[1] Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 2018, 642: 690-700.
[2] Xia X J, Jian M Y, Han Y C, et al. Effects of cadmium stress on morphological development and physiological metabolism of wheat. Journal of Agricultural Biotechnology, 2018, 26(9): 1494-1503.
夏雪姣, 菅明阳, 韩玉翠, 等. 镉胁迫对小麦形态发育及生理代谢的影响. 农业生物技术学报, 2018, 26(9): 1494-1503.
[3] Ni R X.Research on input and output balance and risk assessment of heavy metals in farmland soils in China. Beijing: Chinese Academy of Agricultural Sciences, 2017.
倪润祥. 中国农田土壤重金属输入输出平衡和风险评价研究. 北京: 中国农业科学院, 2017.
[4] Tepanosyan G, Sahakyan L, Belyaeva O, et al. Continuous impact of mining activities on soil heavy metals levels and human health. Science of the Total Environment, 2018, 639: 900-909.
[5] Peng L, Zhang W, Wu D.Study on solidification, stabilization and remediation technology of neavy metal contaminated soil. Environment and Sustainable Development, 2018, 43(5): 142-144.
彭莉, 张蔚, 吴迪. 含重金属污染土壤固化, 稳定化修复技术研究. 环境与可持续发展, 2018, 43(5): 142-144.
[6] Salazar M J, Menoyo E, Faggioli V, et al. Pb2+ accumulation in spores of arbuscular mycorrhizal fungi. Science of the Total Environment, 2018, 643: 238-246.
[7] Cao S, Ouyang M Y, Zhou W J, et al. Research progress of lime on soil heavy metal pollution restoration. Chinese Agricultural Science Bulletin, 2018, 34(26): 109-112.
曹胜, 欧阳梦云, 周卫军, 等. 石灰对土壤重金属污染修复的研究进展. 中国农学通报, 2018, 34(26): 109-112.
[8] Zhang Y, Hu J L, Bai J F, et al. Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of the Total Environment, 2018, 628: 282-290.
[9] Wan X M, Lei M, Chen T B.Cost-benefit of phytoremediation technology for heavy-metal-contamiinated soil. Science of the Total Environment, 2016, 563: 796-802.
[10] Li T Q, Zhu E, Yang X E, et al. Effects of dissolved organic matter derived from hyperaccumulator Sedun alfredii Hance rhizosphere on Zn adsorption and desorption in soil. Chinese Journal of Applied Ecology, 2008, 19(4): 838-844.
李廷强, 朱恩, 杨肖娥, 等. 超积累植物东南景天根际可溶性有机质对土壤锌吸附解吸的影响. 应用生态学报, 2008, 19(4): 838-844.
[11] Mcsorley K A, Rutter A, Cumming R, et al. Chloride accumulation vs chloride excretion: Phytoextraction potential of three halophytic grass species growing in a salinized landfill. Science of the Total Environment, 2016, 572: 1132-1137.
[12] Arora S, Singh A K, Singh Y P.Bio-amelioration of salt-affected soils through halophyte plant species. Bioremediation of Salt Affected Soils: An Indian Perspective, 2017, 4: 71-85.
[13] Yang L.Effects of heavy metal Cd and Zn on seed germination and seedling growth in alfalfa. Lanzhou: Lanzhou University, 2015.
杨龙. 重金属Cd、Zn 胁迫对紫花苜蓿种子萌发及幼苗生长的影响. 兰州: 兰州大学, 2015.
[14] Xu Y M, Zhang W H, Lin Y H, et al. Effect of Cu2+ and Zn2+ stress on the germination characteristics and physiological parameters of wild Leymus secalinus seeds from 4 different regions of Tibet. Acta Agrestia Sinica, 2017, 25(5): 1037-1046.
徐雅梅, 张卫红, 蔺永和, 等. Cu2+、Zn2+ 对西藏不同区域野生赖草萌发特性和生理效应的影响. 草地学报, 2017, 25(5): 1037-1046.
[15] Yang W, Wang H Y, Yu K Y, et al. Effects of elevated Cd, Zn and their combined effects on antioxidant system of tobacco. Chinese Journal of Applied Ecology, 2017, 28(6): 1948-1954.
杨微, 王红艳, 于开源, 等. 高浓度镉、锌及其复合作用对烟草抗氧化系统的影响. 应用生态学报, 2017, 28(6): 1948-1954.
[16] Sun J J, Yu X J, Wang J H, et al. Effects of heavy metals Cu2+, Cd2+ and Pb2+ on seed germination and seedling growth of 8 grasses. Acta Agrestia Sinica, 2018, 26(3): 673-683.
孙金金, 鱼小军, 王金辉, 等. 重金属Cu2+、Cd2+ 和 Pb2+ 对8种禾草种子萌发和幼苗生长的影响. 草地学报, 2018, 26(3): 673-683.
[17] Wang J, Meng Y, Li B, et al. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell & Environment, 2015, 38(4): 655-669.
[18] Wang W, Zhang D G.Improvement effect of Halogoton arachnoideus on saline-alkali soil. Pratacultural Science, 2011, 28(6): 902-904.
王文, 张德罡. 白茎盐生草对盐碱土壤的改良效果. 草业科学, 2011, 28(6): 902-904.
[19] Wang J C.Study on salt-tolerant mechanism of partitioning of Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2017.
汪军成. 盐生草盐分区隔化耐盐机制研究. 兰州: 甘肃农业大学, 2017.
[20] Wang J C.Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomics, 2015, 16(1): 169.
[21] Qu G Z.Experimental technique of Arabidopsis thalinan (L.) Heynh. Beijing: China Forestry Publishing House, 2012: 24-25.
曲冠证. 拟南芥实验技术. 北京: 中国林业出版社, 2012: 24-25.
[22] Su M F, Wei X H, Xin X Q, et al. Exogenous cGMP regulates seed germination of ryegrass under salt stress. Acta Ecologica Sinica, 2018, 38(17): 6171-6179.
宿梅飞, 魏小红, 辛夏青, 等. 外源cGMP调控盐胁迫下黑麦草种子萌发机制. 生态学报, 2018, 38(17): 6171-6179.
[23] Liu Y, Jiang H, Zhao Z, et al. Abscisic acid is involved in brassinosteroids-induced chilling tolerance in the suspension cultured cells from Chorispora bungeana. Journal of Plant Physiology, 2011, 168(9): 853-862.
[24] Zhao X, Yang X J, Shi Y, et al. Ion absorption and distribution of symbiotic Reaumuria soongorica and Salsola passerina seedlings under NaCl stress. Acta Ecologica Sinica, 2014, 34(4): 963-972.
赵昕, 杨小菊, 石勇, 等. 盐胁迫下荒漠共生植物红砂与珍珠的根茎叶中离子吸收与分配特征. 生态学报, 2014, 34(4): 963-972.
[25] Jian M F, Wang S C, Yu H P, et al. Effects of Cd2+ and Cu2+ stress on the growth and photosynthetic fluorescence characteristics of Hydrilla verticillata. Acta Ecologica Sinica, 2016, 36(6): 1719-1727.
简敏菲, 汪斯琛, 余厚平, 等. Cd2+、Cu2+ 胁迫对黑藻(Hydrilla verticillata)的生长及光合荧光特性的影响. 生态学报, 2016, 36(6): 1719-1727.
[26] Zhou J Y, Gong Q.Effects of copper stress on seed germination of Radish and Spinach. Hans Journal of Agricultural Sciences, 2018, 8(5): 468-474.
[27] Zhang Y J, Wang Q, Long Y H, et al. Evaluation of stress tolerance of heavy metal and copper in different cannabis varieties during seed germination. Plant Fiber Sciences in China, 2018, 40(4): 183-191.
张亚娟, 王倩, 龙瑜菡, 等. 不同大麻品种种子萌发期耐重金属铜胁迫能力评价. 中国麻业科学, 2018, 40(4): 183-191.
[28] Liu T, Liu W Y, Liu S, et al. Influence of Pb2+, Zn2+ stress on the chlorophyll content and photosynthetic fluorescence characteristics of epiphytic moss Homaliodendron montagneanum (C. Muell.) Fleisch. Chinese Journal of Ecology, 2017, 36(7): 1885-1893.
刘涛, 刘文耀, 柳帅, 等. Pb2+、Zn2+ 胁迫对附生西南树平藓叶绿素含量和光合荧光特性的影响. 生态学杂志, 2017, 36(7): 1885-1893.
[29] Wang P, Zhang X X, Zhao X J, et al. Effects of three metal ions on growth and physio-biochemical response of Achnatherum inebrians. Pratacultural Science, 2014, 31(6): 1080-1086.
王萍, 张兴旭, 赵晓静, 等. 重金属胁迫对醉马草生长及生理生化指标的影响. 草业科学, 2014, 31(6): 1080-1086.
[30] Chen J R, Liu D, Wu J S, et al. Seed germination and metal accumulation of Moso bamboo (Phyllostachys pubescens) under heavy metal exposure. Acta Ecologica Sinica, 2014, 34(22): 6501-6509.
陈俊任, 柳丹, 吴家森, 等. 重金属胁迫对毛竹种子萌发及其富集效应的影响. 生态学报, 2014, 34(22): 6501-6509.
[31] Ma M, Gong H H, Deng H.Effects of heavy metal stress on seed germination and seedling growth of eight urban plants. Chinese Agricultural Science Bulletin, 2012, 28(22): 206-211.
马敏, 龚惠红, 邓泓. 重金属对8种园林植物种子萌发及幼苗生长的影响. 中国农学通报, 2012, 28(22): 206-211.
[32] Fan J.Transformation of selenium in soil and plants, and the mechanisms for the accumulation and resistance to selenium in tobacco plant. Wuhan: Huazhong Agricultural University, 2015.
樊俊. 硒在土壤—植物中的转化及烟株对硒的富集和抗性机理研究. 武汉: 华中农业大学, 2015.
[33] Wang H X.Ni tolerance, uptake and accumulation in a Cd/Zn cohyperaccumulator Sedum alfredii. Hangzhou: Zhejiang University, 2017.
王海新. 锌镉超积累植物东南景天对镍的耐性与积累机制. 杭州: 浙江大学, 2017.
[34] Gong L, Wang L, He M Z, et al. Effects of Ni2+ and Cu2+ stress on germination characteristics of Caragana korshinskii Kom seeds. Journal of Arid Land Resources and Environment, 2013, 27(3): 197-201.
龚磊, 王立, 何明珠, 等. Ni2+、Cu2+ 胁迫对柠条种子萌发特征的影响. 干旱区资源与环境, 2013, 27(3): 197-201.
[35] Liu S L, Shi X S, Pan Y Z, et al. Effects of cadmium stress on growth, biomass and nutrient accumulation and distribution of Catharanthus roseus. Acta Pratacultura Sinica, 2013, 22(3): 154-161.
刘柿良, 石新生, 潘远智, 等. 镉胁迫对长春花生长, 生物量及养分积累与分配的影响. 草业学报, 2013, 22(3): 154-161.
[36] Cen H M, Peng L L, Yang X, et al. Effects of Cd2+ on the seed germination and seedling growth of Cynodon dactylon and Eremochloa ophiuroides. Acta Prataculturae Sinica, 2015, 24(5): 100-107.
岑画梦, 彭玲莉, 杨雪, 等. Cd2+对狗牙根、假俭草种子萌发及幼苗生长的影响. 草业学报, 2015, 24(5): 100-107.
[37] Hu B Y, Fang Z G, Lou L Q, et al. Comprehensive evaluation of cadmium tolerance of 14 switchgrass (Panicum uirgatum) cultivars in the seedling stage. Acta Prataculturae Sinica, 2019, 28(1): 27-36.
胡冰钰, 方志刚, 娄来清, 等. 14份柳枝稷种质资源苗期耐镉性综合评价. 草业学报, 2019, 28(1): 27-36.
[38] Xu Y M, Wang C Q, Wu J X, et al. Effects of Mn2+ and Pb2+ on seed germination and seedling growth of Elymus nutans. Acta Prataculturae Sinica, 2018, 27(3): 194-200.
徐雅梅, 王传旗, 武俊喜, 等. Mn2+、Pb2+ 对野生垂穗披碱草种子萌发与幼苗生长的影响. 草业学报, 2018, 27(3): 194-200.
[39] Duan D C, Yu M G, Shi J Y.Research advances in uptake, translocation, accumulation and detoxification of Pb in plants. Chinese Journal of Applied Ecology, 2014, 25(1): 287-296.
段德超, 于明革, 施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展. 应用生态学报, 2014, 25(1): 287-296.
[40] Maryam M S, Bilal H A, Nisar A, et al. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavening activity in Brassica rapa var. turnip. Toxicology and Industrial Health, 2014, 30(3): 238-249. |