草业学报 ›› 2025, Vol. 34 ›› Issue (7): 13-27.DOI: 10.11686/cyxb2024306
朱炳淑1,2(
), 樊江文1(
), 张海燕1, 黄麟1, 田海静3, 王林3, 王守兴4, 杨明新4, 郭炎明1,2
收稿日期:2024-07-31
修回日期:2024-09-30
出版日期:2025-07-20
发布日期:2025-05-12
通讯作者:
樊江文
作者简介:E-mail: fanjw@igsnrr.ac.cn基金资助:
Bing-shu ZHU1,2(
), Jiang-wen FAN1(
), Hai-yan ZHANG1, Lin HUANG1, Hai-jing TIAN3, Lin WANG3, Shou-xing WANG4, Ming-xin YANG4, Yan-ming GUO1,2
Received:2024-07-31
Revised:2024-09-30
Online:2025-07-20
Published:2025-05-12
Contact:
Jiang-wen FAN
摘要:
草地健康是草地生态系统完整性、稳定性和可持续发展程度的关键表征,近年来三江源国家公园黄河源园区对退化草地进行恢复治理,但对当前草地健康状况仍缺乏系统评估。本研究参考生态系统健康理论,解析草地健康概念,基于高寒草地特点,运用专家经验,构建综合反映草地健康整体状况的草地健康指数(grassland healthy index, GHI),包括植被状况、地表生物特征、生物多样性和牧草生产性能特征等,分区、分类、分型评价2022年黄河源园区高寒草地健康状态和等级。结果表明:1)高寒草原类和高寒草甸类草地在植被群落特征指数、地表特征指数、生物多样性指数和牧草生产性能指数等方面存在差异,尤以生物多样性指数差异最为明显。2)黄河源园区当前草地健康指数(64.98)整体呈亚健康状态,高寒草原类GHI(66.70)略高于高寒草甸类(62.30),高寒草原类下的早熟禾型与其他两种草地型均存在显著差异,但紫花针茅型与蒿型之间的差异不显著,高寒草甸类下各型存在显著差异。3)从功能分区来看,核心保护区草地健康指数(59.30)较一般控制区(69.50)更低,可能是生态本底脆弱、历史上长期过度放牧和区划变动等因素导致高寒草地尚未完全恢复。本研究可为三江源国家公园生态保护与区域高质量发展提供新的方法视角,同时可为提升自然保护地体系空间布局提供科学参考。
朱炳淑, 樊江文, 张海燕, 黄麟, 田海静, 王林, 王守兴, 杨明新, 郭炎明. 三江源国家公园黄河源园区高寒草地健康评价[J]. 草业学报, 2025, 34(7): 13-27.
Bing-shu ZHU, Jiang-wen FAN, Hai-yan ZHANG, Lin HUANG, Hai-jing TIAN, Lin WANG, Shou-xing WANG, Ming-xin YANG, Yan-ming GUO. Grassland health assessment of alpine grassland in the Yellow River Source Park of Three-Rivers Headwaters National Park[J]. Acta Prataculturae Sinica, 2025, 34(7): 13-27.
图1 研究区概况a: 三江源国家公园和黄河源园区空间分布Spatial distribution of the Three-Rivers Headwaters National Park and the Yellow River Source Park; b: 黄河源园区内各分区空间分布Spatial distribution of the Yellow River Source Park; c: 研究区内野外采样点与草地类型空间分布Spatial distribution of the sampling sites and grassland types in the study area. 基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。Based on the standard map service website GS (2019) 1822 of the Ministry of Natural Resources, the boundary of the base map is not modified.
Fig.1 Overview of the study area
| 一级指标First-level indicators | 二级指标Second-level indicators | 方向 Direction | ||
|---|---|---|---|---|
| 类别Category | 权重系数 Weight coefficient | 名称Name | 权重系数 Weight coefficient | |
| 1.植被群落特征Vegetation community characteristic | 0.30 | 1) 植被覆盖度Vegetation coverage (%) | 0.60 | 正Positive |
| 2) 草群平均高度Average height of grassland communities (cm) | 0.40 | 正Positive | ||
| 2.地表(土壤)特征Land surface (soil) characteristic | 0.20 | 3) 裸地(斑)面积比例Proportion of bare patch area (%) | 0.50 | 负Negative |
| 4) 土壤侵蚀量Soil erosion amount (t·hm-2·yr-1) | 0.50 | 负Negative | ||
| 3.生物多样性Biodiversity | 0.25 | 5) 物种丰富度Species richness | 0.50 | 正Positive |
| 6) 原生植物种数占比Proportion of native plant species (%) | 0.50 | 正Positive | ||
| 4.牧草生产性能Forage production performance | 0.25 | 7) 产草量Grassland yield (kg·hm-2) | 0.50 | 正Positive |
| 8) 可食牧草比例Proportion of edible forage (%) | 0.25 | 正Positive | ||
| 9) 毒害草比例Proportion of poisonous weeds (%) | 0.25 | 负Negative | ||
表1 高寒草地健康状况评估指标体系
Table 1 Alpine grassland health assessment index system
| 一级指标First-level indicators | 二级指标Second-level indicators | 方向 Direction | ||
|---|---|---|---|---|
| 类别Category | 权重系数 Weight coefficient | 名称Name | 权重系数 Weight coefficient | |
| 1.植被群落特征Vegetation community characteristic | 0.30 | 1) 植被覆盖度Vegetation coverage (%) | 0.60 | 正Positive |
| 2) 草群平均高度Average height of grassland communities (cm) | 0.40 | 正Positive | ||
| 2.地表(土壤)特征Land surface (soil) characteristic | 0.20 | 3) 裸地(斑)面积比例Proportion of bare patch area (%) | 0.50 | 负Negative |
| 4) 土壤侵蚀量Soil erosion amount (t·hm-2·yr-1) | 0.50 | 负Negative | ||
| 3.生物多样性Biodiversity | 0.25 | 5) 物种丰富度Species richness | 0.50 | 正Positive |
| 6) 原生植物种数占比Proportion of native plant species (%) | 0.50 | 正Positive | ||
| 4.牧草生产性能Forage production performance | 0.25 | 7) 产草量Grassland yield (kg·hm-2) | 0.50 | 正Positive |
| 8) 可食牧草比例Proportion of edible forage (%) | 0.25 | 正Positive | ||
| 9) 毒害草比例Proportion of poisonous weeds (%) | 0.25 | 负Negative | ||
| 序号Order | 草地健康指数分级Grassland healthy index classification (GHI) | 健康状况 Health status | 说明Description |
|---|---|---|---|
| I | 70≤GHI≤100 | 健康 Healthy | 草地植被覆盖度高,植被群落状况优;无明显土壤侵蚀,地表特征完整;原生植物物种丰富度高,生物多样性丰富;可食牧草产量高,毒害草极少,牧草生产性能强。Grassland vegetation coverage is high, and vegetation communities are in excellent condition; No significant soil erosion and surface features are intact; Native plant species richness and biodiversity are high; Edible forage yield is high, with minimal poisonous grasses and strong forage production performance. |
| II | 55≤GHI<70 | 亚健康 Sub-healthy | 草地植被覆盖度较高,植被群落状况良好;轻度土壤侵蚀,地表特征较完整;原生植物物种丰富度较高,生物多样性较高;可食牧草产量较高,毒害草少,牧草生产性能较强。Grassland vegetation coverage is relatively high, and vegetation communities are in good condition; Slight soil erosion with relatively intact surface features; Native plant species richness and biodiversity are relatively high; Edible forage yield is relatively high, with a low proportion of poisonous grasses and strong forage production performance. |
| III | 35≤GHI<55 | 不健康 Unhealthy | 草地植被覆盖度低,植被群落状况差;裸斑面积大,中度土壤侵蚀,地表破碎;原生植物物种较不丰富,生物多样性贫乏;可食牧草产量低,毒害草多,牧草生产性能弱。Grassland vegetation coverage is low, and vegetation communities are in poor condition; Large areas of bare patches with moderate soil erosion and fragmented surface; Native plant species are less abundant and biodiversity is poor; Edible forage yield is low, with a high proportion of poisonous grasses and weak forage production performance. |
| IV | 0<GHI<35 | 极不健康 Extremely unhealthy | 草地植被覆盖度极低,植被群落状况极差;裸斑面积极大,土壤侵蚀处于重度及以上状态;原生植物物种极不丰富,生物多样性极为贫乏;可食牧草产量极低,毒害草比例极高,牧草生产性能差。Grassland vegetation coverage is extremely low, and vegetation communities are in extremely poor condition; Extremely large areas of bare patches with severe soil erosion; Native plant species are extremely sparse, and biodiversity is extremely poor; Edible forage yield is extremely low, with an extremely high proportion of poisonous grasses and very weak forage production performance. |
表2 草地健康指数分级与说明
Table 2 Grassland healthy index grading and description
| 序号Order | 草地健康指数分级Grassland healthy index classification (GHI) | 健康状况 Health status | 说明Description |
|---|---|---|---|
| I | 70≤GHI≤100 | 健康 Healthy | 草地植被覆盖度高,植被群落状况优;无明显土壤侵蚀,地表特征完整;原生植物物种丰富度高,生物多样性丰富;可食牧草产量高,毒害草极少,牧草生产性能强。Grassland vegetation coverage is high, and vegetation communities are in excellent condition; No significant soil erosion and surface features are intact; Native plant species richness and biodiversity are high; Edible forage yield is high, with minimal poisonous grasses and strong forage production performance. |
| II | 55≤GHI<70 | 亚健康 Sub-healthy | 草地植被覆盖度较高,植被群落状况良好;轻度土壤侵蚀,地表特征较完整;原生植物物种丰富度较高,生物多样性较高;可食牧草产量较高,毒害草少,牧草生产性能较强。Grassland vegetation coverage is relatively high, and vegetation communities are in good condition; Slight soil erosion with relatively intact surface features; Native plant species richness and biodiversity are relatively high; Edible forage yield is relatively high, with a low proportion of poisonous grasses and strong forage production performance. |
| III | 35≤GHI<55 | 不健康 Unhealthy | 草地植被覆盖度低,植被群落状况差;裸斑面积大,中度土壤侵蚀,地表破碎;原生植物物种较不丰富,生物多样性贫乏;可食牧草产量低,毒害草多,牧草生产性能弱。Grassland vegetation coverage is low, and vegetation communities are in poor condition; Large areas of bare patches with moderate soil erosion and fragmented surface; Native plant species are less abundant and biodiversity is poor; Edible forage yield is low, with a high proportion of poisonous grasses and weak forage production performance. |
| IV | 0<GHI<35 | 极不健康 Extremely unhealthy | 草地植被覆盖度极低,植被群落状况极差;裸斑面积极大,土壤侵蚀处于重度及以上状态;原生植物物种极不丰富,生物多样性极为贫乏;可食牧草产量极低,毒害草比例极高,牧草生产性能差。Grassland vegetation coverage is extremely low, and vegetation communities are in extremely poor condition; Extremely large areas of bare patches with severe soil erosion; Native plant species are extremely sparse, and biodiversity is extremely poor; Edible forage yield is extremely low, with an extremely high proportion of poisonous grasses and very weak forage production performance. |
类别 Category | 具体指标 Specific indicator | 高寒草甸类Alpine meadow | 高寒草原类Alpine steppe | |||
|---|---|---|---|---|---|---|
| 西藏嵩草型C. tibetikobresia type | 高山嵩草型K. pygmaea type | 紫花针茅型S. purpurea type | 蒿型Artemisia type | 早熟禾型P. annua type | ||
| 1.植被群落特征Vegetation community characteristic | 植被覆盖度Vegetation coverage (%) | 100.00 | 90.38 | 100.00 | 64.25 | 62.17 |
| 草群平均高度Average height of grassland communities (cm) | 10.07 | 5.67 | 9.60 | 7.13 | 14.07 | |
| 2.地表(土壤)特征Land surface (soil) characteristic | 裸斑面积比例Proportion of bare patch area (%) | 1.75 | 0.85 | 1.75 | 5.89 | 5.13 |
| 土壤侵蚀量Soil erosion amount (t·hm-2·yr-1) | 0.28 | 0.01 | 0.13 | 0.05 | 0.10 | |
| 3.生物多样性Biodiversity | 物种丰富度Species richness | 12 | 12 | 9 | 7 | 10 |
| 原生植物占比Proportion of native plant species (%) | 61.69 | 54.11 | 49.30 | 54.94 | 39.00 | |
| 4.牧草生产性能Forage production performance | 产草量Grassland yield (kg·hm-2) | 845.87 | 688.17 | 611.32 | 719.55 | 375.85 |
| 可食牧草比例Proportion of edible forage (%) | 99.31 | 97.44 | 99.37 | 93.84 | 99.76 | |
| 毒害草比例Proportion of poisonous weeds (%) | 0.80 | 0.11 | 0.35 | 0.20 | 1.18 | |
表3 黄河源园区高寒草地健康评价参照系
Table 3 Reference system for evaluating the health of alpine grassland in the Yellow River Source Park
类别 Category | 具体指标 Specific indicator | 高寒草甸类Alpine meadow | 高寒草原类Alpine steppe | |||
|---|---|---|---|---|---|---|
| 西藏嵩草型C. tibetikobresia type | 高山嵩草型K. pygmaea type | 紫花针茅型S. purpurea type | 蒿型Artemisia type | 早熟禾型P. annua type | ||
| 1.植被群落特征Vegetation community characteristic | 植被覆盖度Vegetation coverage (%) | 100.00 | 90.38 | 100.00 | 64.25 | 62.17 |
| 草群平均高度Average height of grassland communities (cm) | 10.07 | 5.67 | 9.60 | 7.13 | 14.07 | |
| 2.地表(土壤)特征Land surface (soil) characteristic | 裸斑面积比例Proportion of bare patch area (%) | 1.75 | 0.85 | 1.75 | 5.89 | 5.13 |
| 土壤侵蚀量Soil erosion amount (t·hm-2·yr-1) | 0.28 | 0.01 | 0.13 | 0.05 | 0.10 | |
| 3.生物多样性Biodiversity | 物种丰富度Species richness | 12 | 12 | 9 | 7 | 10 |
| 原生植物占比Proportion of native plant species (%) | 61.69 | 54.11 | 49.30 | 54.94 | 39.00 | |
| 4.牧草生产性能Forage production performance | 产草量Grassland yield (kg·hm-2) | 845.87 | 688.17 | 611.32 | 719.55 | 375.85 |
| 可食牧草比例Proportion of edible forage (%) | 99.31 | 97.44 | 99.37 | 93.84 | 99.76 | |
| 毒害草比例Proportion of poisonous weeds (%) | 0.80 | 0.11 | 0.35 | 0.20 | 1.18 | |
类别 Category | 名称 Name | 高寒草甸类Alpine meadow | 高寒草原类Alpine steppe | |||
|---|---|---|---|---|---|---|
| 西藏嵩草型C. tibetikobresia type | 高山嵩草型K. pygmaea type | 紫花针茅型S. purpurea type | 蒿型 Artemisia type | 早熟禾型P. annua type | ||
| 1.植被群落特征Vegetation community characteristic | 植被覆盖度Vegetation coverage (%) | 82.22 | 68.87 | 72.52 | 57.04 | 57.28 |
| 草群平均高度Average height of grassland communities (cm) | 7.46 | 3.77 | 6.39 | 4.51 | 8.93 | |
| 2.地表(土壤)特征Land surface (soil) characteristic | 裸斑面积比例Proportion of bare patch area (%) | 3.90 | 11.68 | 3.20 | 15.05 | 2.08 |
| 土壤侵蚀量Soil erosion amount (t·hm-2·yr-1) | 0.56 | 0.99 | 1.54 | 0.95 | 0.42 | |
| 3.生物多样性Biodiversity | 物种丰富度Species richness | 8 | 9 | 8 | 5 | 8 |
| 原生植物占比Proportion of native plant species (%) | 30.47 | 33.80 | 29.97 | 41.87 | 32.16 | |
| 4.牧草生产性能Forage production performance | 产草量Grassland yield (kg·hm-2) | 502.25 | 471.03 | 396.65 | 430.77 | 288.16 |
| 可食牧草比例Proportion of edible forage (%) | 89.89 | 78.05 | 88.08 | 66.73 | 93.95 | |
| 毒害草比例Proportion of poisonous weeds (%) | 8.66 | 6.61 | 9.00 | 8.93 | 5.47 | |
表4 研究区内各指标均值
Table 4 Average values of different indicators in the study area
类别 Category | 名称 Name | 高寒草甸类Alpine meadow | 高寒草原类Alpine steppe | |||
|---|---|---|---|---|---|---|
| 西藏嵩草型C. tibetikobresia type | 高山嵩草型K. pygmaea type | 紫花针茅型S. purpurea type | 蒿型 Artemisia type | 早熟禾型P. annua type | ||
| 1.植被群落特征Vegetation community characteristic | 植被覆盖度Vegetation coverage (%) | 82.22 | 68.87 | 72.52 | 57.04 | 57.28 |
| 草群平均高度Average height of grassland communities (cm) | 7.46 | 3.77 | 6.39 | 4.51 | 8.93 | |
| 2.地表(土壤)特征Land surface (soil) characteristic | 裸斑面积比例Proportion of bare patch area (%) | 3.90 | 11.68 | 3.20 | 15.05 | 2.08 |
| 土壤侵蚀量Soil erosion amount (t·hm-2·yr-1) | 0.56 | 0.99 | 1.54 | 0.95 | 0.42 | |
| 3.生物多样性Biodiversity | 物种丰富度Species richness | 8 | 9 | 8 | 5 | 8 |
| 原生植物占比Proportion of native plant species (%) | 30.47 | 33.80 | 29.97 | 41.87 | 32.16 | |
| 4.牧草生产性能Forage production performance | 产草量Grassland yield (kg·hm-2) | 502.25 | 471.03 | 396.65 | 430.77 | 288.16 |
| 可食牧草比例Proportion of edible forage (%) | 89.89 | 78.05 | 88.08 | 66.73 | 93.95 | |
| 毒害草比例Proportion of poisonous weeds (%) | 8.66 | 6.61 | 9.00 | 8.93 | 5.47 | |
图4 研究区不同草地类的草地健康指数对比半小提琴图展示草地健康指数值的分布和概率密度,散点则表明每个单独的草地健康指数值,箱线图展示草地健康指数值的分位数和异常值。下同。The half violin plot shows the distribution and probability density of the grassland healthy index (GHI) value, the scatter plot shows each individual GHI value, and the box plot shows the quantile and outliers of the GHI value. The same below.
Fig.4 Comparison of grassland healthy index of different grassland types in the study area
图5 研究区不同草地型的草地健康指数对比“*”表示草地型之间差异显著(P<0.05),NS表示草地型之间无显著差异(P>0.05)。“*” indicates significant differences among different grassland types (P<0.05), NS indicates no significant difference among different grassland types (P>0.05).
Fig.5 Comparison of grassland healthy index of different grassland types in the study area
| 1 | Liu X Y, Mu Y T. Research progress in the ecosystem services function and value of grasslands. Acta Prataculturae Sinica, 2012, 21(6): 286-295. |
| 刘兴元, 牟月亭. 草地生态系统服务功能及其价值评估研究进展. 草业学报, 2012, 21(6): 286-295. | |
| 2 | Zhao Y Y, Liu Z F, Wu J G. Grassland ecosystem services: a systematic review of research advances and future directions. Landscape Ecology, 2020, 35(4): 793-814. |
| 3 | Rapport D J. What constitutes ecosystem health. Perspectives in Biology and Medicine, 1989, 33(1): 120-132. |
| 4 | Rapport D J, Costanza R, McMichael A J. Assessing ecosystem health. Trends in Ecology & Evolution, 1998, 13(10): 397-402. |
| 5 | Rao P Z, Wang Y C, Wang F. Analysis on the NDVI change and influence factors of vegetation cover in the Three-River Headwaters Region. Acta Agrestia Sinica, 2021, 29(3): 572-582. |
| 饶品增, 王义成, 王芳. 三江源植被覆盖区NDVI变化及影响因素分析. 草地学报, 2021, 29(3): 572-582. | |
| 6 | Costanza R. Ecosystem health and ecological engineering. Ecological Engineering, 2012, 45(8): 24-29. |
| 7 | National Standardization Administration Committee. Grassland health status evaluation, GB/T 21439-2008. Beijing: Standards Press of China, 2008. |
| 国家标准化管理委员会. 草原健康状况评价, GB/T 21439-2008. 北京: 中国标准出版社, 2008. | |
| 8 | Ministry of Agriculture and Rural Affairs. Methods for monitoring and evaluation of grassland vegetation health, NY/T 3648-2020. Beijing: China Agriculture Press, Standard and Quality Publishing Branch, 2020. |
| 农业农村部. 草原植被健康监测评价方法, NY/T 3648-2020. 北京: 中国农业出版社标准质量出版分社, 2020. | |
| 9 | Huang L, Fan J W, Yang Z, et al. All-in-one assessment of grassland health, degradation, and restoration: The concepts and methods. Chinese Science Bulletin, 2024, 69(15): 2015-2024. |
| 黄麟, 樊江文, 杨智, 等. 草原健康、退化与恢复一体化评估: 概念与方法. 科学通报, 2024, 69(15): 2015-2024. | |
| 10 | Zhang Y X, Fan J W, Wang S Z, et al. Grassland investigation, monitoring and evaluation: international experience and insight. Acta Prataculturae Sinica, 2023, 32(6): 203-213. |
| 张雅娴, 樊江文, 王穗子, 等. 草原调查、监测与评价的国际经验和启示. 草业学报, 2023, 32(6): 203-213. | |
| 11 | Yin Y T, Yun X J, Guo M Y, et al. Rangeland health assessment in the meadow steppe region of Inner Mongolia: Integrating herder perception and field sampling. Acta Ecologica Sinica, 2019, 39(2): 709-716. |
| 尹燕亭, 运向军, 郭明英, 等. 基于牧户感知和野外调查相结合的内蒙古东部草甸草原健康评价. 生态学报, 2019, 39(2): 709-716. | |
| 12 | Mallick J, Alqadhi S, Talukdar S, et al. A novel technique for modeling ecosystem health condition: a case study in Saudi Arabia. Remote Sensing, 2021, 13(13): 2632. |
| 13 | Luo Y, Ji W, Wu W, et al. Grassland health assessment based on indicators monitored by UAVs: a case study at a household scale. Frontiers in Plant Science, 2023, 14: 1150859. |
| 14 | Zhang J, Li G C, Liu X H, et al. Monitoring of vegetation degradation in typical grassland with grassland health index. Chinese Journal of Ecology, 2005(12): 1392-1396. |
| 张剑, 李贵才, 刘先华, 等. 利用草场健康指数监测典型草原的植被退化. 生态学杂志, 2005(12): 1392-1396. | |
| 15 | Gang C, Zhou W, Chen Y, et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences, 2014, 72(11): 4273-4282. |
| 16 | Lu J, Hu Y K, Yue P, et al. Assessment on the health of alpine steppe in Bayinbuluk based on CVOR index. Arid Zone Research, 2017, 34(4): 862-869. |
| 陆均, 胡玉昆, 岳平, 等. 基于CVOR指数的巴音布鲁克高寒草原健康评价. 干旱区研究, 2017, 34(4): 862-869. | |
| 17 | Chen C B, Peng J. Evaluating ecosystem health in the grasslands of Xinjiang. Arid Zone Research, 2022, 39(1): 270-281. |
| 陈春波, 彭建. 新疆草地生态系统健康评价体系构建. 干旱区研究, 2022, 39(1): 270-281. | |
| 18 | Wang Z, Yu Q, Guo L. Quantifying the impact of the grain-for-green program on ecosystem health in the typical agro-pastoral ecotone: A case study in the Xilin Gol League, Inner Mongolia. International Journal of Environmental Research and Public Health, 2020, 17(16): 5631. |
| 19 | Li W, Xie S, Wang Y, et al. Effects of urban expansion on ecosystem health in Southwest China from a multi-perspective analysis. Journal of Cleaner Production, 2021, 294: 126341. |
| 20 | Shao Q Q, Liu S C, Ning J, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153. |
| 邵全琴, 刘树超, 宁佳, 等. 2000-2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153. | |
| 21 | Shao Q Q, Fan J W, Liu J Y, et al. Target-based assessment on effects of first-stage ecological conservation and restoration project in Three-River Source Region, China and policy recommendations. Bulletin of the Chinese Academy of Sciences, 2017, 32(1): 35-44. |
| 邵全琴, 樊江文, 刘纪远, 等. 基于目标的三江源生态保护和建设一期工程生态成效评估及政策建议. 中国科学院院刊, 2017, 32(1): 35-44. | |
| 22 | Liu Y J, Yang Q. Research progress and prospect of degraded grassland restoration in Qinghai-Tibet Plateau. Chinese Journal of Grassland, 2023, 45(10): 131-143. |
| 刘永杰, 杨琴. 青藏高原退化草地修复研究进展及展望. 中国草地学报, 2023, 45(10): 131-143. | |
| 23 | Wang Y, Lv W, Xue K, et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 668-683. |
| 24 | Three-River-Source National Park Administration. Three-River Source National Pack master plan (2023-2030). (2023-08-23)[2023-09-13]. https://sjy.qinghai.gov.cn/news/gy/25748.html. |
| 三江源国家公园管理局.《三江源国家公园总体规划(2023-2030)》. (2023-08-23)[2023-09-13]. https://sjy.qinghai.gov.cn/news/gy/25748.html. | |
| 25 | Anatoly A G, Yoram J K, Robert S, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2001, 80(1): 76-87. |
| 26 | Chang S H, Wang L, Jiang J C, et al. Developments course and prospect of grassland survey and monitoring domestic and abroad. Acta Agrestia Sinica, 2023, 31(5): 1281-1292. |
| 常生华, 王蕾, 姜佳昌, 等. 国内外草原调查监测历程与展望. 草地学报, 2023, 31(5): 1281-1292. | |
| 27 | Wischmeier W H, Smith D D. Predicting rainfall erosion losses: a guide to conservation planning. Washington, D.C.: U.S.Government Printing Office, 1978. |
| 28 | Zhao X X, Feng Y H, Xu K X, et al. Canopy structure: An intermediate factor regulating grassland diversity-function relationships under human disturbances. Fundamental Research, 2023, 3(2): 179-187. |
| 29 | Zhang X Y, Li Z C. Monitoring and evaluation of the ecological construction effects of natural grasslands. Pratacultural Science, 2003, 20(9): 1-4. |
| 张新跃, 李正川. 天然草地生态建设效果监测与评价. 草业科学, 2003, 20(9): 1-4. | |
| 30 | Ministry of Agriculture and Rural Affairs. Calculation of reasonable livestock carrying capacity of natural grassland, NY/T 635-2015. Beijing: China Agriculture Press, Standard and Quality Publishing Branch, 2015. |
| 农业农村部. 天然草地合理载畜量的计算, NY/T 635-2015. 北京: 中国农业出版社标准质量出版分社, 2015. | |
| 31 | He H L, Ren X L, Zhang L, et al. Research on ecosystem assessment method based on reference-state-deviation. Acta Ecologica Sinica, 2023, 43(5): 2049-2060. |
| 何洪林, 任小丽, 张黎, 等. 基于“参照系-现状-变化量”的生态系统评估方法. 生态学报, 2023, 43(5): 2049-2060. | |
| 32 | He N P, Xu L, He H L. The methods of evaluation ecosystem quality: Ideal reference and key parameters. Acta Ecologica Sinica, 2020, 40(6): 1877-1886. |
| 何念鹏, 徐丽, 何洪林. 生态系统质量评估方法——理想参照系和关键指标. 生态学报, 2020, 40(6): 1877-1886. | |
| 33 | National Forestry and Grassland Administration. Technical specification for the national forestry and grassland comprehensive monitoring and evaluation. (2021-06)[2022-06-20]. https://lycy.gansu.gov.cn/lycy/c105816/202107/1677045/files/e2d20ce9d1554b4586961ba2d0903428.pdf. |
| 国家林业和草原局. 国家林草生态综合监测评价技术规程. (2021-06)[2022-06-20]. https://lycy.gansu.gov.cn/lycy/c105816/202107/1677045/files/e2d20ce9d1554b4586961ba2d0903428.pdf. | |
| 34 | Wang Q, Cao W, Huang L. Evolution characteristics of ecosystem functional stability and ecosystem functional zoning on the Qinghai-Tibet Plateau. Journal of Geographical Sciences, 2023, 33(11): 2193-2210. |
| 35 | Li C, Lai C, Peng F, et al. Dominant plant functional group determine the response of the temporal stability of plant community biomass to 9-year warming on the Qinghai-Tibetan Plateau. Frontiers in Plant Science, 2021, 12: 704138. |
| 36 | Wei D, Zhao H, Zhang J, et al. Human activities alter response of alpine grasslands on Tibetan Plateau to climate change. Journal of Environmental Management, 2020, 262: 110335. |
| 37 | Li W J, Zhang Y M. Study of invasion of three alien species around Haibei alpine meadow ecosystem station. Pratacultural Science, 2007, 24(11): 22-25. |
| 李文靖, 张堰铭. 海北站周围3种外来物种入侵状况的初步研究. 草业科学, 2007, 24(11): 22-25. | |
| 38 | Wang G, Wang Y, Li Y, et al. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena, 2007, 70(3): 506-514. |
| 39 | Ran Q, Hao Y, Xia A, et al. Quantitative assessment of the impact of physical and anthropogenic factors on vegetation spatial-temporal variation in Northern Tibet. Remote Sensing, 2019, 11(10): 1183. |
| 40 | Aguirre D, Benhumea A E, McLaren J R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biology and Biochemistry, 2021, 153: 108121. |
| 41 | Wang G X, Li Y M, Wu Q B, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Science in China Series D: Earth Sciences, 2006, 49(11): 1156-1169. |
| 42 | Liang D L, Tang H P. Analysis of vegetation changes and water temperature driving factors in two alpine grasslands on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2022, 42(1): 287-300. |
| 梁大林, 唐海萍. 青藏高原两种高寒草地植被变化及其水温驱动因素分析. 生态学报, 2022, 42(1): 287-300. | |
| 43 | Ding Y H, Liu Y J, Xu Y, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in Northwest China. Advances in Earth Science, 2023, 38(6): 551. |
| 丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望. 地球科学进展, 2023, 38(6): 551. | |
| 44 | Tian H, Lan Y C, Wen J, et al. Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts. Journal of Geographical Sciences, 2015, 25(6): 643-668. |
| 45 | Hao A, Duan H, Wang X, et al. Different response of alpine meadow and alpine steppe to climatic and anthropogenic disturbance on the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 2021, 27: e01512. |
| 46 | Li M, Wu J, Song C, et al. Temporal variability of precipitation and biomass of alpine grasslands on the Northern Tibetan Plateau. Remote Sensing, 2019, 11(3): 360. |
| 47 | Zhao Z W, Liang S H, Wan L, et al. Analysis on characteristics of climate change and warm-humid in the source region of the Yellow River in recent 60 years. Yellow River, 2014, 36(11): 9-12. |
| 赵珍伟, 梁四海, 万力, 等. 黄河源区近60a气候变化特征及暖湿化分析. 人民黄河, 2014, 36(11): 9-12. | |
| 48 | Guo J, Zhai L, Sang H, et al. Effects of hydrothermal factors and human activities on the vegetation coverage of the Qinghai-Tibet Plateau. Scientific Reports, 2023, 13(1): 12488. |
| 49 | Wei Y, Lu H, Wang J, et al. Dual influence of climate change and anthropogenic activities on the spatiotemporal vegetation dynamics over the Qinghai-Tibetan Plateau from 1981 to 2015. Earth’s Future, 2022, 10(5): 1-23. |
| 50 | Wang H, Liu D, Lin H, et al. NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan Plateau. International Journal of Climatology, 2015, 35(5): 687-698. |
| 51 | Zhang X, Ren Y, Yin Z Y, et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004. Journal of Geophysical Research: Atmospheres, 2009, 114(D15): 1-14. |
| 52 | Liu Y F, Zhang Z, Liu Y, et al. Shrub encroachment enhances the infiltration capacity of alpine meadows by changing the community composition and soil conditions. Catena, 2022, 213: 106222. |
| 53 | Sun J, Cheng G W, Li W P. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences, 2013, 10(3): 1707-1715. |
| 54 | Brandt J S, Haynes M A, Kuemmerle T, et al. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 2013, 158: 116-127. |
| 55 | Wang Y X, Chen X J, Lou S N, et al. Woody-plant encroachment in grasslands: a review of mechanisms and aftereffects. Acta Prataculturae Sinica, 2018, 27(5): 219-227. |
| 王迎新, 陈先江, 娄珊宁, 等. 草原灌丛化入侵: 过程、机制和效应. 草业学报, 2018, 27(5): 219-227. | |
| 56 | Romero Ovalle P E, Bisigato A J, Campanella M V. Soil erosion facilitates shrub encroachment in Patagonian herbaceous steppes. Land Degradation & Development, 2021, 32(11): 3377-3385. |
| 57 | Naeem S, Zhang Y, Tian J, et al. Quantifying the impacts of anthropogenic activities and climate variations on vegetation productivity changes in China from 1985 to 2015. Remote Sensing, 2020, 12(7): 1113. |
| 58 | Li X L, Gao J, Brierley G, et al. Rangeland degradation on the Qinghai-Tibet Plateau: implications for rehabilitation. Land Degradation & Development, 2013, 24(1): 72-80. |
| 59 | Fan J W, Shao Q Q, Liu J Y, et al. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environmental Monitoring and Assessment, 2010, 170(1): 571-584. |
| 60 | Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): 1-10. |
| 61 | Su P, Bian L L, Wang J L. Calculation and evaluation of ecological carrying capacity in Maduo County. China Population, Resources and Environment, 2018, 28(Supple1): 90-93. |
| 苏萍, 边玲玲, 王卷乐. 玛多县生态环境承载力计算与评价. 中国人口·资源与环境, 2018, 28(增刊1): 90-93. | |
| 62 | Li J Y, Hu G Z, Zeng W H. Assessment of grassland ecosystem stability based on system dynamics-taking Maduo County, the source of the Yellow River in Sanjiangyuan National Park, as an example. China Environmental Science, 2024, 44(6): 3419-3433. |
| 李佳颖, 胡官正, 曾维华. 基于系统动力学的草地生态系统稳定性评价——以三江源国家公园黄河源玛多县为例. 中国环境科学, 2024, 44(6): 3419-3433. | |
| 63 | Liu J Y, Xu X L, Shao Q Q. The spatial and temporal characteristics of grassland degradation in the Three-River Headwaters Region in Qinghai Province. Acta Geographica Sinica, 2008, 63(4): 364-376. |
| 刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376. | |
| 64 | Yang H, Sun J, Xu C, et al. Hoof pressure and trampling intensity of yaks are higher than those of Tibetan sheep in a Tianzhu alpine meadow. The Rangeland Journal, 2019, 41(2): 125-133. |
| 65 | Wang Y, Wesche K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodiversity and Conservation, 2016, 25(12): 2401-2420. |
| 66 | Tang X P, Jiang Y F, Liu Z L, et al. Top-level design of the natural protected area system in China. Forest Resources Management, 2019(3): 1-7. |
| 唐小平, 蒋亚芳, 刘增力, 等. 中国自然保护地体系的顶层设计. 林业资源管理, 2019(3): 1-7. | |
| 67 | Tang X P. Functional orientation and spatial attribute analysis of the National Park Planning System of China. Biodiversity, 2020, 28(10): 1246-1254. |
| 唐小平. 国家公园规划制度功能定位与空间属性. 生物多样性, 2020, 28(10): 1246-1254. | |
| 68 | Fu J X, Cao G C, Guo W J. Spatial-temporal differentiation of mountain-water-forest-farmland-lake-grass system in Qinghai area of the Qilian Mountain National Park, China. Chinese Journal of Applied Ecology, 2021, 32(8): 2866-2874. |
| 付建新, 曹广超, 郭文炯. 祁连山国家公园青海片区山水林田湖草的时空分异. 应用生态学报, 2021, 32(8): 2866-2874. | |
| 69 | Shang Z, Long R. Formation causes and recovery of the “Black Soil Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Frontiers of Agriculture in China, 2007, 1(2): 197-202. |
| 70 | Brierley G J, Li X, Cullum C, et al. Landscape and ecosystem diversity, dynamics and management in the Yellow River Source zone. Berlin, German: Springer International Publishing, 2016. |
| 71 | Kuussaari M, Bommarco R, Heikkinen R K, et al. Extinction debt: a challenge for biodiversity conservation. Trends in Ecology & Evolution, 2009, 24(10): 564-571. |
| 72 | Watts K, Whytock R C, Park K J, et al. Ecological time lags and the journey towards conservation success. Nature Ecology & Evolution, 2020, 4(3): 304-311. |
| [1] | 罗顺华, 刘新宇, 孟宝平, 陈璇黎, 胡仁杰, 于红妍, 王贤颖, 张勃, 秦彧. 祁连山国家公园高寒草地功能群多样性与生产力研究[J]. 草业学报, 2025, 34(6): 14-26. |
| [2] | 徐玲玲, 牛犇, 张宪洲, 何永涛, 石培礼, 宗宁, 武建双, 王向涛. 藏北两个临近不同高寒草地碳通量对气候条件的响应[J]. 草业学报, 2024, 33(6): 1-16. |
| [3] | 石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45. |
| [4] | 田晴华, 刘丹, 廖小琴, 宋小艳, 胡雷, 王长庭. 施氮对高寒草地土壤团聚体生物胶结物质及稳定性的影响[J]. 草业学报, 2024, 33(11): 46-57. |
| [5] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
| [6] | 雷石龙, 廖李容, 王杰, 张路, 叶振城, 刘国彬, 张超. 高寒草地植物多样性与Godron群落稳定性关系及其环境驱动因素[J]. 草业学报, 2023, 32(3): 1-12. |
| [7] | 王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39. |
| [8] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
| [9] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
| [10] | 郭碧花, 张雪梅, 刘金平, 游明鸿, 甘小洪, 羊勇. 坡度对高寒草甸公路护坡土壤性状及沙化表现的影响[J]. 草业学报, 2022, 31(11): 15-24. |
| [11] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
| [12] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
| [13] | 石明明, 王晓敏, 陈奇, 韩炳宏, 周秉荣, 肖建设, 肖宏斌. 高寒草地干湿生态系统土壤水分及入渗对降水的响应[J]. 草业学报, 2021, 30(12): 49-58. |
| [14] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
| [15] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||