytes and plant defenses: Not just alkaloids. Trends in Plant Science, 2017, 22(11): 939-948. |
35 | Newman J A, Abner M L, Dado R G, et al. Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: Growth, photosynthesis, chemical composition and digestibility. Global Change Biology, 2010, 9(3): 425-437. |
36 | Couteaux M M, Bottner P, Berg B. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 1995, 10(2): 63-66. |
37 | Slaughter L C, Nelson J A, Carlisle E, et al. Climate change and Epichloë coenophiala association modify belowground fungal symbioses of tall fescue host. Fungal Ecology, 2018, 31: 37-46. |
38 | Osono T, Ishii Y, Takeda H, et al. Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Divers, 2009, 36(10): 101-119. |
39 | Koide K, Osono T, Takeda H. Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience, 2005, 46(5): 280-286. |
40 | Koide K, Osono T, Takeda H. Fungal succession and decomposition of Camellia japonica leaf litter. Ecological Research, 2005, 20(5): 599-609. |
41 | Malinowski D P, Belesky D P. Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassland Science, 2006, 52(1): 1-14 |
42 | Mack K M L, Rudgers J A. Balancing multiple mutualists: Asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos, 2008, 117(2): 310-320. |
43 | Slaughter L C, McCulley R L. Aboveground Epichloë coenophiala-grass associations do not affect belowground fungal symbionts or associated plant, soil parameters. Microbial Ecology, 2016, 72: 682-691. |
44 | Larimer A L, Bever J D, Clay K. Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos, 2012, 121(12): 2090-2096. |
45 | Arrieta A, Iannone L, Scervino J, et al. A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecology, 2015, 17: 146-154. |
46 | Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. |
47 | Cesco S, Mimmo T, Tonon G, et al. Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biology and Fertility of Soils, 2012, 48(2): 123-149. |
48 | Rodríguez-Blanco A, Sicardi M, Frioni L. Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L.). Biology and Fertility of Soils, 2015, 51(3): 391-402. |
49 | Yao L, Wang D, Kang L, et al. Effects of fertilizations on soil bacteria and fungi communities in a degraded arid steppe revealed by high through-put sequencing. PeerJ, 2018, 6: 4623-4650. |
50 | Parmar D K, Thakur D R. Improvement in soil physical, chemical and microbiological properties during cropping cycles under different nutrient managements in western Himalayas. International Journal of Current Microbiology and Applied Sciences, 2017, 6(6): 487-496. |
51 | Gai J P, Tian H, Yang F Y, et al. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia, 2012, 55(33): 145-151. |
52 | Johannes R, Erland B. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiology Ecology, 2007, 62(3): 258-267. |
53 | Hu Y L, Wang S L, Huang Y, et al. Effects of litter chemistry on soil biological property and enzymatic activity. Acta Ecologica Sinica. 2005, 25(10): 2662-2668. |
胡亚林, 汪思龙, 黄宇, 等. 凋落物化学组成对土壤微生物学性状及土壤酶活性的影响. 生态学报, 2005, 25(10): 2662-2668. |
[1] | 卫宏健, 丁杰, 张巨明, 杨文, 王咏琪, 刘天增. 践踏胁迫下狗牙根草坪土壤真菌群落结构的变化特征[J]. 草业学报, 2022, 31(4): 102-112. |
[2] | 李春杰, 郎鸣晓, 陈振江, 陈泰祥, 刘静, 金媛媛, 魏学凯. Epichloë内生真菌对禾草种子萌发影响研究进展[J]. 草业学报, 2022, 31(3): 192-206. |
[3] | 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. |
[4] | 王永宏, 田黎明, 艾鷖, 陈仕勇, 泽让东科. 短期牦牛放牧对青藏高原高寒草地土壤真菌群落的影响[J]. 草业学报, 2022, 31(10): 41-52. |
[5] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[6] | 李春杰, 郎鸣晓, 陈振江, 王正凤, 陈泰祥. 禾草-内生真菌人工接种技术研究进展[J]. 草业学报, 2021, 30(7): 179-189. |
[7] | 李淑琴, 陈振江, 陈泰祥, 李秀璋, 慕彪彪, 李春杰. 基于CNKI数据库的禾草与非禾草内生真菌文献计量分析[J]. 草业学报, 2021, 30(6): 121-132. |
[8] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[9] | 张若晨, 李涛, 姚祥, 陈振江, 李春杰. 基于Web of Science数据库禾草内生真菌生物碱论文计量统计分析[J]. 草业学报, 2021, 30(10): 180-190. |
[10] | 崔雪莲, 夏超. 外源脱落酸对醉马草内生真菌共生体幼苗建植过程的影响[J]. 草业学报, 2020, 29(7): 70-80. |
[11] | 李秀璋, 宋辉, 张宗豪, 徐海峰, 刘欣, 李玉玲, 李春杰. 甘肃内生真菌基因组密码子使用的偏好性分析[J]. 草业学报, 2020, 29(5): 67-77. |
[12] | 鲍根生, 宋梅玲, 王玉琴, 刘静, 王宏生. 不同密度甘肃马先蒿寄生和内生真菌互作对紫花针茅内源激素及生物碱含量的影响[J]. 草业学报, 2020, 29(4): 147-156. |
[13] | 李柯, 施宠, 何飞焱, 李昊宇. Pb胁迫下内生真菌侵染对德兰臭草生长及生理的影响[J]. 草业学报, 2020, 29(3): 112-120. |
[14] | 何雅丽, 陈振江, 魏学凯, 张海娟, 刘阳, 刘辉, 李春杰. 喷施茉莉酮酸甲酯及感染内生真菌促进醉马草抗虫性的生理作用研究[J]. 草业学报, 2020, 29(3): 121-129. |
[15] | 鲍根生, 宋梅玲, 王玉琴, 李春杰. 甘肃马先蒿寄生对禾草内生真菌共生体共生关系的影响[J]. 草业学报, 2020, 29(2): 42-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||