草业学报 ›› 2014, Vol. 23 ›› Issue (6): 233-241.DOI: 10.11686/cyxb20140628
张军,宋丽莉,郭东林,郭长虹*,束永俊*
收稿日期:
2013-12-12
出版日期:
2014-12-20
发布日期:
2014-12-20
通讯作者:
E-mail:syjun2003@126.com;kaku_2008@163.com
作者简介:
张军(1989-),女,黑龙江双鸭山人,在读硕士
基金资助:
ZHANG Jun,SONG Li-li,GUO Dong-lin,GUO Chang-hong,SHU Yong-jun
Received:
2013-12-12
Online:
2014-12-20
Published:
2014-12-20
摘要: MADS-box基因家族是植物体内的重要转录因子,它们广泛地调控着植物生长、发育和生殖等过程。本研究以蒺藜苜蓿基因组数据为材料,采用结构域搜索方法,鉴定了138个MADS-box基因。通过序列比对系统进化分析,将它们分成两大类:Ⅰ型(92个)和Ⅱ型(46个)。同时,通过染色体定位分析发现,134个MADS-box基因定位在染色体上,还有4个MADS-box基因定位在尚未完成最终拼接的超长片段上。蒺藜苜蓿的MADS-box基因家族成员之间存在大量的基因重复,特别是Ⅰ型MADS-box基因,通过基因复制,MADS-box基因家族在染色体上形成多个密集的MADS-box基因簇。对蒺藜苜蓿的RNA-seq表达谱数据分析,发现MADS-box基因在心皮组织、花器官等组织中表达量较高,这表明蒺藜苜蓿的MADS-box基因家族广泛地参与苜蓿组织分化、发育以及生殖等过程的调控,这将为进一步揭示MADS-box类转录因子在蒺藜苜蓿中作用机制提供了重要的参考。
中图分类号:
张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241.
ZHANG Jun,SONG Li-li,GUO Dong-lin,GUO Chang-hong,SHU Yong-jun. Genome-wide identification and investigation of the MADS-box gene family in Medicago truncatula[J]. Acta Prataculturae Sinica, 2014, 23(6): 233-241.
Reference:[1]Theiβen G,Becker A,Di Rosa A,et al.A short history of MADS-box genes in plants[J]. Plant Molecular Biology, 2000, 42(1): 115-149.[2]Becker A,Winter K-U, Meyer B,et al.MADS-box gene diversity in seed plants 300 million years ago[J]. Molecular Biology and Evolution, 2000, 17(10): 1425-1434.[3]De Bodt S, Raes J,Van de Peer Y,et al.And then there were many:MADS goes genomic[J]. Trends in Plant Science, 2003, 8(10): 475-483.[4]Michaels S D, Amasino R M. Flowering locus cencodes a novel MADS domain protein that acts as a repressor of flowering[J]. The Plant Cell, 1999, 11(5): 949-956.[5]Hartmann U, H hmann S,Nettesheim K,et al. Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis[J]. The Plant Journal, 2000, 21(4): 351-360.[6]Samach A, Onouchi H,Gold S E,et al. Distinct roles of constans target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288: 1613-1616.[7]Scortecci K C,Michaels S D,Amasino R M.Identification of a MADS-box gene, flowering locus M, that represses flowering[J]. The Plant Journal, 2001, 26(2): 229-236.[8]Michaels S D,Ditta G,Gustafson Brown C,et al.AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization[J]. The Plant Journal, 2003, 33(5): 867-874.[9]Kaufmann K, Melzer R,Theiβen G.MIKC type MADS domain proteins:structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2): 183-198.[10]Alejandra Mandel M,Gustafson Brown C,Savidge B,et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature, 1992, 360: 273-277.[11]Bowman J L, Alvarez J,Weigel D,et al.Control of flower development in Arabidopsis thaliana by apetala 1 and interacting genes[J]. Development, 1993, 119(3): 721-743.[12]Gu Q, Ferrandiz C,Yanofsky M F,et al.The fruitfull MADS-box gene mediates cell differentiation during Arabidopsis fruit development[J]. Development, 1998, 125(8): 1509-1517.[13]Pelaz S, Ditta G S,Baumann E,et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405: 200-203.[14]Liljegren S J, Ditta G S, Eshed Y,et al. hatterproofMADS-box genes control seed dispersal in Arabidopsis[J]. Nature, 2000, 404: 766-770.[15]Nesi N, Debeaujon I, Jond C,et al.The transparent testa 16 locus encodes the Arabidopsis bsister MADS domain protein and is required for proper development and pigmentation of the seed coat[J]. The Plant Cell, 2002, 14(10): 2463-2479.[16]Jiang T,Lin Y X,Liu X,et al.Genome-wide analysis of the WRKY transcription factor family in Medicago truncatula[J]. Acta Prataculturae Sinica, 2011, 20(3): 211-218.[17]Liu Z P,Zhang J Y,Wang Y R.Research advances in genetic regulation of gametophyte development in Medicago sativa[J]. Acta Prataculturae Sinica, 2011, 20(4): 270-278.[18]Young N D, Debelle F,Oldroyd G E, et al.The medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524.[19]Lv F J,Cui M C,Chen M L.Reproductive biology of polygonum japonicum[J]. Acta Prataculturae Sinica, 2013, 22(3): 196-203.[20]Huang L C,Jin L,Zhang S Z,et al. Pollen release mechanisms of papilionaceous plants (Faboideae)[J]. Acta Prataculturae Sinica, 2013, 22(6): 305-314.[21]Finn R D, Mistry J, Schuster B ckler B,et al.Pfam: clans, web tools and services[J]. Nucleic Acids Research, 2006, 34(S1): 247-251.[22]Finn R D, Clements J, Eddy S R.HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(S2): 29-37.[23]Thompson J D, Higgins D G, Gibson T J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994, 22(22): 4673-4680.[24]Tamura K, Dudley J, Nei M,et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software wersion 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.[25]Altschul S F, Madden T L, Schaffer A A,et al. Gapped blast and pis blast : a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402.[26]Krzywinski M I, Schein J E, Birol I, et al. Circos:An information aesthetic for comparative genomics[J]. Genome Research, 2009, 19(9): 1639-1645.[27]Trapnell C, Pachter L, Salzberg S L.TopHat: discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9): 1105-1111.[28]Trapnell C, Williams B A, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotech, 2010, 28(5): 511-515.[29]Zhao Y,Li X,Chen W,et al.Whole genome survey and characterization of MADS-box gene family in maize and sorghum[J]. Plant Cell, Tissue and Organ Culture, 2011, 105(2): 159-173.[30]Shu Y, Yu D, Wang D,et al.Genome wide survey and expression analysis of the MADS-box gene family in soybean[J]. Molecular Biology Reports, 2013, 40(6): 3901-3911.参考文献:[1]Theiβen G, Becker A, Di Rosa A,et al. A short history of MADS-box genes in plants[J]. Plant Molecular Biology, 2000, 42(1): 115-149.[2]Becker A, Winter K-U, Meyer B,et al. MADS-box gene diversity in seed plants 300 million years ago[J]. Molecular Biology and Evolution, 2000, 17(10): 1425-1434.[3]De Bodt S, Raes J, Van de Peer Y,et al. And then there were many:MADS goes genomic[J]. Trends in Plant Science, 2003, 8(10): 475-483.[4]Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. The Plant Cell, 1999, 11(5): 949-956.[5]Hartmann U, Hhmann S, Nettesheim K,et al. Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis[J]. The Plant Journal, 2000, 21(4): 351-360.[6]Samach A, Onouchi H, Gold S E,et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288: 1613-1616.[7]Scortecci K C, Michaels S D, Amasino R M. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering[J]. The Plant Journal, 2001, 26(2): 229-236.[8]Michaels S D, Ditta G, Gustafson-Brown C,et al. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization[J]. The Plant Journal, 2003, 33(5): 867-874.[9]Kaufmann K, Melzer R, Theiβen G. MIKC-type MADS-domain proteins:structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2): 183-198.[10]Alejandra Mandel M, Gustafson-Brown C, Savidge B,et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature, 1992, 360: 273-277.[11]Bowman J L, Alvarez J, Weigel D,et al. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes[J]. Development, 1993, 119(3): 721-743.[12]Gu Q, Ferrandiz C, Yanofsky M F,et al. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development[J]. Development, 1998, 125(8): 1509-1517.[13]Pelaz S, Ditta G S, Baumann E,et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405: 200-203.[14]Liljegren S J, Ditta G S, Eshed Y,et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J]. Nature, 2000, 404: 766-770.[15]Nesi N, Debeaujon I, Jond C,et al. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat[J]. The Plant Cell, 2002, 14(10): 2463-2479.[16]江腾, 林勇祥, 刘雪, 等. 苜蓿全基因组WRKY转录因子基因的分析[J]. 草业学报, 2011, 20(3): 211-218.[17]刘志鹏, 张吉宇, 王彦荣. 紫花苜蓿配子体发育遗传调控的研究进展[J]. 草业学报, 2011, 20(4): 270-278.[18]Young N D, Debelle F, Oldroyd G E,et al. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524.[19]吕奉菊, 崔美辰, 陈明林. 蚕茧草的繁殖生物学研究[J]. 草业学报, 2013, 22(3): 196-203.[20]黄利春, 金樑, 张树振, 等. 蝶形花亚科植物花粉释放机制[J]. 草业学报, 2013, 22(6): 305-314.[21]Finn R D, Mistry J, Schuster-Bckler B,et al. Pfam:clans, web tools and services[J]. Nucleic Acids Research, 2006, 34(S1): 247-251.[22]Finn R D, Clements J, Eddy S R. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(S2): 29-37.[23]Thompson J D, Higgins D G, Gibson T J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994, 22(22): 4673-4680.[24]Tamura K, Dudley J, Nei M,et al. MEGA4:molecular evolutionary genetics analysis (MEGA) software wersion 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.[25]Altschul S F, Madden T L, Schaffer A A,et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402.[26]Krzywinski M I, Schein J E, Birol I,et al. Circos:An information aesthetic for comparative genomics[J]. Genome Research, 2009, 19(9): 1639-1645.[27]Trapnell C, Pachter L, Salzberg S L. TopHat:discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9): 1105-1111.[28]Trapnell C, Williams B A, Pertea G,et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotech, 2010, 28(5): 511-515.[29]Zhao Y, Li X, Chen W,et al. Whole-genome survey and characterization of MADS-box gene family in maize and sorghum[J]. Plant Cell, Tissue and Organ Culture, 2011, 105(2): 159-173.[30]Shu Y, Yu D, Wang D,et al. Genome-wide survey and expression analysis of the MADS-box gene family in soybean[J]. Molecular Biology Reports, 2013, 40(6): 3901-3911. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[11] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[12] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[13] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[14] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
[15] | 潘明洪,凌瑶,景文,马洪平,彭燕. 四川白三叶根瘤菌遗传多样性及系统发育研究[J]. 草业学报, 2014, 23(5): 143-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||