草业学报 ›› 2025, Vol. 34 ›› Issue (10): 30-40.DOI: 10.11686/cyxb2024448
闫玉龙1(
), 杜学军1(
), 王元月1, 刘建立1, 丁银贵1, 魏源送2
收稿日期:2024-11-15
修回日期:2025-01-15
出版日期:2025-10-20
发布日期:2025-07-11
通讯作者:
杜学军
作者简介:E-mail: duxuejun19@163.com基金资助:
Yu-long YAN1(
), Xue-jun DU1(
), Yuan-yue WANG1, Jian-li LIU1, Yin-gui DING1, Yuan-song WEI2
Received:2024-11-15
Revised:2025-01-15
Online:2025-10-20
Published:2025-07-11
Contact:
Xue-jun DU
摘要:
为探究脱硫石膏与粉煤灰配施对干旱半干旱区盐碱土的改良效果,本研究以定边县盐碱土壤为对象,以紫花苜蓿为供试材料,进行盆栽试验,设置对照(CK)、添加脱硫石膏(1%、2%和4%;D1、D2和D3)、添加粉煤灰(1%、2%和4%;F1、F2和F3)以及添加脱硫石膏和粉煤灰混合物(0.5%+0.5%、1%+1%和2%+2%;DF1、DF2和DF3)10个处理,对土壤盐碱化指标、土壤养分含量及苜蓿生长进行研究和分析。结果表明:脱硫石膏可降低土壤pH,增加土壤总磷含量,提高苜蓿株高、生物量;SO42-、K+、Ca2+、Mg2+含量随脱硫石膏添加量的增加而增加。粉煤灰增加了土壤pH、SO42-、Ca2+和铁含量,降低了K+含量、苜蓿株高和生物量。脱硫石膏和粉煤灰配施降低了铁含量,增加了总磷含量,对苜蓿生长没有明显影响,说明二者配施对盐碱土的改良效果不佳。研究结果可为干旱半干旱区盐碱土改良以及煤基固废综合利用提供科学依据。
闫玉龙, 杜学军, 王元月, 刘建立, 丁银贵, 魏源送. 脱硫石膏与粉煤灰配施对盐碱土改良效果研究[J]. 草业学报, 2025, 34(10): 30-40.
Yu-long YAN, Xue-jun DU, Yuan-yue WANG, Jian-li LIU, Yin-gui DING, Yuan-song WEI. Application of desulphurization gypsum with fly ash improves saline-alkali soils[J]. Acta Prataculturae Sinica, 2025, 34(10): 30-40.
| 名称Name | 铜Cu | 铅Pb | 锌Zn | 镍Ni | 铬Cr | 镉Cd | 汞Hg | 砷As |
|---|---|---|---|---|---|---|---|---|
| 土壤 Soil | 22.3 | 11.6 | 39.0 | 15.9 | 46.9 | <0.1 | <0.002 | 11.3 |
| 脱硫石膏 Desulfurization gypsum | 1.7 | <1.4 | 10.7 | 1.7 | 14.2 | <0.1 | 0.300 | 4.4 |
| 粉煤灰 Fly ash | 0.7 | <1.4 | 1.9 | 2.4 | 3.5 | <0.1 | 0.100 | 1.5 |
| 国家标准① National standards ① | 100.0 | 170.0 | 300.0 | 190.0 | 250.0 | 0.6 | 3.400 | 25.0 |
表1 试验材料中主要重金属含量
Table 1 The content of heavy metals in experimental materials (mg·kg-1)
| 名称Name | 铜Cu | 铅Pb | 锌Zn | 镍Ni | 铬Cr | 镉Cd | 汞Hg | 砷As |
|---|---|---|---|---|---|---|---|---|
| 土壤 Soil | 22.3 | 11.6 | 39.0 | 15.9 | 46.9 | <0.1 | <0.002 | 11.3 |
| 脱硫石膏 Desulfurization gypsum | 1.7 | <1.4 | 10.7 | 1.7 | 14.2 | <0.1 | 0.300 | 4.4 |
| 粉煤灰 Fly ash | 0.7 | <1.4 | 1.9 | 2.4 | 3.5 | <0.1 | 0.100 | 1.5 |
| 国家标准① National standards ① | 100.0 | 170.0 | 300.0 | 190.0 | 250.0 | 0.6 | 3.400 | 25.0 |
处理 Treatment | 脱硫石膏添加量Desulfurization gypsum application rate | 粉煤灰添加量 Fly ash application rate |
|---|---|---|
| CK | 0 | 0 |
| D1 | 1 | 0 |
| D2 | 2 | 0 |
| D3 | 4 | 0 |
| F1 | 0 | 1 |
| F2 | 0 | 2 |
| F3 | 0 | 4 |
| DF1 | 0.5 | 0.5 |
| DF2 | 1.0 | 1.0 |
| DF3 | 2.0 | 2.0 |
表2 不同处理下脱硫石膏和粉煤灰添加量
Table 2 Addition amount of desulfurization gypsum and fly ash under different treatments (%)
处理 Treatment | 脱硫石膏添加量Desulfurization gypsum application rate | 粉煤灰添加量 Fly ash application rate |
|---|---|---|
| CK | 0 | 0 |
| D1 | 1 | 0 |
| D2 | 2 | 0 |
| D3 | 4 | 0 |
| F1 | 0 | 1 |
| F2 | 0 | 2 |
| F3 | 0 | 4 |
| DF1 | 0.5 | 0.5 |
| DF2 | 1.0 | 1.0 |
| DF3 | 2.0 | 2.0 |
图1 不同处理对土壤pH的影响不同小写字母代表不同处理间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences among different treatments at the 0.05 level. The same below.
Fig.1 The effects of different treatments on soil pH
处理 Treatment | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸根离子 CO32- | 碳酸氢根离子 HCO3- | 钾离子 K+ | 钙离子 Ca2+ | 钠离子 Na+ | 镁离子 Mg2+ |
|---|---|---|---|---|---|---|---|---|
| CK | 13.4±0.2ab | 15.6±1.2d | 0.0 | 538.8±28.3a | 19.7±0.5cd | 72.2±2.3e | 27.9±1.2ab | 15.6±0.2b |
| D1 | 14.6±0.2a | 475.5±220.8d | 0.0 | 433.1±46.6b | 18.9±1.7cde | 174.7±39.0d | 32.4±0.9ab | 12.7±1.8bc |
| D2 | 14.5±0.4a | 4635.7±1014.0b | 0.0 | 201.3±9.3d | 30.0±2.5b | 494.6±25.9b | 32.0±3.5ab | 31.4±1.7a |
| D3 | 13.9±0.8ab | 7434.5±395.8a | 0.0 | 228.8±31.0d | 37.6±3.4a | 598.4±16.8a | 28.2±1.8ab | 35.6±1.4a |
| F1 | 14.3±0.3ab | 27.5±1.1d | 0.0 | 371.1±25.4bc | 20.8±0.6cd | 91.7±2.0e | 33.0±0.7a | 14.0±0.3bc |
| F2 | 14.5±0.9a | 24.4±1.6d | 0.0 | 378.2±18.6bc | 18.7±0.4cde | 86.7±2.2e | 29.8±2.1ab | 14.4±0.2bc |
| F3 | 13.3±0.2ab | 34.7±0.5d | 0.0 | 348.7±7.1c | 15.1±0.7def | 77.7±3.2e | 27.6±1.7ab | 14.5±0.2bc |
| DF1 | 12.9±0.1b | 24.9±1.4d | 0.0 | 434.1±13.2b | 13.6±0.4ef | 78.7±0.8e | 26.8±0.7b | 11.3±0.3bc |
| DF2 | 13.9±0.2ab | 34.3±6.8d | 0.0 | 322.3±14.3c | 11.4±0.7f | 82.8±2.1e | 28.0±0.8ab | 8.9±0.6c |
| DF3 | 14.4±0.4ab | 2575.7±1252.9c | 0.0 | 213.5±23.3d | 21.4±3.2c | 384.1±73.0c | 31.3±1.2ab | 29.8±5.3a |
表3 不同处理下土壤主要离子浓度
Table 3 Ion concentrations in different treatments (mg·kg-1)
处理 Treatment | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸根离子 CO32- | 碳酸氢根离子 HCO3- | 钾离子 K+ | 钙离子 Ca2+ | 钠离子 Na+ | 镁离子 Mg2+ |
|---|---|---|---|---|---|---|---|---|
| CK | 13.4±0.2ab | 15.6±1.2d | 0.0 | 538.8±28.3a | 19.7±0.5cd | 72.2±2.3e | 27.9±1.2ab | 15.6±0.2b |
| D1 | 14.6±0.2a | 475.5±220.8d | 0.0 | 433.1±46.6b | 18.9±1.7cde | 174.7±39.0d | 32.4±0.9ab | 12.7±1.8bc |
| D2 | 14.5±0.4a | 4635.7±1014.0b | 0.0 | 201.3±9.3d | 30.0±2.5b | 494.6±25.9b | 32.0±3.5ab | 31.4±1.7a |
| D3 | 13.9±0.8ab | 7434.5±395.8a | 0.0 | 228.8±31.0d | 37.6±3.4a | 598.4±16.8a | 28.2±1.8ab | 35.6±1.4a |
| F1 | 14.3±0.3ab | 27.5±1.1d | 0.0 | 371.1±25.4bc | 20.8±0.6cd | 91.7±2.0e | 33.0±0.7a | 14.0±0.3bc |
| F2 | 14.5±0.9a | 24.4±1.6d | 0.0 | 378.2±18.6bc | 18.7±0.4cde | 86.7±2.2e | 29.8±2.1ab | 14.4±0.2bc |
| F3 | 13.3±0.2ab | 34.7±0.5d | 0.0 | 348.7±7.1c | 15.1±0.7def | 77.7±3.2e | 27.6±1.7ab | 14.5±0.2bc |
| DF1 | 12.9±0.1b | 24.9±1.4d | 0.0 | 434.1±13.2b | 13.6±0.4ef | 78.7±0.8e | 26.8±0.7b | 11.3±0.3bc |
| DF2 | 13.9±0.2ab | 34.3±6.8d | 0.0 | 322.3±14.3c | 11.4±0.7f | 82.8±2.1e | 28.0±0.8ab | 8.9±0.6c |
| DF3 | 14.4±0.4ab | 2575.7±1252.9c | 0.0 | 213.5±23.3d | 21.4±3.2c | 384.1±73.0c | 31.3±1.2ab | 29.8±5.3a |
项目 Item | pH | 电导率 Electrical conductivity | 全铁 Total iron | 有机质 Organic matter | 速效氮 Available nitrogen | 总磷 Total phosphorus | 钾离子 K+ | 钙离子 Ca2+ | 镁离子 Mg2+ | 钠离子 Na+ | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸氢根 离子 HCO3- | 生物量 Biomass |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 电导率 Electrical conductivity | -0.922* | |||||||||||||
| 全铁 Total iron | 0.063 | -0.019 | ||||||||||||
| 有机质 Organic matter | -0.202 | 0.204 | 0.330 | |||||||||||
| 速效氮 Available nitrogen | -0.140 | 0.152 | 0.068 | -0.232 | ||||||||||
| 总磷 Total phosphorus | -0.500* | 0.359 | -0.638* | -0.235 | 0.079 | |||||||||
| 钾离子 K+ | -0.793* | 0.852* | 0.294 | 0.325 | 0.236 | -0.024 | ||||||||
| 钙离子 Ca2+ | -0.942* | 0.994* | -0.025 | 0.231 | 0.154 | 0.369* | 0.862* | |||||||
| 镁离子 Mg2+ | -0.863* | 0.961* | 0.046 | 0.297 | 0.075 | 0.179 | 0.865* | 0.957* | ||||||
| 钠离子 Na+ | -0.257 | 0.210 | 0.205 | 0.064 | 0.146 | 0.062 | 0.292 | 0.210 | 0.211 | |||||
| 氯离子 Cl- | -0.289 | 0.275 | 0.146 | -0.024 | 0.010 | 0.120 | 0.279 | 0.262 | 0.241 | 0.775* | ||||
| 硫酸根离子 SO42- | -0.858* | 0.964* | 0.029 | 0.262 | 0.186 | 0.287 | 0.878* | 0.960* | 0.919* | 0.190 | 0.259 | |||
| 碳酸氢根离子 HCO3- | 0.647* | -0.746* | 0.155 | -0.132 | -0.102 | -0.389* | -0.503* | -0.739* | -0.703* | -0.187 | -0.249 | -0.693* | ||
| 生物量 Biomass | -0.575* | 0.444* | -0.418* | -0.207 | 0.181 | 0.680* | 0.273 | 0.446* | 0.275 | 0.137 | 0.148 | 0.390* | -0.171 | |
| 株高 Plant height | -0.341 | 0.176 | -0.424* | -0.354 | 0.154 | 0.604* | 0.081 | 0.173 | -0.002 | 0.206 | 0.211 | 0.131 | 0.036 | 0.879* |
表4 土壤和植物指标之间的相关性
Table 4 The correlation between soil and plant indicators
项目 Item | pH | 电导率 Electrical conductivity | 全铁 Total iron | 有机质 Organic matter | 速效氮 Available nitrogen | 总磷 Total phosphorus | 钾离子 K+ | 钙离子 Ca2+ | 镁离子 Mg2+ | 钠离子 Na+ | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸氢根 离子 HCO3- | 生物量 Biomass |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 电导率 Electrical conductivity | -0.922* | |||||||||||||
| 全铁 Total iron | 0.063 | -0.019 | ||||||||||||
| 有机质 Organic matter | -0.202 | 0.204 | 0.330 | |||||||||||
| 速效氮 Available nitrogen | -0.140 | 0.152 | 0.068 | -0.232 | ||||||||||
| 总磷 Total phosphorus | -0.500* | 0.359 | -0.638* | -0.235 | 0.079 | |||||||||
| 钾离子 K+ | -0.793* | 0.852* | 0.294 | 0.325 | 0.236 | -0.024 | ||||||||
| 钙离子 Ca2+ | -0.942* | 0.994* | -0.025 | 0.231 | 0.154 | 0.369* | 0.862* | |||||||
| 镁离子 Mg2+ | -0.863* | 0.961* | 0.046 | 0.297 | 0.075 | 0.179 | 0.865* | 0.957* | ||||||
| 钠离子 Na+ | -0.257 | 0.210 | 0.205 | 0.064 | 0.146 | 0.062 | 0.292 | 0.210 | 0.211 | |||||
| 氯离子 Cl- | -0.289 | 0.275 | 0.146 | -0.024 | 0.010 | 0.120 | 0.279 | 0.262 | 0.241 | 0.775* | ||||
| 硫酸根离子 SO42- | -0.858* | 0.964* | 0.029 | 0.262 | 0.186 | 0.287 | 0.878* | 0.960* | 0.919* | 0.190 | 0.259 | |||
| 碳酸氢根离子 HCO3- | 0.647* | -0.746* | 0.155 | -0.132 | -0.102 | -0.389* | -0.503* | -0.739* | -0.703* | -0.187 | -0.249 | -0.693* | ||
| 生物量 Biomass | -0.575* | 0.444* | -0.418* | -0.207 | 0.181 | 0.680* | 0.273 | 0.446* | 0.275 | 0.137 | 0.148 | 0.390* | -0.171 | |
| 株高 Plant height | -0.341 | 0.176 | -0.424* | -0.354 | 0.154 | 0.604* | 0.081 | 0.173 | -0.002 | 0.206 | 0.211 | 0.131 | 0.036 | 0.879* |
图10 脱硫石膏和粉煤灰对苜蓿生长的影响偏最小二乘路径模型的拟合优度为0.5003,图中虚线代表负效应,实线代表正效应,*代表P<0.05。The Goodness of Fit (GOF) value of the PLS-PM is 0.5003. The dashed line represents negative effects, the solid line represents positive effects, * represents P<0.05.
Fig.10 Effects of application of desulphurized gypsum and fly ash on alfalfa growth
| [1] | Daliakopoulos I N, Tsanis I K, Koutroulis A, et al. The threat of soil salinity: a European scale review. Science of the Total Environment, 2016, 573: 727-739. |
| [2] | Jiang H H. Saline-alkali soil remediation by the combined application of halotolerant phosphate solubilizing microorganism and rock phosphate. Harbin: Harbin Institute of Technology, 2019. |
| 姜焕焕. 耐盐碱解磷菌与磷石膏联用改良盐碱土的效果与机制. 哈尔滨: 哈尔滨工业大学, 2019. | |
| [3] | Fan Z L, Jia Y J, Fan Y, et al. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag:Performance and mechanism. Acta Prataculturae Sinica, 2021, 30(2): 93-101. |
| 范朕连, 贾阳杰, 范远, 等. 盐碱土施用硅钙渣对披碱草生长的影响及机制. 草业学报, 2021, 30(2): 93-101. | |
| [4] | Wang S J, Chen Q, Li Y, et al. Research on saline-alkali soil amelioration with FGD gypsum. Resources, Conservation and Recycling, 2017, 121: 82-92. |
| [5] | Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
| [6] | Yang Z X, Zheng X, Chen L B, et al. Morphological adaptation strategies of Rumex hanus planted in saline-alkali land of arid areas. Acta Prataculturae Sinica, 2022, 31(7): 15-27. |
| 杨志新, 郑旭, 陈来宝, 等. 干旱区盐碱地食叶草根系形态分布适应策略研究. 草业学报, 2022, 31(7): 15-27. | |
| [7] | Liang P, Zhang Y Q, Zhang M, et al. Effects of PAM application depth on the growth and yield of quinoa under different salt-alkali stress. Agricultural Research in the Arid Areas, 2023, 41(5): 130-137, 197. |
| 梁萍, 张永清, 张萌, 等. 不同盐碱胁迫条件下PAM施用深度对藜麦生长及产量的影响. 干旱地区农业研究, 2023, 41(5): 130-137, 197. | |
| [8] | Tian Q Y, Kang F R, Zhang K Y, et al. Research progress on ecological utilization of coal-based solid waste. Journal of Yulin University, 2021, 31(6): 57-62. |
| 田巧艳, 亢福仁, 张凯煜, 等. 煤基固废生态化利用研究进展. 榆林学院学报, 2021, 31(6): 57-62. | |
| [9] | Liu H B. Evaluation and path research on the development and utilization of coal-based waste resources. Taiyuan: Shanxi University, 2023. |
| 刘汉斌. 煤基废弃资源开发利用评价及战略路径研究. 太原: 山西大学, 2023. | |
| [10] | Wang Y, Wang Z, Liang F, et al. Application of flue gas desulfurization gypsum improves multiple functions of saline-sodic soils across China. Chemosphere, 2021, 277(8): 130345. |
| [11] | Ji H H, Huang M L, He J, et al. Effects of fly ash on promoting soil properties and fertility: A review. Soils, 2017, 49(4): 665-669. |
| 季慧慧, 黄明丽, 何键, 等. 粉煤灰对土壤性质改善及肥力提升的作用研究进展. 土壤, 2017, 49(4): 665-669. | |
| [12] | Sun J J, Ma B, Li F J, et al. Effects of applying flue gas desulfurized gypsum on improvement and carbon sequestration in saline-sodic soils. China Powder Science and Technology, 2024, 30(3): 1-11. |
| 孙金金, 马斌, 李福杰, 等. 施加脱硫石膏对盐碱土改良和固碳的影响. 中国粉体技术, 2024, 30(3): 1-11. | |
| [13] | Liu J, Zhang F H, Li X D, et al. Effect of flue gas desulphurization gypsum on the saline soil improvement and security under drip irrigation. Journal of Arid Land Resources and Environment, 2017, 31(11): 87-93. |
| 刘娟, 张凤华, 李小东, 等. 滴灌条件下脱硫石膏对盐碱土改良效果及安全性的影响. 干旱区资源与环境, 2017, 31(11): 87-93. | |
| [14] | Kost D, Ladwig K J, Chen L M, et al. Meta-analysis of gypsum effects on crop yields and chemistry of soils, plant tissues, and vadose water at various research sites in the USA. Journal of Environmental Quality, 2018, 47(5): 1284-1292. |
| [15] | Wang J, Yang P. Potential flue gas desulfurization gypsum utilization in agriculture: a comprehensive review. Renewable & Sustainable Energy Reviews, 2018, 82(2): 1969-1978. |
| [16] | Jiang X, Guo L Z, Niu J J, et al. Improvement effect of different amendments on soil fertility status of saline alkali soil in Hexi Irrigation Area. Acta Agriculturae Universities Jiangxiensis, 2024, 46(4): 1086-1098. |
| 姜雪, 郭丽琢, 牛济军, 等. 不同改良剂对河西灌区盐碱地土壤肥力状况的改良效应. 江西农业大学学报, 2024, 46(4): 1086-1098. | |
| [17] | Chen W T, Guo L Z, Shan B, et al. Effects of amendments on oat growth and soil physical properties in saline-alkali land. Journal of Gansu Agricultural University, 2024, 59(5): 136-144. |
| 陈文涛, 郭丽琢, 剡斌, 等. 改良剂对盐碱地燕麦生长及土壤物理性状的调控效应. 甘肃农业大学学报, 2024, 59(5): 136-144. | |
| [18] | Zhu X Y, Ma C, Fang Y, et al. Effects of drought stress and fly ash on fractal dimension and fertility of aeolian sandy soil. Journal of Soil and Water Conservation, 2023, 37(5): 103-110. |
| 朱晓月, 马灿, 方燕, 等. 水分胁迫和粉煤灰添加对风沙土颗粒分形维数及肥力的影响. 水土保持学报, 2023, 37(5): 103-110. | |
| [19] | Gao F D, He J, Li M, et al. Improving alfalfa growth through amending alkalized soil with mixture of desulfurization gypsum and fly ash. Journal of Irrigation and Drainage, 2024, 43(4): 59-65. |
| 高富东, 何俊, 李敏, 等. 脱硫石膏与粉煤灰配施对碱化土壤改良及苜蓿生长的影响. 灌溉排水学报, 2024, 43(4): 59-65. | |
| [20] | Li S, Yang Z Y, Zhao H Y, et al. Spatio-temporal changes of aeolian desertification in the Jiziwan of the Yellow River from 1975 to 2020. Journal of Desert Research, 2024, 44(5): 13-22. |
| 李森, 杨宗英, 赵鸿雁, 等. 1975-2020年黄河“几字弯”沙漠化时空变化. 中国沙漠, 2024, 44(5): 13-22. | |
| [21] | Tian Y J, Yang B H, Wang S M, et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River. Coal Geology & Exploration, 2022, 50(6): 104-117. |
| 田艳军, 杨博涵, 王双明, 等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征. 煤田地质与勘探, 2022, 50(6): 104-117. | |
| [22] | Li X T. Soil environment quality, risk control standard for soil contamination of agriculture land: GB 15618-2018. Beijing: Standards Press of China, 2018. |
| 李晓弢. 土壤环境质量, 农用地土壤污染风险管控标准(试行) : GB 15618-2018. 北京: 中国标准出版社, 2018. | |
| [23] | Bao S D. Soil agro-chemical analysis. Beijing: China Agriculture Press, 2018. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版, 2018. | |
| [24] | Liang P X, Tang R, Guo R, et al. Effect of mixed salt-alkaline stress on growth and physiological characteristics in Cyperus esculentus L. Journal of Arid Land Resources and Environment, 2022, 36(10): 185-192. |
| 梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响. 干旱区资源与环境, 2022, 36(10): 185-192. | |
| [25] | Zhang Y C, Hong M, Zhao B, et al. Effects of different measures on the improvement of severe saline soil in Hetao irrigation area. Journal of Soil and Water Conservation, 2019, 33(5): 309-315. |
| 张宇晨, 红梅, 赵巴音那木拉, 等. 不同措施对河套灌区重度盐渍土改良效果. 水土保持学报, 2019, 33(5): 309-315. | |
| [26] | Chen X D, Wu J G, Fan W, et al. Effects of different organic materials on the morphology and composition of soil humus biding in primary saline and alkaline land. Journal of Soil and Water Conservation, 2019, 33(1): 200-205. |
| 陈晓东, 吴景贵, 范围, 等. 不同有机物料对原生盐碱地土壤腐殖质结合形态及组成的影响. 水土保持学报, 2019, 33(1): 200-205. | |
| [27] | Dai X G, Chao B, Bao Q G L, et al. Effects of combined application of laboratory waste liquids and gypsum on chemical properties of alkali soils and alfalfa growth. Journal of Agricultural Sciences, 2023, 44(3): 16-23. |
| 戴旭光, 朝博, 包庆格乐, 等. 实验室废液与脱硫石膏配施对碱土化学性质及苜蓿生长的影响. 农业科学研究, 2023, 44(3): 16-23. | |
| [28] | Zhao Y G, Wang S J, Li Y, et al. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield. Geoderma, 2019, 352: 13-21. |
| [29] | Dong S W, Ma S H, Chu M, et al. Microstructure changes of saline-alkali soil influenced by fly ash-based soil conditioner. The Chinese Journal of Process Engineering, 2022, 22(3): 357-365. |
| 董少文, 马淑花, 初茉, 等. 粉煤灰基土壤调理剂作用下盐碱土壤微观结构变化规律. 过程工程学报, 2022, 22(3): 357-365. | |
| [30] | Chen X Y. Study on improvement mechanism of saline-alkali soil by using fly ash-based soil conditioner. Hohhot: Inner Mongolia Agricultural University, 2023. |
| 陈翔宇. 粉煤灰基土壤调理剂盐碱地改良机理研究. 呼和浩特: 内蒙古农业大学, 2023. | |
| [31] | Zhou F L, Jiang L, Wang S F, et al. Amelioration of Fe2+ toxicity by K+ in rice. Journal of Nanjing Agricultural University, 2005, 28(4): 6-10. |
| 周锋利, 江玲, 王松凤, 等. 钾离子对水稻亚铁毒害的缓解作用. 南京农业大学学报, 2005, 28(4): 6-10. | |
| [32] | Liao R, Yu H, Yang P, et al. Quantitative evaluation of pore characteristics of sodic soils reclaimed by flue gas desulphurization gypsum using X-ray computed tomography. Land Degradation & Development, 2020, 31(5): 545-556. |
| [33] | Wang Z, Sun Z J, Sameh E S, et al. Effects of Enteromorpha prolifera biochar and wood vinegar co-application on takyric solonetz improvement and yield of oil sunflower. Environmental Science, 2021, 42(12): 6078-6090. |
| 王正, 孙兆军, Sameh E S, 等. 浒苔生物炭与木醋液复配改良碱化土壤效果及提高油葵产量. 环境科学, 2021, 42(12): 6078-6090. | |
| [34] | Zhao Y G, Zhang W C, Wang S J, et al. Effects of soil moisture on the reclamation of sodic soil by flue gas desulfurization gypsum. Geoderma, 2020, 375: 114485. |
| [35] | Huang Y Z, Zhu Y G, Huang F T, et al. Effects of cadmium and iron and their interactions on plants growth: a review. Ecology and Environment, 2004, 13(3): 406-409. |
| 黄益宗, 朱永官, 黄凤堂, 等. 镉和铁及其交互作用对植物生长的影响. 生态环境, 2004, 13(3): 406-409. |
| [1] | 孔繁晰, 唐邦洁, 阿力米日·阿力木江, 阿的各各, 袁茂国, 陈俊. 黄土高原丘陵沟壑区退耕恢复草地植物空间分布格局研究[J]. 草业学报, 2025, 34(9): 1-11. |
| [2] | 雍嘉仪, 马霜, 马风华, 赵小娜, 张译尹, 胡海英. 干旱及复水对河北木蓝生物量分配与渗透调节特征的影响[J]. 草业学报, 2025, 34(7): 158-170. |
| [3] | 严双, 夏菲, 魏巍, 王敬龙, 吴皓阳, 冉林灵, 薛云尹, 石昊, 郑晒坤, 王军强, 贺俊东. 高寒草甸不同侵蚀样地植物多样性的差异及其关键影响因子[J]. 草业学报, 2025, 34(6): 1-13. |
| [4] | 罗顺华, 刘新宇, 孟宝平, 陈璇黎, 胡仁杰, 于红妍, 王贤颖, 张勃, 秦彧. 祁连山国家公园高寒草地功能群多样性与生产力研究[J]. 草业学报, 2025, 34(6): 14-26. |
| [5] | 刘文谨, 蒋福祯, 祁凯斌, 宋明丹, 李正鹏. 不同施肥量和播种量对高寒矿区植被恢复和土壤质量的影响及综合评价[J]. 草业学报, 2025, 34(5): 27-39. |
| [6] | 刘淑琪, 崔东, 刘文新, 杨海军, 杨延成, 江智诚, 闫江超, 刘江慧. 短期氮、水添加和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响[J]. 草业学报, 2025, 34(3): 41-55. |
| [7] | 马利利, 蒋福祯, 马玉寿, 祁凯斌, 贾顺斌, 李正鹏. 粒径配比、施肥量以及播量耦合对矿区煤矸石基质的改良效果[J]. 草业学报, 2025, 34(3): 71-84. |
| [8] | 卢小倩, 陈金露, 杨卫君, 郭青云, 王单丽, 赵红梅. 氮肥减量配施腐植酸对北疆滴灌玉米田土壤真菌群落的影响[J]. 草业学报, 2025, 34(10): 120-131. |
| [9] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
| [10] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
| [11] | 常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197. |
| [12] | 石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45. |
| [13] | 郁国梁, 马紫荆, 吕自立, 刘彬. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78. |
| [14] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
| [15] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||