[1] Geng G, Yang R R, Yu L H, et al. Crop continuous cropping obstacles: Research progress. Chinese Agricultural Science Bulletin, 2019, 35(10): 36-42. 耿贵, 杨瑞瑞, 於丽华, 等. 作物连作障碍研究进展. 中国农学通报, 2019, 35(10): 36-42. [2] Wu J N.Study on effects of continuous cropping obstacle on growth of the sugarcane and the rhizosphere soil properties. Nanning: Guangxi University, 2016. 吴静妮. 土壤理化性质与甘庶连作障碍的相关性研究. 南宁: 广西大学, 2016. [3] Wang S N.The allelopathic mechanism of crop rotation on alleviating muskmelon continuous cropping obstacle. Shenyang: Shenyang Agricultural University, 2017. 王素娜. 轮作缓解甜瓜连作障碍的机理研究. 沈阳: 沈阳农业大学, 2017. [4] Greenland D J.Changes in the nitrogen status and physical conditions of soils under pastures, with special reference to the maintenance of the fertility of Australian soils used for growing wheat. Soils and Fertilizers, 1971, 34: 237-251. [5] García-Préchac F, Ernst O, Siri-Prieto G, et al. Integrating no-till into crop-pasture rotations in Uruguay. Soil and Tillage Research, 2004, 77(1): 1-13. [6] Hayslip N C, Allen R J, Darby J F.A vegetable-pasture rotation study at the Indian River field laboratory. Florida State Horticultural Society, 1952, 65: 148-153. [7] Tian F P, Shi S L, Hong F Z, et al. Research on history and current situation of forage and crop rotation in China. Pratacultural Science, 2012, 29(2): 320-326. 田福平, 师尚礼, 洪绂曾, 等. 我国草田轮作的研究历史及现状. 草业科学, 2012, 29(2): 320-326. [8] Conant R T, Paustian K, Elliott E T.Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 2001, 11(2): 343-355. [9] Franzluebbers A J.Integrated crop-livestock systems in the southeastern USA. Agronomy Journal, 2007, 99(2): 361-372. [10] Xing F, Zhou J Y, Jin Y J, et al. History, theory and practice of pasture-crop rotation in China: A review. Acta Prataculturae Sinica, 2011, 20(3): 245-255. 邢福, 周景英, 金永君, 等. 我国草田轮作的历史、理论与实践概览. 草业学报, 2011, 20(3): 245-255. [11] Li J, Zhou Z C, Zhang Q, et al. Soil physiochemical properties and soil detachment rate in grasslands with different years of grain for green in the Loess Plateau. Arid Zone Research, 2017, 34(3): 504-510. 李静, 周正朝, 张强, 等. 黄土区不同退耕年限草地土壤分离速率及其理化性质. 干旱区研究, 2017, 34(3): 504-510. [12] Romaniuk R, Giuffre L, Costantini A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and convertional horticulture systems. Ecological Indicators, 2011, 11(5): 1345-1353. [13] Loranger-Merciris G, Barthes L, Gastine A, et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology and Biochemistry, 2006, 38(8): 2336-2343. [14] Acosta-Martínez V, Acosta-Mercado D, Sotomayor-Ramírez D, et al. Microbial communities and enzymatic activities under different management in semiarid soils. Applied Soil Ecology, 2008, 38(3): 249-260. [15] Don A, Böhme I H, Dohrmann A B, et al. Microbial community composition affects soil organic carbon turnover in mineral soils. Biology and Fertility of Soils, 2017, 53(4): 445-456. [16] Hu C J, Liu G H, Wu Y Q.A review of soil microbial biomass and diversity measurements. Ecology and Environmental Sciences, 2011, 20(6/7): 1161-1167. 胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述. 生态环境学报, 2011, 20(6/7): 1161-1167. [17] Franzluebbers A J, Hons F M, Zuberer D A.Long-term changes in soil carbon and nitrogen pools in wheat management systems. Soil Science Society of America Journal, 1994, 58(6): 1639-1645. [18] Franzluebbers A J, Hons F M, Zuberer D A.Tillage and crop effects on seasonal soil carbon and nitrogen dynamics. Soil Science Society of America Journal, 1995, 59(6): 1618-1624. [19] Frey S D, Elliott E T, Paustian K.Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 1999, 31(4): 573-585. [20] Pankhurst C E, Kirkby C A, Hawke B G, et al. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biology and Fertility of Soils, 2002, 35(3): 189-196. [21] Riah-Anglet W, Trinsoutrot-Gattin I, Martin-Laurent F, et al. Soil microbial community structure and function relationships: A heat stress experiment. Applied Soil Ecology, 2015, 86: 121-130. [22] Nannipieri P, Ascher J, Ceccherini M T, et al. Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54(4): 655-670. [23] National oceanic and atmospheric administration. Climate of Kentucky. https://www.ncdc.noaa.gov/, National Climatic Data Center, North Carolina, 2015. [24] United States Department of Agriculture and Natural Resources Conservation Service. Custom soil resource report for Scott County, Elmwood Stock Farm, Kentucky. U.S. Washington, D.C: Department of Agriculture Service Center, 2014: 8-15. [25] Buyer J S, Sasser M.High throughput phospholipid fatty acid analysis of soils. Applied Soil Ecology, 2012, 61(5): 127-130. [26] Vestal J R, White D C.Lipid analysis in microbial ecology. Bioscience, 1989, 39(8): 535-541. [27] Frostegård Å, Tunlid A, Bååth E.Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 1993, 59(11): 3605-3617. [28] Zimmerman G M, Goetz H, Mielke P W J R. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology, 1985, 66(2): 606-611. [29] Bai L, Fan X D, Wang J Y, et al. Responses of microbial communities to plant communities during secondary succession of grassland in Loess Plateau. Ecology and Environmental Sciences, 2018, 27(10): 1801-1808. 白丽, 范席德, 王洁莹, 等. 黄土高原草地次生演替过程中微生物群落对植物群落的响应. 生态环境学报, 2018, 27(10): 1801-1808. [30] Zhang X Y, Duan H Q, Wang M L, et al. Effects of rotation and continuous cropping on soil microflora and diversity in tobacco field. Soil and Fertilizer Sciences in China, 2018, (6): 84-90. 张笑宇, 段宏群, 王闷灵, 等. 轮作与连作对烟田土壤微生物区系及多样性的影响. 中国土壤与肥料, 2018, (6): 84-90. [31] Connell J H.Diversity in tropical rain forests and coral reefs. Science, 1978, 199: 1302-1310. [32] Ying J Y, Zhang L M, Wei W X, et al. Effects of land utilization patterns on soil microbial communities in an acid red soil based on DNA and PLFA analyses. Journal of Soils and Sediments, 2013, 13(7): 1223-1231. [33] Acosta-Martínez V, Zobeck T M, Vivien A.Soil microbial, chemical and physical properties in continuous cotton and integrated crop-livestock system. Soil Science Society of America Journal, 2004, 68(6): 1875-1884. [34] Bossio D A, Fleck J A, Scow K M, et al. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biology and Biochemistry, 2006, 38(6): 1223-1233. [35] Moore-Kucera J, Dick R P.PLFA profiling of microbial community structure and seasonal shifts in soils of a douglas-fir chronosequence. Microbial Ecology, 2008, 55(3): 500-511. [36] Liu C.Studies on the changes of microbial community composition and structure in evolution process of paddy soil. Hangzhou: Zhejiang University, 2016. 刘琛. 水稻土演变过程中微生物组成与结构特征变化的研究. 杭州: 浙江大学, 2016. [37] Xu L J, Wang B, Xin X P.Soil nutrient and microbial characteristics associated alfalfa cultivated grassland. Acta Agrestia Sinica, 2011, 19(3): 406-411. 徐丽君, 王波, 辛晓平. 紫花苜蓿人工草地土壤养分及土壤微生物特性. 草地学报, 2011, 19(3): 406-411. [38] Li Z G, Luo Y M, Teng Y.Research method of soil and environmental microbiology. Beijing: Science Press, 2008: 322-325. 李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008: 322-325. [39] Bell C, Mcintyre N, Cox S, et al. Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert Grassland. Microbial Ecology, 2008, 56(1): 153-167. [40] Wang Q L, Cao G M, Wang C T.Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow. Chinese Journal of Ecology, 2007, 26(7): 1002-1008. 王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物量的特征. 生态学杂志, 2007, 26(7): 1002-1008. [41] Lin X G, Hu J L.Scientific connotation and ecological service function of soil microbial diversity. Acta Pedologica Sinica, 2008, 45(5): 892-900. 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能. 土壤学报, 2008, 45(5): 892-900. [42] Hügler M, Wirsen C O, Fuchs G, et al. Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria. Journal of Bacteriology, 2005, 187(9): 3020-3027. [43] de Menezes A B, Richardson A E, Thrall P H. Linking fungal-bacterial co-occurrences to soil ecosystem function. Current Opinion in Microbiology, 2017, 37: 135-141. [44] Bainard L D, Dai M, Gomez E F, et al. Arbuscular mycorrhizal fungal communities are influenced by agricultural land use and not soil type among the chernozem great groups of the Canadian Prairies. Plant and Soil, 2015, 387: 351-362. [45] Romaniuk R, Costantini A, Giuffré L, et al. Catabolic response and phospholipid fatty acid profiles as microbial tools to assess soil functioning. Soil Use and Management, 2016, 32: 603-612. [46] Fanin N, Hättenschwiler S, Fromin N.Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil. Plant and Soil, 2014, 379(1/2): 79-91. [47] Xue D, Yao H Y, Ge D Y, et al. Soil microbial community structure in diverse land use systems: A comparative study using Biolog, DGGE, and PLFA analyses. Pedosphere, 2008, 18(5): 653-663. [48] Stevenson B A, Hunter D W F, Rhodes P L. Temporal and seasonal change in microbial community structure of an undisturbed, disturbed, and carbon-amended pasture soil. Soil Biology and Biochemistry, 2014, 75: 175-185. [49] Slaughter L C, Weintraub M N, McCulley R L. Seasonal effects stronger than three-year climate manipulation on grassland soil microbial community. Soil Science Society of America Journal, 2015, 79(5): 1352-1365. [50] Griffiths B S, Kuan H L, Ritz K, et al. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microbial Ecology, 2004, 47(1): 104-113. |