草业学报 ›› 2024, Vol. 33 ›› Issue (6): 1-16.DOI: 10.11686/cyxb2023250
• 研究论文 •
徐玲玲1(), 牛犇2(), 张宪洲2,3, 何永涛2,3, 石培礼2,3, 宗宁2, 武建双4, 王向涛5
收稿日期:
2023-07-18
修回日期:
2023-08-31
出版日期:
2024-06-20
发布日期:
2024-03-20
通讯作者:
牛犇
作者简介:
E-mail: niub@igsnrr.ac.cn基金资助:
Ling-ling XU1(), Ben NIU2(), Xian-zhou ZHANG2,3, Yong-tao HE2,3, Pei-li SHI2,3, Ning ZONG2, Jian-shuang WU4, Xiang-tao WANG5
Received:
2023-07-18
Revised:
2023-08-31
Online:
2024-06-20
Published:
2024-03-20
Contact:
Ben NIU
摘要:
生态系统碳循环应对气候变化的敏感性研究是“碳中和”背景下的重要议题。青藏高原高寒草地面积广阔,碳储量丰富,脆弱性高,近年来随着观测技术尤其是涡度相关技术和模拟技术的发展,已有不少研究致力于揭示青藏高原高寒草地生态系统碳水通量对气候变化的响应过程。但是,相同气候背景下不同高寒草地类型对环境变化的响应规律及敏感性尚不清楚。本研究基于藏北高原两个临近的高寒草地生态系统,高寒草甸和高寒湿地涡度相关观测的碳水通量数据,对比分析了不同水分条件下藏北高寒草甸和高寒湿地碳循环的气候敏感性。结果表明,高寒草甸的碳交换量要显著小于高寒湿地,高寒草甸是碳中性的,年净CO2交换量为(18.09±40.66) g C·m-2,而高寒湿地是稳定的碳汇,年净CO2固定量为(155.09±32.85)g C·m-2。水分条件对高寒草甸和高寒湿地植被光响应曲线最大的光合速率(α)的影响较弱,与饱和光强下的总初级生产力(Amax)呈显著正相关关系。水分对生态系统呼吸与温度的指数响应关系的调节作用主要体现在基础呼吸值(a)上,高寒湿地a的均值是高寒草甸的3.76倍,而对两个高寒草地生态系统呼吸敏感性(Q10)的调节均不显著。高寒草甸和高寒湿地Q10的均值(1.84)以及随温度升高而减小的趋势基本一致。藏北高寒草地生态系统的碳源汇特征对环境因子的响应取决于多因素共同限制,因此,基于区域性的联网协同观测有助于更加清晰地理解高寒生态系统碳交换响应气候变化的机理。
徐玲玲, 牛犇, 张宪洲, 何永涛, 石培礼, 宗宁, 武建双, 王向涛. 藏北两个临近不同高寒草地碳通量对气候条件的响应[J]. 草业学报, 2024, 33(6): 1-16.
Ling-ling XU, Ben NIU, Xian-zhou ZHANG, Yong-tao HE, Pei-li SHI, Ning ZONG, Jian-shuang WU, Xiang-tao WANG. Climate responses of carbon fluxes in two adjacent alpine grasslands in northern Tibet[J]. Acta Prataculturae Sinica, 2024, 33(6): 1-16.
站点Site | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland |
---|---|---|
地理位置 Latitude and longitude | 30.50° N, 91.07° E | 30.47° N, 91.06° E |
海拔 Altitude (m) | 4333 | 4285 |
年均温 Mean annual air temperature (℃) | 1.8 | 1.8 |
年降水 Mean annual precipitation (mm) | 476.8 | 476.8 |
年总太阳辐射 Annual total solar radiation (MJ·m-2) | 7527.6 | 7527.6 |
植被状况 Vegetations | 盖度 Coverage:30%~60% 高度 Height:10 cm 优势物种:高山嵩草,丝颖针茅,紫花针茅,窄叶苔草,等。Dominant species: K. pygmaea, S. capillacea, Stipa purpurea, C. montis-everestii, et al. 伴生物种 Associated species:小嵩草Kobresia humilis, 委陵菜属Potentilla, 木根香青Anaphalis xylorhiza等. | 盖度 Coverage:>90% 高度 Height:>20 cm 优势物种 Dominant species:藏北嵩草K. littledalei, 华扁穗草B. sinocompressus. 伴生物种 Associated species:委陵菜属Potentilla, 蕨类Pteridophyta, 马先蒿Pedicularis longiflora. |
地形特征 Terrain | 平缓、均质 Flat and homogeneous | 平缓伴有凸丘和凹壑 Flat, with hummocks and hollows |
土壤类型 Soil type | 砂壤土,砾石含量较多 Sandy loam, more gravel content | 高寒草甸土,有机质层厚 Alpine meadow soil, thick layer of organic matter |
土壤养分状况 Soil nutrient | 土壤有机质Soil organic matter:1.94% 土壤全氮Soil total nitrogen:0.12% 碳氮比Carbon nitrogen ratio:11.13 土壤有效氮Soil available nitrogen: 8.62 mg·kg-1 | 土壤有机质Soil organic matter:23.70% 土壤全氮 Soil total nitrogen:0.96% 碳氮比Carbon nitrogen ratio:24.80 土壤有效氮Soil available nitrogen: 372.80 mg·kg-1 |
研究时间 Study period (year) | 2009-2011 | 2009-2011 |
土壤水分条件Soil water content (SWC, m3·m-3) | 低 Low:SWC<0.08 中 Medium:0.08≤SWC<0.12 高 High:SWC≥0.12 | 低 Low:SWC<0.45 中 Medium:0.45≤SWC<0.65 高 High:SWC≥0.65 |
表1 藏北高寒草甸和高寒湿地的站点概况
Table 1 Brief information of two alpine grasslands in the north Tibet
站点Site | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland |
---|---|---|
地理位置 Latitude and longitude | 30.50° N, 91.07° E | 30.47° N, 91.06° E |
海拔 Altitude (m) | 4333 | 4285 |
年均温 Mean annual air temperature (℃) | 1.8 | 1.8 |
年降水 Mean annual precipitation (mm) | 476.8 | 476.8 |
年总太阳辐射 Annual total solar radiation (MJ·m-2) | 7527.6 | 7527.6 |
植被状况 Vegetations | 盖度 Coverage:30%~60% 高度 Height:10 cm 优势物种:高山嵩草,丝颖针茅,紫花针茅,窄叶苔草,等。Dominant species: K. pygmaea, S. capillacea, Stipa purpurea, C. montis-everestii, et al. 伴生物种 Associated species:小嵩草Kobresia humilis, 委陵菜属Potentilla, 木根香青Anaphalis xylorhiza等. | 盖度 Coverage:>90% 高度 Height:>20 cm 优势物种 Dominant species:藏北嵩草K. littledalei, 华扁穗草B. sinocompressus. 伴生物种 Associated species:委陵菜属Potentilla, 蕨类Pteridophyta, 马先蒿Pedicularis longiflora. |
地形特征 Terrain | 平缓、均质 Flat and homogeneous | 平缓伴有凸丘和凹壑 Flat, with hummocks and hollows |
土壤类型 Soil type | 砂壤土,砾石含量较多 Sandy loam, more gravel content | 高寒草甸土,有机质层厚 Alpine meadow soil, thick layer of organic matter |
土壤养分状况 Soil nutrient | 土壤有机质Soil organic matter:1.94% 土壤全氮Soil total nitrogen:0.12% 碳氮比Carbon nitrogen ratio:11.13 土壤有效氮Soil available nitrogen: 8.62 mg·kg-1 | 土壤有机质Soil organic matter:23.70% 土壤全氮 Soil total nitrogen:0.96% 碳氮比Carbon nitrogen ratio:24.80 土壤有效氮Soil available nitrogen: 372.80 mg·kg-1 |
研究时间 Study period (year) | 2009-2011 | 2009-2011 |
土壤水分条件Soil water content (SWC, m3·m-3) | 低 Low:SWC<0.08 中 Medium:0.08≤SWC<0.12 高 High:SWC≥0.12 | 低 Low:SWC<0.45 中 Medium:0.45≤SWC<0.65 高 High:SWC≥0.65 |
图1 藏北高寒草地主要气候因素变化温度(A)、降水(B)和光合有效辐射(C)在两个高寒草地之间基本无差别(不同气候要素分别进行两种草地类型间的配对t检验,P值均>0.1),因此图中A~C没有再区分草地类型。Temperature (A), rainfall (B) and photosynthetically active radiation (C) were basically indistinct between the two alpine grasslands (P>0.1), thus no classification of grassland types is showed in A-C.
Fig. 1 Climatic factors of two alpine grasslands in northern Tibet
图2 藏北高寒草甸和湿地CO2通量的时间变化特征NEE,净生态系统CO2交换量;GPP,生态系统总初级生产力;Re,生态系统呼吸。NEE, Net ecosystem CO2 exchange; GPP, Gross primary productivity of ecosystem; Re, Ecosystem respiration.
Fig. 2 Temporal variation of CO2 flux in alpine meadow and wetland in northern Tibet
项目Item | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland | ||||
---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | |
光合总初级生产力 GPP | -158.09 | -183.96 | -183.52 | -935.01 | -953.28 | -755.02 |
生态系统呼吸 Re | 210.51 | 212.62 | 156.70 | 786.54 | 826.98 | 564.27 |
净CO2交换量 NEE | 52.42 | 28.66 | -26.81 | -148.47 | -126.06 | -190.75 |
表2 藏北高寒草甸和高寒湿地2009-2011年的碳通量特征
Table 2 Carbon flux of alpine meadow and alpine wetland in northern Tibet from 2009 to 2011 (g C·m-2)
项目Item | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland | ||||
---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | |
光合总初级生产力 GPP | -158.09 | -183.96 | -183.52 | -935.01 | -953.28 | -755.02 |
生态系统呼吸 Re | 210.51 | 212.62 | 156.70 | 786.54 | 826.98 | 564.27 |
净CO2交换量 NEE | 52.42 | 28.66 | -26.81 | -148.47 | -126.06 | -190.75 |
图3 藏北高寒草甸和高寒湿地不同水分条件下总初级生产力的光响应曲线A~C,2009-2011年的高寒草甸,D~F, 2009-2011年的高寒湿地。暗蓝色的小点表示30 min的总初级生产力(GPP),不同颜色的点线表示不同土壤含水量条件下GPP响应PAR的曲线,其中点表示每150 μmol·m-2·s-1 PAR对应的GPP均值。A-C, Alpine meadow from 2009 to 2011, respectively. D-F, Alpine wetland from 2009 to 2011, respectively. Each darker blue point in the plot represents 30 min GPP measurement. Bold points and solid lines are colored by soil water conditions. Bold points are the mean GPP when PAR was binned every 150 μmol·m-2·s-1 approximately. The solid lines represent the canopy light response curves.
Fig. 3 The canopy light response curves of gross primary productivity (GPP) under different water conditions in two alpine grasslands of northern Tibet
图4 藏北高寒草甸和高寒湿地不同水分条件下总初级生产力与光合有效辐射的直角双曲线关系A,高寒草甸;B, 高寒湿地。不同颜色的点表示不同土壤含水量条件下每150 μmol·m-2·s-1 PAR对应的GPP均值(同图3中的亮点)。α是生态系统最大的光合速率(μmol CO2·μmol-1 PAR),Amax是饱和光强下的总初级生产力(μmol CO2·m-2·s-1),二者表征生态系统捕获光量子进行光合的能力。不同颜色的实线是不同水分条件下GPP对PAR的直角双曲线响应回归线,阴影表示回归线95%的置信区间。 A, Alpine meadow. B, Alpine wetland. Points and solid lines are colored by soil water conditions. Points are the mean GPP when PAR was binned every 150 μmol·m-2·s-1 approximately. α and Amax are the maximum photosynthetic rate and the GPP under saturated light intensity in an ecosystem, respectively. The solid line represents the rectangular hyperbolic regression line between GPP and PAR, and the shadow represents a 95% confidence interval for the regression line.
Fig. 4 Rectangular hyperbolic relationship between gross primary productivity (GPP)and photosynthetically active radiation (PAR) under different water conditions in two alpine grasslands of northern Tibet
图5 藏北高寒草甸和高寒湿地不同水分条件下生态系统呼吸对温度的响应A~C,2009-2011年的高寒草甸,D~F, 2009-2011年的高寒湿地。GS,生长季 (5-9月)。NG,非生长季。暗蓝色的小点表示30 min的生态系统呼吸(Re),不同颜色的曲线代表不同的土壤水分(SWC)条件下Re的指数响应曲线,实线表示生长季,而虚线表示非生长季。A-C, Alpine meadow from 2009 to 2011, respectively. D-F, Alpine wetland from 2009 to 2011, respectively. GS, Growing season (May to September in each year). NG, non-growing season. Each darker blue point in the plot represents 30 min Re measurement. Solid and dotted lines are colored by soil water conditions, which represent the exponential response curves of Re to temperature in GS and NG, respectively.
Fig. 5 Response of ecosystem respiration to temperature under different soil water conditions in alpine meadow and alpine wetland in northern Tibet
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.08 m3·m-3 | 4.99 | 0.080 | 0.0171 | 0.0655 | 1.93 | 0.55 | |
GS | 低 Low | 9.73 | 0.066 | 0.0195 | 0.0563 | 1.76 | 0.43 | |
中 Medium | 10.94 | 0.098 | 0.0238 | 0.0453 | 1.57 | 0.19 | ||
高 High | 11.00 | 0.156 | 0.0288 | 0.0336 | 1.40 | 0.06 | ||
NG | 低 Low | -6.60 | 0.061 | 0.0156 | 0.0877 | 2.40 | 0.50 | |
中 Medium | 1.43 | 0.105 | 0.0154 | 0.0428 | 1.53 | 0.22 | ||
高 High | 1.97 | 0.128 | 0.0148 | 0.0325 | 1.38 | 0.07 | ||
2010 | SWC=0.09 m3·m-3 | 2.04 | 0.090 | 0.0160 | 0.0628 | 1.87 | 0.42 | |
GS | 低 Low | 8.92 | 0.070 | 0.0248 | 0.0374 | 1.45 | 0.19 | |
中 Medium | 11.20 | 0.092 | 0.0235 | 0.0427 | 1.53 | 0.23 | ||
高 High | 11.83 | 0.220 | 0.0296 | 0.0300 | 1.35 | 0.22 | ||
NG | 低 Low | -3.25 | 0.050 | 0.0104 | 0.0069 | 1.07 | 0.00 | |
中 Medium | -1.20 | 0.100 | 0.0179 | -0.0258 | 0.77 | 0.05 | ||
高 High | 6.05 | 0.120 | 0.0245 | 0.0555 | 0.57 | 0.06 | ||
2011 | SWC=0.10 m3·m-3 | 3.03 | 0.100 | 0.0174 | -0.0554 | 1.74 | 0.37 | |
GS | 低 Low | 8.32 | 0.070 | 0.0178 | -0.0029 | 0.97 | 0.00 | |
中 Medium | 8.16 | 0.097 | 0.0198 | 0.0295 | 1.34 | 0.08 | ||
高 High | 10.28 | 0.192 | 0.0392 | 0.0012 | 1.01 | 0.00 | ||
NG | 低 Low | -5.68 | 0.062 | 0.0110 | 0.0768 | 2.15 | 0.15 | |
中 Medium | 2.42 | 0.095 | 0.0127 | 0.0633 | 1.88 | 0.13 | ||
高 High | 3.76 | 0.126 | -- | -- | -- | -- |
表3 高寒草甸不同水分条件和不同时期生态系统呼吸与温度的关系
Table 3 Responses of alpine meadow ecosystem respiration to temperature at divergent soil water scales during different periods
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.08 m3·m-3 | 4.99 | 0.080 | 0.0171 | 0.0655 | 1.93 | 0.55 | |
GS | 低 Low | 9.73 | 0.066 | 0.0195 | 0.0563 | 1.76 | 0.43 | |
中 Medium | 10.94 | 0.098 | 0.0238 | 0.0453 | 1.57 | 0.19 | ||
高 High | 11.00 | 0.156 | 0.0288 | 0.0336 | 1.40 | 0.06 | ||
NG | 低 Low | -6.60 | 0.061 | 0.0156 | 0.0877 | 2.40 | 0.50 | |
中 Medium | 1.43 | 0.105 | 0.0154 | 0.0428 | 1.53 | 0.22 | ||
高 High | 1.97 | 0.128 | 0.0148 | 0.0325 | 1.38 | 0.07 | ||
2010 | SWC=0.09 m3·m-3 | 2.04 | 0.090 | 0.0160 | 0.0628 | 1.87 | 0.42 | |
GS | 低 Low | 8.92 | 0.070 | 0.0248 | 0.0374 | 1.45 | 0.19 | |
中 Medium | 11.20 | 0.092 | 0.0235 | 0.0427 | 1.53 | 0.23 | ||
高 High | 11.83 | 0.220 | 0.0296 | 0.0300 | 1.35 | 0.22 | ||
NG | 低 Low | -3.25 | 0.050 | 0.0104 | 0.0069 | 1.07 | 0.00 | |
中 Medium | -1.20 | 0.100 | 0.0179 | -0.0258 | 0.77 | 0.05 | ||
高 High | 6.05 | 0.120 | 0.0245 | 0.0555 | 0.57 | 0.06 | ||
2011 | SWC=0.10 m3·m-3 | 3.03 | 0.100 | 0.0174 | -0.0554 | 1.74 | 0.37 | |
GS | 低 Low | 8.32 | 0.070 | 0.0178 | -0.0029 | 0.97 | 0.00 | |
中 Medium | 8.16 | 0.097 | 0.0198 | 0.0295 | 1.34 | 0.08 | ||
高 High | 10.28 | 0.192 | 0.0392 | 0.0012 | 1.01 | 0.00 | ||
NG | 低 Low | -5.68 | 0.062 | 0.0110 | 0.0768 | 2.15 | 0.15 | |
中 Medium | 2.42 | 0.095 | 0.0127 | 0.0633 | 1.88 | 0.13 | ||
高 High | 3.76 | 0.126 | -- | -- | -- | -- |
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.51 m3·m-3 | 3.71 | 0.51 | 0.0605 | 0.0769 | 2.16 | 0.61 | |
GS | 低 Low | 14.50 | 0.42 | 0.0605 | 0.0807 | 2.24 | 0.53 | |
中 Medium | 9.79 | 0.56 | 0.0821 | 0.0663 | 1.94 | 0.52 | ||
高 High | 8.15 | 0.71 | 0.1317 | 0.0276 | 1.32 | 0.10 | ||
NG | 低 Low | -3.96 | 0.12 | 0.0485 | 0.0124 | 1.13 | 0.03 | |
中 Medium | 9.45 | 0.56 | 0.0785 | 0.0686 | 1.98 | 0.56 | ||
高 High | 1.66 | 0.86 | 0.0560 | 0.0636 | 1.89 | 0.50 | ||
2010 | SWC=0.38 m3·m-3 | 3.20 | 0.38 | 0.0753 | 0.0490 | 1.63 | 0.46 | |
GS | 低 Low | 10.65 | 0.29 | 0.1115 | 0.0257 | 1.29 | 0.17 | |
中 Medium | 9.86 | 0.55 | 0.1887 | -0.0220 | 0.80 | 0.08 | ||
高 High | 6.84 | 0.68 | 0.1200 | -0.0109 | 0.90 | 0.05 | ||
NG | 低 Low | -2.85 | 0.14 | 0.0679 | 0.0325 | 1.38 | 0.22 | |
中 Medium | -3.74 | 0.58 | 0.0198 | 0.1040 | 2.83 | 0.75 | ||
高 High | 0.28 | 0.87 | 0.0475 | 0.0343 | 1.41 | 0.22 | ||
2011 | SWC=0.41 m3·m-3 | 2.94 | 0.41 | 0.0536 | 0.0557 | 1.74 | 0.44 | |
GS | 低 Low | 8.86 | 0.33 | 0.0856 | 0.0258 | 1.29 | 0.13 | |
中 Medium | 11.88 | 0.57 | 0.1840 | -0.0294 | 0.74 | 0.11 | ||
高 High | 8.29 | 0.69 | 0.1010 | -0.0015 | 0.98 | 0.00 | ||
NG | 低 Low | -4.28 | 0.12 | 0.0273 | 0.0212 | 1.24 | 0.06 | |
中 Medium | -0.23 | 0.51 | 0.0326 | -0.0066 | 0.93 | 0.00 | ||
高 High | 0.13 | 0.89 | 0.0493 | 0.0102 | 1.10 | 0.07 |
表4 高寒湿地在不同水分条件和不同时期生态系统呼吸与温度的关系
Table 4 Responses of alpine wetland ecosystem respiration to temperature at divergent soil water scales during different periods
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.51 m3·m-3 | 3.71 | 0.51 | 0.0605 | 0.0769 | 2.16 | 0.61 | |
GS | 低 Low | 14.50 | 0.42 | 0.0605 | 0.0807 | 2.24 | 0.53 | |
中 Medium | 9.79 | 0.56 | 0.0821 | 0.0663 | 1.94 | 0.52 | ||
高 High | 8.15 | 0.71 | 0.1317 | 0.0276 | 1.32 | 0.10 | ||
NG | 低 Low | -3.96 | 0.12 | 0.0485 | 0.0124 | 1.13 | 0.03 | |
中 Medium | 9.45 | 0.56 | 0.0785 | 0.0686 | 1.98 | 0.56 | ||
高 High | 1.66 | 0.86 | 0.0560 | 0.0636 | 1.89 | 0.50 | ||
2010 | SWC=0.38 m3·m-3 | 3.20 | 0.38 | 0.0753 | 0.0490 | 1.63 | 0.46 | |
GS | 低 Low | 10.65 | 0.29 | 0.1115 | 0.0257 | 1.29 | 0.17 | |
中 Medium | 9.86 | 0.55 | 0.1887 | -0.0220 | 0.80 | 0.08 | ||
高 High | 6.84 | 0.68 | 0.1200 | -0.0109 | 0.90 | 0.05 | ||
NG | 低 Low | -2.85 | 0.14 | 0.0679 | 0.0325 | 1.38 | 0.22 | |
中 Medium | -3.74 | 0.58 | 0.0198 | 0.1040 | 2.83 | 0.75 | ||
高 High | 0.28 | 0.87 | 0.0475 | 0.0343 | 1.41 | 0.22 | ||
2011 | SWC=0.41 m3·m-3 | 2.94 | 0.41 | 0.0536 | 0.0557 | 1.74 | 0.44 | |
GS | 低 Low | 8.86 | 0.33 | 0.0856 | 0.0258 | 1.29 | 0.13 | |
中 Medium | 11.88 | 0.57 | 0.1840 | -0.0294 | 0.74 | 0.11 | ||
高 High | 8.29 | 0.69 | 0.1010 | -0.0015 | 0.98 | 0.00 | ||
NG | 低 Low | -4.28 | 0.12 | 0.0273 | 0.0212 | 1.24 | 0.06 | |
中 Medium | -0.23 | 0.51 | 0.0326 | -0.0066 | 0.93 | 0.00 | ||
高 High | 0.13 | 0.89 | 0.0493 | 0.0102 | 1.10 | 0.07 |
图6 藏北高寒草甸和高寒湿地生态系统呼吸参数对温度和土壤湿度的响应关系A~B,基础呼吸参数a,表示参考温度条件下的生态系统呼吸;C~D, 生态系统呼吸的温度敏感性Q10,表示温度升高10 ℃生态系统呼吸增加的倍数。实线和虚线分别代表显著和不显著的回归线,阴影表示回归线95%的置信区间。A-B, Basic respiration parameter (a) represents ecosystem respiration at reference temperature. C-D, The temperature sensitivity of ecosystem respiration (Q10), is the multiple of the increase of ecosystem respiration when the temperature increases by 10 ℃. The solid and dash lines represent significant and insignificant regression lines respectively, and the shadow represents a 95% confidence interval for the regression line.
Fig. 6 Responses of ecosystem respiration parameters to temperature and soil moisture in alpine meadow and alpine wetland ecosystem in northern Tibet
1 | Green J K, Seneviratne S I, Berg A M, et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565(7740): 476-479. |
2 | Friedlingstein P, O'sullivan M, Jones M W, et al. Global carbon budget 2020. Earth System Science Data, 2020, 12(4): 3269-3340. |
3 | Keenan T F, Williams C A. The terrestrial carbon sink. Annual Review of Environment and Resources, 2018, 43(1): 219-243. |
4 | Liu Y, Piao S, Gasser T, et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12(10): 809-814. |
5 | Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184-187. |
6 | Kato T, Tang Y, Gu S, et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 2004, 124(1/2): 121-134. |
7 | Luo Y Q. Terrestrial carbon-cycle feedback to climate warming. Annual Review of Environment and Resources, 2007, 38: 683-712. |
8 | Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451(7176): 289-292. |
9 | Stocker T, Qin D, Plattner G, et al. Climate change 2013-The physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. England, Cambridge: Cambridge University Press, 2014. |
10 | Intergovernmental Panel on Climate Change. Climate change 2014-impacts, adaptation and vulnerability: regional aspects. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2014. |
11 | Crowther T W, Todd-Brown K E O, Rowe C W, et al. Quantifying global soil carbon losses in response to warming. Nature, 2016, 540(7631): 104-108. |
12 | Lu M, Zhou X, Yang Q, et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 2013, 94(3): 726-738. |
13 | Simon E, Canarini A, Martin V, et al. Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment. Communications Biology, 2020, 3(1): 584. |
14 | Fang J, Kato T, Guo Z, et al. Evidence for environmentally enhanced forest growth. Proceedings of the National Academy of Sciences, 2014, 111(26): 9527-9532. |
15 | Piao S, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 2013, 19(7): 2117-2132. |
16 | Niu B, He Y, Zhang X, et al. CO2 exchange in an alpine swamp meadow on the central Tibetan Plateau. Wetlands, 2017, 37(3): 525-543. |
17 | Yu Z L, Ge J P, Yu G R, et al. Ecology: Current knowledge and future challenges. Beijing: Higher Education Press, 2017. |
于振良, 葛剑平, 于贵瑞, 等. 生态学的现状与发展趋势. 北京: 高等教育出版社, 2017. | |
18 | Wang S, Zhang Y, Ju W, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 2020, 370(6522): 1295-1300. |
19 | Winkler A J, Myneni R B, Hannart A, et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences, 2021, 18(17): 4985-5010. |
20 | Song J, Wan S, Piao S, et al. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 2019, 22(3): 458-468. |
21 | Frankenberg C, Yin Y, Byrne B, et al. Comment on "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science, 2021, 373(6562): eabg2947. |
22 | Sang Y, Huang L, Wang X, et al. Comment on "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science, 2021, 373(6562): eabg4420. |
23 | Zhu Z, Zeng H, Myneni R B, et al. Comment on "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science, 2021, 373(6562): eabg5673. |
24 | Lei J, Guo X, Zeng Y, et al. Temporal changes in global soil respiration since 1987. Nature Communications, 2021, 12(1): 403. |
25 | Tian J, Zong N, Hartley I P, et al. Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology, 2021, 27(10): 2011-2028. |
26 | Editorial Committee of Chinese Vegetation Map, Chinese Academy of Sciences. Atlas of vegetation in China. Beijing: Science Press, 2001. |
中国科学院中国植被图编辑委员会. 中国植被图集. 北京: 科学出版社, 2001. | |
27 | Zheng D, Zhang Q, Wu S. Mountain geoecology and sustainable development of the Tibetan Plateau. Springer Science & Business Media, 2000. |
28 | Ni J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50(2): 205-218. |
29 | Saito M, Kato T, Tang Y. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 2009, 15(1): 221-228. |
30 | Climate Change Centre, China Meteorological Administration. Blue book on climate change in China (2021). Beijing: Science Press, 2021. |
中国气象局气候变化中心. 中国气候变化蓝皮书(2021). 北京: 科学出版社, 2021. | |
31 | Chen H, Zhu Q, Peng C, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955. |
32 | Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729-1742. |
33 | Mao S J, Wu Q H, Zhu J B, et al. Response of the maintain performance in alpine grassland to enclosure on the Northern Tibetan Plateau. Acta Prataculturae Sinica, 2015, 24(1): 21-30. |
毛绍娟, 吴启华, 祝景彬, 等. 藏北高寒草原群落维持性能对封育年限的响应. 草业学报, 2015, 24(1): 21-30. | |
34 | Wang J L, Chang T J, Li P, et al. The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet. Acta Ecologica Sinica, 2009, 29(2): 931-938. |
王建林, 常天军, 李鹏, 等. 西藏草地生态系统植被碳贮量及其空间分布格局. 生态学报, 2009, 29(2): 931-938. | |
35 | Wang G X, Cheng G D, Shen Y P. Soil organic carbon pool of grasslands on the Tibetan plateau and its global implication. Journal of Glaciology and Geocryology, 2002, 24(6): 693-700. |
王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 2002, 24(6): 693-700. | |
36 | Zhang X Z, Yang Y P, Piao S L, et al. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3048-3056. |
张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化. 科学通报, 2015, 60(32): 3048-3056. | |
37 | Wei D, Qi Y, Ma Y, et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2021, 118(33): e2015283118. |
38 | Yu G R, Zhang L M, Sun X M. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Progress in Geography, 2014, 33(7): 903-917. |
于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望. 地理科学进展, 2014, 33(7): 903-917. | |
39 | Chen S P, You C H, Hu Z M, et al. Eddy covariance technique and its applications in flux observations of terrestrial ecosystems. Chinese Journal of Plant Ecology, 2020, 44(4): 291-304. |
陈世苹, 游翠海, 胡中民, 等. 涡度相关技术及其在陆地生态系统通量研究中的应用. 植物生态学报, 2020, 44(4): 291-304. | |
40 | Xu M, Zhang T, Zhang Y, et al. Drought limits alpine meadow productivity in northern Tibet. Agricultural and Forest Meteorology, 2021, 303: 108371. |
41 | Zhang T, Zhang Y, Xu M, et al. Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 256/257: 22-31. |
42 | Shi P, Sun X, Xu L, et al. Net ecosystem CO2 exchange and controlling factors in a steppe-Kobresia meadow on the Tibetan Plateau. Science in China Series D: Earth Sciences, 2006, 49(S2): 207-218. |
43 | Niu B, He Y, Zhang X, et al. Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing, 2016, 8(7): 592. |
44 | Niu B, He Y, Zhang X, et al. Satellite-based inversion and field validation of autotrophic and heterotrophic respiration in an alpine meadow on the Tibetan Plateau. Remote Sensing, 2017, 9(6): 615. |
45 | Niu B, Zhang X, He Y, et al. Satellite-based estimation of gross primary production in an alpine swamp meadow on the Tibetan Plateau: A multi-model comparison. Journal of Resources and Ecology, 2017, 8(1): 57-66. |
46 | Fu G, Wu J S. Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau. Remote Sensing Letters, 2017, 8(9): 831-838. |
47 | Zhang T, Xu M, Xi Y, et al. Lagged climatic effects on carbon fluxes over three grassland ecosystems in China. Journal of Plant Ecology, 2015, 8(3): 291-302. |
48 | Zhang T, Zhang Y, Xu M, et al. Ecosystem response more than climate variability drives the inter-annual variability of carbon fluxes in three Chinese grasslands. Agricultural and Forest Meteorology, 2016, 225: 48-56. |
49 | Niu B, Zhang X, Piao S, et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 2021, 7(15): eabc7358. |
50 | Chai X, Shi P, Zong N, et al. A growing season climatic index to simulate gross primary productivity and carbon budget in a Tibetan alpine meadow. Ecological Indicators, 2017, 81: 285-294. |
51 | Li C, He H L, Liu M, et al. The design and application of CO2 flux data processing system at ChinaFLUX. Geo-Information Science, 2008, 10(5): 557-565. |
李春, 何洪林, 刘敏, 等. ChinaFLUX CO2通量数据处理系统与应用. 地球信息科学, 2008, 10(5): 557-565. | |
52 | Yu G R, Wen X F, Sun X M, et al. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006, 137(3/4): 125-137. |
53 | Michaelis L, Menten M L. Die kinetik der invertinwirkung. Biochemische Zeitschrift, 1913, 49(333/369): 352. |
54 | Ruimy A, Jarvis P G, Baldocchi D D, et al. CO2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research, 1995(26): 1-68. |
55 | Zhou L, Zhou G, Jia Q. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany, 2009, 91(2): 91-98. |
56 | Van't Hoff J H. Über die zunehmende Bedeutung der anorganischen Chemie. Vortrag, gehalten auf der 70. Versammlung der Gesellschaft deutscher Naturforscher und Ärzte zu Düsseldorf. Zeitschrift für anorganische Chemie, 1898, 18(1): 1-13. |
57 | Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 1995, 9(1): 23-36. |
58 | Zhang P C, Hirota M, Shen H H, et al. Characterization of CO2 flux in three Kobresia meadows differing in dominant species. Journal of Plant Ecology, 2009, 2(4): 187-196. |
59 | Zhao L, Li Y, Xu S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 2006, 12(10): 1940-1953. |
60 | Zhao L, Li Y, Zhao X, et al. Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2005, 50(16): 1767-1774. |
61 | Xu L, Zhang X, Shi P, et al. Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling, 2007, 208(2/4): 129-134. |
62 | Xu L, Baldocchi D D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 2004, 123(1/2): 79-96. |
63 | Lafleur P M, Roulet N T, Admiral S W. Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research, 2001, 106(D3): 3071. |
64 | Zhang L M, Yu G R, Sun X M, et al. Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology, 2006, 137(3/4): 176-187. |
65 | Han G, Yang L, Yu J, et al. Environmental controls on net ecosystem CO2 exchange over a reed (Phragmites australis) wetland in the Yellow River Delta, China. Estuaries and Coasts, 2012, 36(2): 401-413. |
66 | Hao Y B, Cui X Y, Wang Y F, et al. Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands, 2011, 31(2): 413-422. |
67 | Zhao L, Li J, Xu S, et al. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences, 2010, 7(4): 1207-1221. |
68 | Xu L, Zhang X, Shi P, et al. Response of canopy quantum yield of alpine meadow to temperature under low atmospheric pressure on Tibetan Plateau. Science in China Series D: Earth Sciences, 2006, 49(2): 219-225. |
69 | Wohlfahrt G, Anderson-Dunn M, Bahn M, et al. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems, 2008, 11(8): 1338-1351. |
70 | Jia Z J, Song C C. Net CO2 exchange and water vapour flux in wetland ecosystem and their relationship. Journal of Ecology and Rural Environment, 2006, 22(2): 75-79. |
贾志军, 宋长春. 湿地生态系统CO2净交换水汽通量及二者关系浅析. 生态与农村环境学报, 2006, 22(2): 75-79. | |
71 | Bonneville M C, Strachan I B, Humphreys E R, et al. Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 2008, 148(1): 69-81. |
72 | Lafleur P M, Moore T R, Roulet N T, et al. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems, 2005, 8(6): 619-629. |
73 | Bubier J, Crill P, Mosedale A. Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland. Hydrological Processes, 2002, 16(18): 3667-3682. |
74 | Hirota M, Tang Y, Hu Q, et al. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems, 2006, 9(4): 673-688. |
75 | Tjoelker M G, Oleksyn J, Reich P B. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Global Change Biology, 2001, 7(2): 223-230. |
76 | Xu M, Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 2001, 15(3): 687-696. |
77 | Janssens I A, Pilegaard K I M. Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 2003, 9(6): 911-918. |
78 | Zhou X, Wan S, Luo Y. Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 2007, 13(4): 761-775. |
79 | Flanagan L B, Johnson B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 2005, 130(3/4): 237-253. |
80 | Li H, Zhu J, Zhang F, et al. Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 268: 55-62. |
81 | Gorham E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1991, 1(2): 182-195. |
82 | Dušek J, Čížková H, Czerný R, et al. Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agricultural and Forest Meteorology, 2009, 149(9): 1524-1530. |
83 | Moore T R, Bubier J L, Frolking S E, et al. Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 2002, 90(1): 25-36. |
84 | Meng W Q, Wu Z L, Wang Z L. Control factors and critical conditions between carbon sinking and sourcing of wetland ecosystem. Ecology and Environmental Sciences, 2011, 20(8/9):1359-1366. |
孟伟庆, 吴绽蕾, 王中良. 湿地生态系统碳汇与碳源过程的控制因子和临界条件. 生态环境学报, 2011, 20(8/9): 1359-1366. |
[1] | 油志远, 马淑娟, 王长庭, 丁路明, 宋小艳, 尹高飞, 毛军. 川滇高原高寒草甸生态系统不同功能群植物分布格局的MaxEnt模型预测[J]. 草业学报, 2024, 33(3): 1-12. |
[2] | 岳海旺, 魏建伟, 王广才, 刘朋程, 陈淑萍, 卜俊周. 基于环境型鉴定技术划分生态区综合评价黄淮海青贮玉米品种[J]. 草业学报, 2024, 33(3): 120-138. |
[3] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[4] | 王凯锋, 包刚, 元志辉, 佟斯琴, 叶志刚, 黄晓君, 包玉海. 内蒙古植被春季返青期和秋季枯黄期的气候敏感性研究[J]. 草业学报, 2023, 32(4): 30-41. |
[5] | 雷石龙, 廖李容, 王杰, 张路, 叶振城, 刘国彬, 张超. 高寒草地植物多样性与Godron群落稳定性关系及其环境驱动因素[J]. 草业学报, 2023, 32(3): 1-12. |
[6] | 李紫晶, 高翠萍, 王忠武, 韩国栋. 中国草地固碳减排研究现状及其建议[J]. 草业学报, 2023, 32(2): 191-200. |
[7] | 钱虹宇, 蒲玉琳, 郎山鑫, 李怡燃, 周南丁. 土壤有机磷矿化特征对高寒草甸退化及温度的响应[J]. 草业学报, 2023, 32(10): 15-27. |
[8] | 周娟娟, 魏巍. 施肥和刈割协同对藏北高原禾草混播群落动态和超产的影响[J]. 草业学报, 2023, 32(10): 28-39. |
[9] | 秦格霞, 吴静, 李纯斌, 沈帅杰, 李怀海, 杨道涵, 焦美榕, 祁琦. 不同草地类型WOFOST模型参数敏感性分析[J]. 草业学报, 2022, 31(5): 13-25. |
[10] | 金有顺, 侯扶江. 放牧家畜养分消化率的测定[J]. 草业学报, 2022, 31(5): 200-212. |
[11] | 王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39. |
[12] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[13] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
[14] | 范晓敏, 井新, 肖博文, 马小亮, 贺金生. 气候和土地利用变化共同驱动青海海南、海北州生态系统服务的时空变化[J]. 草业学报, 2022, 31(12): 17-30. |
[15] | 郭碧花, 张雪梅, 刘金平, 游明鸿, 甘小洪, 羊勇. 坡度对高寒草甸公路护坡土壤性状及沙化表现的影响[J]. 草业学报, 2022, 31(11): 15-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||