草业学报 ›› 2023, Vol. 32 ›› Issue (2): 191-200.DOI: 10.11686/cyxb2022049
• 综合评述 • 上一篇
收稿日期:
2022-01-24
修回日期:
2022-03-28
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
韩国栋
作者简介:
E-mail: hanguodong@imau.edu.cn基金资助:
Zi-jing LI(), Cui-ping GAO, Zhong-wu WANG, Guo-dong HAN()
Received:
2022-01-24
Revised:
2022-03-28
Online:
2023-02-20
Published:
2022-12-01
Contact:
Guo-dong HAN
摘要:
随着经济的快速发展,温室气体的排放量不断增加,加之人类对自然资源的利用强度逐渐增加,导致全球生态系统的固碳能力减弱,大气中的温室气体浓度达到新高,所造成的温室效应已经成为国际社会普遍关注的重大全球性问题。中国草地碳汇资源得天独厚,发展草原碳汇经济成为履行国际承诺、打造碳汇新经济、建设美丽中国的重要载体。综述中国草地固碳减排现状及其影响因素,包括草地碳汇和家畜生产减排研究、气候变化背景下的草地碳汇、人工草地建设等方面,并提出中国草地固碳减排发展建议,以期为中国实现碳达峰、碳中和及草地固碳减排的贡献提供理论基础,为推动我国社会高质量发展、创造高品质生活提供坚实的技术支撑。
李紫晶, 高翠萍, 王忠武, 韩国栋. 中国草地固碳减排研究现状及其建议[J]. 草业学报, 2023, 32(2): 191-200.
Zi-jing LI, Cui-ping GAO, Zhong-wu WANG, Guo-dong HAN. Research status and suggestions for grassland carbon sequestration and emission reduction in China[J]. Acta Prataculturae Sinica, 2023, 32(2): 191-200.
1 | Fang J, Yu G, Liu L, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4015-4020. |
2 | Le Quéré C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009, 2(12): 831-836. |
3 | Canadell J G, Le Quéré C, Raupach M R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18866-18870. |
4 | World Meteorological Organization. State of the global climate 2020. Switzerland: World Meteorological Organization, 2021. |
5 | Olivier J, Peters J. Trends in global CO2 and total greenhouse gas emissions; 2020 Report. The Hague: PBL Netherlands Environmental Assessment Agency, 2020. |
6 | IPCC. Summary for policymakers. Climate change 2021: The physical science basis. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021. |
7 | United Nations. United Nations framework convention on climate change. Rio de Janeiro: United Nations, 1992. |
联合国. 联合国气候变化框架公约. 里约热内卢: 联合国, 1992. | |
8 | Xi J P. Address to the general debate of the seventy-fifth United Nations general assembly. Gazette of the State Council of the People’s Republic of China, 2020, 28: 5-7. |
习近平. 在第七十五届联合国大会一般性辩论上的讲话. 中华人民共和国国务院公报, 2020, 28: 5-7. | |
9 | Fang J Y. Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 2021, 45(11): 1173-1176. |
方精云. 碳中和的生态学透视. 植物生态学报, 2021, 45(11): 1173-1176. | |
10 | Suttie J, Reynolds S, Batello C. Grasslands of the world. Rome: Food and Agriculture Organization of the United Nations, 2005. |
11 | Abberton M, Conant R T, Batello C. Grassland carbon sequestration: Management, policy and ecomomics. Rome: Food and Agriculture Organization of the United Nations, 2010. |
12 | Whittaker R H, Likens G E. Biosphere and man. Primary productivity of the biosphere. New York: Springer Verlag, 1975: 305-308. |
13 | Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass. The global carbon cycle. Chichester: John Wiley & Sons, 1979: 129-182. |
14 | Prentice I C, Heimann M, Sitch S. The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations. Ecological Applications, 2000, 10(6): 1553-1573. |
15 | White R, Murray S, Rohweder M. Pilot analysis of global ecosystems-grassland ecosystems. Washington, DC: World Resources Institute, 2000. |
16 | Ren J Z, Liang T G, Lin H L, et al. Study on grassland’s responses to global climate change and its carbon sequestration potentials. Acta Prataculturae Sinica, 2011, 20(2): 1-22. |
任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22. | |
17 | Ministry of Ecology and Environment of the People’s Republic of China. 2019 China environmental status bulletin. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2020. |
中华人民共和国生态环境部. 2019中国环境状况公报. 北京: 中华人民共和国生态环境部, 2020. | |
18 | Ni J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50(2): 205-218. |
19 | Zhang L, Zhou G S, Ji Y H, et al. Simulation of spatiotemporal dynamics of grassland carbon storage in China. Scientia Sinca Terrae, 2016, 46(10): 1392-1405. |
张利, 周广胜, 汲玉河, 等. 中国草地碳储量时空动态模拟研究. 中国科学: 地球科学, 2016, 46(10): 1392-1405. | |
20 | Xie Z, Zhu J, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13(9): 1989-2007. |
21 | Tang X, Zhao X, Bai Y, et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4021-4026. |
22 | Fang J Y, Guo Z D, Piao S L, et al. Estimation of China’s terrestrial vegetation carbon sink from 1981 to 2000. Scientia Sinca Terrae, 2007, 37(6): 804-812. |
方精云, 郭兆迪, 朴世龙, 等. 1981-2000年中国陆地植被碳汇的估算. 中国科学D辑: 地球科学, 2007, 37(6): 804-812. | |
23 | Jiang Z Y, Hu Z M, Lai D Y F, et al. Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta-analysis. Global Change Biology, 2020, 26(12): 7186-7197. |
24 | Lu F, Hu H, Sun W, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4039-4044. |
25 | Deng L, Shangguan Z P, Wu G L, et al. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Science Reviews, 2017, 173: 84-95. |
26 | Herrero M, Havlík P, Valin H, et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20888-20893. |
27 | Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. |
28 | Fan J W, Zhong H P, Liang B, et al. Carbon stock in grassland ecosystem and its affecting factors. Grassland of China, 2003, 25(6): 51-58. |
樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003, 25(6): 51-58. | |
29 | Su Y. Research of countermeasures on waste treating of intensive livestock and poultry farms in China. Chinese Journal of Eco-Agriculture, 2006, 14(2): 15-18. |
苏杨. 我国集约化畜禽养殖场污染问题研究. 中国生态农业学报, 2006, 14(2): 15-18. | |
30 | State Environmental Protection Administration. 2004 China environmental status bulletin. Beijing: State Environmental Protection Administration, 2005. |
国家环境保护总局. 2004中国环境状况公报. 北京: 国家环境保护总局, 2005. | |
31 | Bai Y F, Pan Q M, Xing Q. Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 2016, 61(2): 201-212. |
白永飞, 潘庆民, 邢旗. 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 2016, 61(2): 201-212. | |
32 | Conant R T, Paustian K, Elliott E T. Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 2001, 11(2): 343-355. |
33 | Zhou G, Zhou X, He Y, et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Global Change Biology, 2017, 23(3): 1167-1179. |
34 | He N P, Zhang Y H, Yu Q, et al. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere, 2011, 2(1): 1-10. |
35 | Yan L, Zhou G, Zhang F. Effects of different grazing intensities on grassland production in China: A meta-analysis. PLoS One, 2013, 8(12): e81466. |
36 | Liu N, Zhang Y, Chang S, et al. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PLoS One, 2012, 7(5): e36434. |
37 | Lin Y, Hong M, Han G, et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agriculture, Ecosystems & Environment, 2010, 138(3/4): 282-292. |
38 | Chen Y, Shang J. Estimation and effecting factor decomposition of green house gas emission of animal husbandry industry in four pastoral areas. China Population, Resources and Environment, 2014, 24(12): 89-95. |
陈瑶, 尚杰. 四大牧区畜禽业温室气体排放估算及影响因素分解. 中国人口·资源与环境, 2014, 24(12): 89-95. | |
39 | Zubieta A S, Savian J V, de Souza F W, et al. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Science of the Total Environment, 2021, 754: 142029. |
40 | Schaeffer S M, Sharp E, Schimel J P, et al. Soil-plant N processes in a high arctic ecosystem, NW greenland are altered by long-term experimental warming and higher rainfall. Global Change Biology, 2013, 19(11): 3529-3539. |
41 | Guan S, An N, Zong N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2018, 116: 224-236. |
42 | Campos X, Germino M J, de Graaff M A. Enhanced precipitation promotes decomposition and soil C stabilization in semiarid ecosystems, but seasonal timing of wetting matters. Plant and Soil, 2017, 416(1/2): 427-436. |
43 | Liu W, Zhang Z H E, Wan S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15(1): 184-195. |
44 | Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle. Nature, 2013, 500(7462): 287-295. |
45 | Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 2016, 7(1): 13428. |
46 | O’Sullivan M, Spracklen D V, Batterman S A, et al. Have synergies between nitrogen deposition and atmospheric CO2 driven the recent enhancement of the terrestrial carbon sink. Global Biogeochem Cycles, 2019, 33(2): 163-180. |
47 | Bala G, Devaraju N, Chaturvedi R K, et al. Nitrogen deposition: How important is it for global terrestrial carbon uptake? Biogeosciences, 2013, 10(11): 7147-7160. |
48 | Qi Y C, Peng Q, Dong Y S, et al. Responses of ecosystem carbon budget to increasing nitrogen deposition in differently degraded Leymus chinensis steppes in Inner Mongolia, China. Environmental Science, 2015, 36(3): 625-635. |
齐玉春, 彭琴, 董云社, 等. 不同退化程度羊草草原碳收支对模拟氮沉降变化的响应. 环境科学, 2015, 36(3): 625-635. | |
49 | Bai Y, Wu J, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. |
50 | Wang W Y, Wang Q J, Wang G, et al. Effects of land degradation and rehabilitation on vegetation carbon and nitrogen content of alpine meadow in China. Journal of Plant Ecology (Chinese Version), 2007, 31(6): 1073-1078. |
王文颖, 王启基, 王刚, 等. 高寒草甸土地退化及其恢复重建对植被碳、氮含量的影响. 植物生态学报, 2007, 31(6): 1073-1078. | |
51 | Mu S J, Zhu C, Zhou K X, et al. The preventive strategies of degradation and the approaches to enhance carbon sequestration ability in Inner Mongolia grassland. Acta Agrestia Sinca, 2017, 25(2): 217-225. |
穆少杰, 朱超, 周可新, 等. 内蒙古草地退化防治对策及碳增汇途径研究. 草地学报, 2017, 25(2): 217-225. | |
52 | Ministry of Agriculture of the People’s Republic of China. 2011 China grassland development report. Beijing: Ministry of Agriculture of the People’s Republic of China, 2013. |
中华人民共和国农业农村部. 中国草原发展报告2011. 北京: 中华人民共和国农业农村部, 2013. | |
53 | Yang C, Wang M L, Liu Y Z. Alfalfa trade of China, historical changes, future trends and suggestions. Pratacultural Science, 2011, 28(9): 1711-1717. |
杨春, 王明利, 刘亚钊. 中国的苜蓿草贸易-历史变迁、未来趋势与对策建议. 草业科学, 2011, 28(9): 1711-1717. | |
54 | Gao C P, Han G D, Wang Z W, et al. Carbon sequestration effect of different artificial grasslands in Inner Mongolia desert grassland area. Chinese Journal of Grassland, 2017, 39(4): 81-85. |
高翠萍, 韩国栋, 王忠武, 等. 内蒙古荒漠草原人工草地固碳效应分析. 中国草地学报, 2017, 39(4): 81-85. | |
55 | Ou Y S, Wang X, Li J, et al. Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years. Chinese Journal of Applied and Environmental Biology, 2019, 25(1): 38-45. |
欧延升, 汪霞, 李佳, 等. 不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征. 应用与环境生物学报, 2019, 25(1): 38-45. | |
56 | Wang S Z, Liu S, Fan J W, et al. Research on the current situation of carbon trading markets and the potential of grassland carbon sinks. Acta Prataculturae Sinica, 2018, 27(6): 177-187. |
王穗子, 刘帅, 樊江文, 等. 碳交易市场现状及草地碳汇潜力研究. 草业学报, 2018, 27(6): 177-187. | |
57 | Wei C Y. Research on China’s grassland carbon sink and carbon emission trading. Grassland Protection and Construction, 2016(24): 68-69. |
卫草源. 中国草原碳汇和碳排放权交易研究. 草原保护建设, 2016(24): 68-69. | |
58 | Wang S P, Wilkes A. Feasibility discussion on low-carbon grassland animal husbandry, carbon trade and ecological compensation in the Sanjiangyuan area. Rural Economy, 2014(4): 106-110. |
汪诗平, Wilkes A. 三江源区低碳型草地畜牧业与碳贸易和生态补偿可行性探讨. 农村经济, 2014(4): 106-110. | |
59 | Li X, Zhang H B, Peng W, et al. Recent situation and enlightenmnet of grassland carbon sink in some developed countries. Journal of Forestry and Grassland Policy, 2021, 1(1): 91-96. |
李想, 张慧斌, 彭伟, 等. 部分发达国家草地碳汇近况及启示. 林草政策研究, 2021, 1(1): 91-96. | |
60 | Wang F, Harindintwali J D, Yuan Z, et al. Technologies and perspectives for achieving carbon neutrality. The Innovation, 2021, 2(4): 100180. |
61 | Zhuang Y, Zhao N, Zhao J. Estimation on grassland carbon sink potential and development countermeasure in Inner Mongolia. Pratacultural Science, 2013, 30(9): 1469-1474. |
庄洋, 赵娜, 赵吉. 内蒙古草地碳汇潜力估测及其发展对策. 草业科学, 2013, 30(9): 1469-1474. |
[1] | 范晓敏, 井新, 肖博文, 马小亮, 贺金生. 气候和土地利用变化共同驱动青海海南、海北州生态系统服务的时空变化[J]. 草业学报, 2022, 31(12): 17-30. |
[2] | 王德利, 王岭, 韩国栋. 草地精准放牧管理:概念、理论、技术及范式[J]. 草业学报, 2022, 31(12): 191-199. |
[3] | 郭文慧, 顾润源, 丁锋. 蒲公英和车前草在山东境内的春季物候特征及对气候变化的响应[J]. 草业学报, 2021, 30(12): 27-38. |
[4] | 林慧龙, 范迪, 冯琦胜, 梁天刚. 草地综合顺序分类法研究新热点:2008-2020年回顾与展望[J]. 草业学报, 2021, 30(10): 201-213. |
[5] | 郭强, 王玉琴, 鲍根生, 王宏生. 气象因子对高原鼢鼠种群数量的影响[J]. 草业学报, 2020, 29(8): 188-194. |
[6] | 马倩倩, 刘彤, 董合干, 王寒月, 赵文轩, 王瑞丽, 刘延, 陈乐. 气候变化下三裂叶豚草在新疆的潜在地理分布[J]. 草业学报, 2020, 29(12): 73-85. |
[7] | 张智起, 张立旭, 徐炜, 汪浩, 王金洲, 王娓, 贺金生. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164-173. |
[8] | 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J]. 草业学报, 2019, 28(12): 197-204. |
[9] | 王穗子, 刘帅, 樊江文, 张雅娴. 碳交易市场现状及草地碳汇潜力研究[J]. 草业学报, 2018, 27(6): 177-187. |
[10] | 王迎新, 陈先江, 娄珊宁, 胡安, 任劲飞, 胡俊奇, 张静, 侯扶江. 草原灌丛化入侵:过程、机制和效应[J]. 草业学报, 2018, 27(5): 219-227. |
[11] | 郭丁, 郭文斐, 赵建, 特木其勒图, 李旭东, 傅华, 骆亦其. 黄土高原草地和农田系统碳动态对降雨、温度和CO2浓度变化响应的模拟[J]. 草业学报, 2018, 27(2): 1-14. |
[12] | 耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2018, 27(1): 1-13. |
[13] | 王亚领, 李浩, 杨旋, 郭彦龙, 李维德. 基于MaxEnt模型和不同气候变化情景的单叶蔓荆潜在地理分布预测[J]. 草业学报, 2017, 26(7): 1-10. |
[14] | 张颖, 章超斌, 王钊齐, 杨悦, 张艳珍, 李建龙, 安如. 气候变化与人为活动对三江源草地生产力影响的定量研究[J]. 草业学报, 2017, 26(5): 1-14. |
[15] | 陈奕兆, 李建龙, 孙政国, 刚成诚. 欧亚大陆草原带1982-2008年间净初级生产力时空动态及其对气候变化响应研究[J]. 草业学报, 2017, 26(1): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||