草业学报 ›› 2021, Vol. 30 ›› Issue (8): 60-72.DOI: 10.11686/cyxb2020273
王玉霞(), 柴锦隆, 周洋洋, 徐长林, 王琳, 鱼小军()
收稿日期:
2020-06-15
修回日期:
2020-08-25
出版日期:
2021-07-09
发布日期:
2021-07-09
通讯作者:
鱼小军
作者简介:
Corresponding author. E-mail: Yuxj@gsau.edu.cn基金资助:
Yu-xia WANG(), Jin-long CHAI, Yang-yang ZHOU, Chang-lin XU, Lin WANG, Xiao-jun YU()
Received:
2020-06-15
Revised:
2020-08-25
Online:
2021-07-09
Published:
2021-07-09
Contact:
Xiao-jun YU
摘要:
为探究陇中干旱区扁蓿豆种子生产的最佳种植方式,以期为该地扁蓿豆种子生产提供理论依据和实践指导,于2017-2019年在甘肃定西设置垄沟覆膜、地膜平覆、垄沟覆秸、平作覆秸、垄沟和平作(对照)研究了扁蓿豆种子产量及构成因素。结果表明,种植前3年扁蓿豆植株绝对高度、分枝数、主根长度、光合特性、荚果数、种子数、实际种子产量和表现种子产量皆表现为垄沟覆膜>地膜平覆>平作覆秸>垄沟覆秸>垄沟>平作处理;2017年植株绝对高度、分枝数、光合特性、实际种子产量在垄沟覆膜和地膜平覆处理下显著高于其他处理;2018-2019年植株绝对高度、分枝数和实际种子产量在垄沟覆膜、地膜平覆、平作覆秸和垄沟覆秸处理间差异均不显著。3年实际种子产量垄沟覆膜处理均表现最好,较平作处理分别提高110.4%、38.6%和20.4%,其次是地膜平覆和平作覆秸处理,较平作处理分别提高了94.6%、38.4%、15.5%和48.0%、37.1%、13.3%。考虑到种子产量、地膜成本、土壤污染以及耕作便捷程度等因素,平作覆秸处理适宜在陇中地区扁蓿豆种子生产中推广应用。
王玉霞, 柴锦隆, 周洋洋, 徐长林, 王琳, 鱼小军. 种植方式对陇中干旱区扁蓿豆种子产量及构成因素的影响[J]. 草业学报, 2021, 30(8): 60-72.
Yu-xia WANG, Jin-long CHAI, Yang-yang ZHOU, Chang-lin XU, Lin WANG, Xiao-jun YU. Effects of planting method on seed yield and its components in Medicago ruthenica in an arid area of Longzhong[J]. Acta Prataculturae Sinica, 2021, 30(8): 60-72.
处理 Treatment | 绝对高度Absolute altitude (cm) | 一级分枝数Number of first-order branches | 主枝直径Major branch diameter (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 56.37±1.93a | 133.77±4.31a | 135.13±2.88a | 7.87±0.35a | 14.20±0.53a | 15.45±0.80a | 2.28±0.14a | 2.46±0.17a | 2.47±0.06a |
FP | 55.20±2.25a | 120.43±5.42b | 132.00±4.92a | 7.80±0.29a | 13.91±0.37a | 15.00±0.54a | 2.42±0.12a | 2.26±0.17ab | 2.45±0.02a |
RS | 32.43±1.12b | 112.53±3.48b | 130.71±1.74a | 5.07±0.19b | 12.86±0.67a | 13.64±0.31ab | 1.47±0.06c | 1.88±0.21b | 2.46±0.12a |
FS | 32.73±0.63b | 116.67±4.32b | 133.29±7.68a | 5.13±0.16b | 13.00±0.55a | 14.09±0.65a | 1.77±0.09b | 1.93±0.10b | 2.46±0.12a |
R0 | 31.67±1.15bc | 85.40±5.17c | 96.00±2.24b | 4.40±0.16c | 11.00±0.71b | 12.14±0.55bc | 1.39±0.04c | 1.88±0.13b | 1.88±0.17b |
F0 | 28.10±0.94c | 79.43±2.83c | 92.14±3.30b | 4.00±0.18c | 11.00±0.58b | 11.38±0.75c | 1.23±0.07c | 1.80±0.16b | 1.62±0.18b |
处理 Treatment | 节数Pitch number | 叶面积Leaf area (cm2) | 荚果长Pod length (cm) | ||||||
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 18.73±0.61a | 33.50±0.56a | 34.44±0.47a | 1.10±0.06a | 1.12±0.41a | 1.10±0.02a | 13.45±0.18a | 14.73±0.30a | 13.82±0.33a |
FP | 17.20±0.34a | 32.67±0.80a | 33.00±0.69a | 0.96±0.05b | 1.02±0.30ab | 1.09±0.01a | 13.58±0.22a | 13.97±0.25a | 13.13±0.30a |
RS | 13.53±0.34a | 29.33±1.26b | 32.50±0.69a | 0.75±0.03cd | 0.88±0.26bc | 0.86±0.07ab | 10.98±0.20b | 12.97±0.28b | 12.05±0.32b |
FS | 14.63±0.31a | 31.00±1.03ab | 33.33±0.67a | 0.78±0.03c | 0.93±0.30bc | 0.93±0.03a | 11.00±0.19b | 13.03±0.33b | 12.12±0.32b |
R0 | 12.63±0.38a | 26.50±1.18c | 29.89±0.77b | 0.70±0.05cd | 0.87±0.34c | 0.84±0.05b | 10.58±0.25bc | 12.56±0.23bc | 11.85±0.26b |
R0 | 12.37±0.28a | 22.83±0.65d | 27.89±0.92b | 0.62±0.03d | 0.81±0.32c | 0.79±0.04b | 10.32±0.18c | 10.98±0.23c | 11.16±0.23b |
表 1 不同种植方式对扁蓿豆地上部分特征的影响
Table 1 Effects of different planting methods on the aboveground characteristics of M. ruthenica
处理 Treatment | 绝对高度Absolute altitude (cm) | 一级分枝数Number of first-order branches | 主枝直径Major branch diameter (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 56.37±1.93a | 133.77±4.31a | 135.13±2.88a | 7.87±0.35a | 14.20±0.53a | 15.45±0.80a | 2.28±0.14a | 2.46±0.17a | 2.47±0.06a |
FP | 55.20±2.25a | 120.43±5.42b | 132.00±4.92a | 7.80±0.29a | 13.91±0.37a | 15.00±0.54a | 2.42±0.12a | 2.26±0.17ab | 2.45±0.02a |
RS | 32.43±1.12b | 112.53±3.48b | 130.71±1.74a | 5.07±0.19b | 12.86±0.67a | 13.64±0.31ab | 1.47±0.06c | 1.88±0.21b | 2.46±0.12a |
FS | 32.73±0.63b | 116.67±4.32b | 133.29±7.68a | 5.13±0.16b | 13.00±0.55a | 14.09±0.65a | 1.77±0.09b | 1.93±0.10b | 2.46±0.12a |
R0 | 31.67±1.15bc | 85.40±5.17c | 96.00±2.24b | 4.40±0.16c | 11.00±0.71b | 12.14±0.55bc | 1.39±0.04c | 1.88±0.13b | 1.88±0.17b |
F0 | 28.10±0.94c | 79.43±2.83c | 92.14±3.30b | 4.00±0.18c | 11.00±0.58b | 11.38±0.75c | 1.23±0.07c | 1.80±0.16b | 1.62±0.18b |
处理 Treatment | 节数Pitch number | 叶面积Leaf area (cm2) | 荚果长Pod length (cm) | ||||||
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 18.73±0.61a | 33.50±0.56a | 34.44±0.47a | 1.10±0.06a | 1.12±0.41a | 1.10±0.02a | 13.45±0.18a | 14.73±0.30a | 13.82±0.33a |
FP | 17.20±0.34a | 32.67±0.80a | 33.00±0.69a | 0.96±0.05b | 1.02±0.30ab | 1.09±0.01a | 13.58±0.22a | 13.97±0.25a | 13.13±0.30a |
RS | 13.53±0.34a | 29.33±1.26b | 32.50±0.69a | 0.75±0.03cd | 0.88±0.26bc | 0.86±0.07ab | 10.98±0.20b | 12.97±0.28b | 12.05±0.32b |
FS | 14.63±0.31a | 31.00±1.03ab | 33.33±0.67a | 0.78±0.03c | 0.93±0.30bc | 0.93±0.03a | 11.00±0.19b | 13.03±0.33b | 12.12±0.32b |
R0 | 12.63±0.38a | 26.50±1.18c | 29.89±0.77b | 0.70±0.05cd | 0.87±0.34c | 0.84±0.05b | 10.58±0.25bc | 12.56±0.23bc | 11.85±0.26b |
R0 | 12.37±0.28a | 22.83±0.65d | 27.89±0.92b | 0.62±0.03d | 0.81±0.32c | 0.79±0.04b | 10.32±0.18c | 10.98±0.23c | 11.16±0.23b |
性状Trait | 年份Year | RP | FR | RS | FS | R0 | F0 |
---|---|---|---|---|---|---|---|
主根长度 Taproot length (cm) | 2017 | 30.13±3.43a | 27.38±1.32a | 19.17±1.17bc | 20.96±1.31b | 15.38±1.02c | 15.04±0.74c |
2018 | 117.71±4.05a | 113.20±3.56ab | 102.14±4.47bc | 106.10±3.29ab | 91.67±4.54cd | 85.33±7.60d | |
2019 | 129.14±0.88a | 127.15±0.60a | 117.20±1.69b | 118.38±0.63b | 106.50±1.89c | 102.67±0.71d | |
侧根数 Lateral root number | 2017 | 8.81±0.90a | 9.48±0.86a | 4.74±0.45b | 5.07±0.42b | 2.85±0.27c | 2.78±0.33c |
2018 | 16.00±0.72a | 15.86±1.10a | 13.00±1.17ab | 13.90±0.92ab | 12.00±1.14b | 11.83±1.85b | |
2019 | 18.71±0.29a | 17.29±0.18b | 13.60±0.40c | 14.13±0.23c | 13.50±0.22c | 12.67±0.21d | |
主根直径 Taproot diameter (mm) | 2017 | 9.39±0.40a | 7.64±0.28b | 4.98±0.12cd | 5.36±0.18c | 4.36±0.19de | 4.16±0.14e |
2018 | 11.07±0.60a | 9.54±0.38a | 8.01±0.69b | 8.36±0.63b | 7.99±0.80b | 7.47±0.59b | |
2019 | 11.92±0.27a | 11.00±0.21a | 9.13±0.15bc | 9.58±0.11b | 8.43±0.79c | 8.47±0.35c | |
根颈直径 Root collar diameter (mm) | 2017 | 3.11±0.22a | 3.17±0.17a | 2.15±0.12b | 2.08±0.13b | 1.77±0.11bc | 1.49±0.09c |
2018 | 16.31±0.92a | 15.04±0.28ab | 13.27±0.38bcd | 14.22±0.35bc | 12.61±0.65cd | 11.88±0.59d | |
2019 | 19.69±0.33a | 18.83±0.18ab | 18.14±0.38b | 18.81±0.24ab | 17.97±0.34b | 15.67±0.74c | |
根颈芽数 Root collar bud number | 2017 | 15.59±1.76a | 16.96±0.98a | 8.74±0.60b | 9.52±1.12b | 8.48±1.00b | 7.37±0.65b |
2018 | 68.00±3.13a | 66.57±2.10a | 55.20±1.02b | 63.00±0.87a | 54.50±1.31b | 48.67±2.16c | |
2019 | 69.86±1.90a | 67.29±4.14a | 49.40±3.3bc | 51.25±4.60b | 40.00±3.54bc | 38.17±4.39c |
表 2 不同种植方式对扁蓿豆地下部分特征的影响
Table 2 Effects of different planting methods on the underground characteristics of M. ruthenica
性状Trait | 年份Year | RP | FR | RS | FS | R0 | F0 |
---|---|---|---|---|---|---|---|
主根长度 Taproot length (cm) | 2017 | 30.13±3.43a | 27.38±1.32a | 19.17±1.17bc | 20.96±1.31b | 15.38±1.02c | 15.04±0.74c |
2018 | 117.71±4.05a | 113.20±3.56ab | 102.14±4.47bc | 106.10±3.29ab | 91.67±4.54cd | 85.33±7.60d | |
2019 | 129.14±0.88a | 127.15±0.60a | 117.20±1.69b | 118.38±0.63b | 106.50±1.89c | 102.67±0.71d | |
侧根数 Lateral root number | 2017 | 8.81±0.90a | 9.48±0.86a | 4.74±0.45b | 5.07±0.42b | 2.85±0.27c | 2.78±0.33c |
2018 | 16.00±0.72a | 15.86±1.10a | 13.00±1.17ab | 13.90±0.92ab | 12.00±1.14b | 11.83±1.85b | |
2019 | 18.71±0.29a | 17.29±0.18b | 13.60±0.40c | 14.13±0.23c | 13.50±0.22c | 12.67±0.21d | |
主根直径 Taproot diameter (mm) | 2017 | 9.39±0.40a | 7.64±0.28b | 4.98±0.12cd | 5.36±0.18c | 4.36±0.19de | 4.16±0.14e |
2018 | 11.07±0.60a | 9.54±0.38a | 8.01±0.69b | 8.36±0.63b | 7.99±0.80b | 7.47±0.59b | |
2019 | 11.92±0.27a | 11.00±0.21a | 9.13±0.15bc | 9.58±0.11b | 8.43±0.79c | 8.47±0.35c | |
根颈直径 Root collar diameter (mm) | 2017 | 3.11±0.22a | 3.17±0.17a | 2.15±0.12b | 2.08±0.13b | 1.77±0.11bc | 1.49±0.09c |
2018 | 16.31±0.92a | 15.04±0.28ab | 13.27±0.38bcd | 14.22±0.35bc | 12.61±0.65cd | 11.88±0.59d | |
2019 | 19.69±0.33a | 18.83±0.18ab | 18.14±0.38b | 18.81±0.24ab | 17.97±0.34b | 15.67±0.74c | |
根颈芽数 Root collar bud number | 2017 | 15.59±1.76a | 16.96±0.98a | 8.74±0.60b | 9.52±1.12b | 8.48±1.00b | 7.37±0.65b |
2018 | 68.00±3.13a | 66.57±2.10a | 55.20±1.02b | 63.00±0.87a | 54.50±1.31b | 48.67±2.16c | |
2019 | 69.86±1.90a | 67.29±4.14a | 49.40±3.3bc | 51.25±4.60b | 40.00±3.54bc | 38.17±4.39c |
处理 Treatment | 胞间CO2浓度 Intercellular CO2 concentration (Ci, ×10-6) | 净光合速率 Net photosynthetic rate (Pn, μmol·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, μmol·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr, mmol·m-2·s-1) | 水分利用率 Water utilization ratio (WUE, μmol·mmol-1) |
---|---|---|---|---|---|
RP | 263.65±3.75d | 24.79±0.72a | 502.42±12.14a | 17.35±0.57a | 1.51±0.08a |
FP | 276.48±6.62c | 22.13±0.25b | 491.02±16.97a | 16.47±0.60a | 1.41±0.06ab |
RS | 290.28±4.45b | 19.10±0.20c | 381.61±6.99bc | 14.68±0.18b | 1.31±0.02bc |
FS | 288.26±1.72b | 20.03±0.22c | 416.26±12.95b | 15.02±0.31b | 1.35±0.03b |
R0 | 313.29±3.83a | 17.79±0.48d | 371.35±24.67c | 13.97±0.21bc | 1.28±0.04bc |
F0 | 322.14±3.04a | 15.11±0.23e | 369.57±11.06c | 12.94±0.18c | 1.18±0.03c |
表3 不同种植方式对种植当年扁蓿豆叶片光合指标的影响
Table 3 Effects of different planting methods on photosynthetic index of M. ruthenica in the planting year
处理 Treatment | 胞间CO2浓度 Intercellular CO2 concentration (Ci, ×10-6) | 净光合速率 Net photosynthetic rate (Pn, μmol·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, μmol·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr, mmol·m-2·s-1) | 水分利用率 Water utilization ratio (WUE, μmol·mmol-1) |
---|---|---|---|---|---|
RP | 263.65±3.75d | 24.79±0.72a | 502.42±12.14a | 17.35±0.57a | 1.51±0.08a |
FP | 276.48±6.62c | 22.13±0.25b | 491.02±16.97a | 16.47±0.60a | 1.41±0.06ab |
RS | 290.28±4.45b | 19.10±0.20c | 381.61±6.99bc | 14.68±0.18b | 1.31±0.02bc |
FS | 288.26±1.72b | 20.03±0.22c | 416.26±12.95b | 15.02±0.31b | 1.35±0.03b |
R0 | 313.29±3.83a | 17.79±0.48d | 371.35±24.67c | 13.97±0.21bc | 1.28±0.04bc |
F0 | 322.14±3.04a | 15.11±0.23e | 369.57±11.06c | 12.94±0.18c | 1.18±0.03c |
处理 Treatment | 每枝花序数Inflorescence per branch | 每花序荚果数Number of pods per inflorescence | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 20.13±0.46a | 46.83±1.78a | 42.00±2.96a | 8.21±0.21a | 11.75±0.14a | 9.53±0.29a |
FP | 19.67±0.29ab | 46.17±3.56a | 39.33±3.00a | 8.09±0.21a | 11.41±0.13a | 9.24±0.26a |
RS | 18.71±0.30bc | 43.50±2.87ab | 37.50±2.08a | 7.00±0.27b | 10.65±0.15bc | 9.05±0.22ab |
FS | 19.14±0.27ab | 44.17±3.05ab | 40.17±1.99a | 7.12±0.28b | 10.85±0.28b | 9.13±0.29a |
R0 | 18.00±0.38c | 38.50±2.69b | 36.67±2.64a | 5.64±0.31c | 10.21±0.19cd | 8.38±0.18bc |
F0 | 17.79±0.41c | 36.83±2.87b | 35.17±1.90a | 5.61±0.27c | 9.72±0.19d | 7.87±0.24c |
处理 Treatment | 每荚果种子数Seeds per pod | 种子千粒重Thousand-seed weight (g) | ||||
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 4.58±0.12a | 5.93±0.28a | 4.31±0.43a | 1.81±0.02a | 1.93±0.02a | 1.82±0.01a |
FP | 4.59±0.11a | 5.61±0.23ab | 4.25±0.43a | 1.80±0.03a | 1.94±0.01a | 1.81±0.03a |
RS | 3.99±0.10bc | 4.68±0.33bc | 3.54±0.24ab | 1.71±0.04b | 1.84±0.01b | 1.78±0.03ab |
FS | 4.02±0.09b | 4.75±0.26bc | 3.62±0.35ab | 1.78±0.02b | 1.86±0.02b | 1.79±0.03a |
R0 | 3.72±0.09c | 4.18±0.41c | 3.46±0.24ab | 1.63±0.04c | 1.85±0.02b | 1.78±0.03ab |
F0 | 3.71±0.09c | 4.14±0.36c | 3.08±0.29b | 1.62±0.01c | 1.81±0.01b | 1.76±0.03b |
表 4 不同种植方式对扁蓿豆繁殖特征的影响
Table 4 Effects of different planting methods on reproductive characteristics of M. ruthenica
处理 Treatment | 每枝花序数Inflorescence per branch | 每花序荚果数Number of pods per inflorescence | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 20.13±0.46a | 46.83±1.78a | 42.00±2.96a | 8.21±0.21a | 11.75±0.14a | 9.53±0.29a |
FP | 19.67±0.29ab | 46.17±3.56a | 39.33±3.00a | 8.09±0.21a | 11.41±0.13a | 9.24±0.26a |
RS | 18.71±0.30bc | 43.50±2.87ab | 37.50±2.08a | 7.00±0.27b | 10.65±0.15bc | 9.05±0.22ab |
FS | 19.14±0.27ab | 44.17±3.05ab | 40.17±1.99a | 7.12±0.28b | 10.85±0.28b | 9.13±0.29a |
R0 | 18.00±0.38c | 38.50±2.69b | 36.67±2.64a | 5.64±0.31c | 10.21±0.19cd | 8.38±0.18bc |
F0 | 17.79±0.41c | 36.83±2.87b | 35.17±1.90a | 5.61±0.27c | 9.72±0.19d | 7.87±0.24c |
处理 Treatment | 每荚果种子数Seeds per pod | 种子千粒重Thousand-seed weight (g) | ||||
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
RP | 4.58±0.12a | 5.93±0.28a | 4.31±0.43a | 1.81±0.02a | 1.93±0.02a | 1.82±0.01a |
FP | 4.59±0.11a | 5.61±0.23ab | 4.25±0.43a | 1.80±0.03a | 1.94±0.01a | 1.81±0.03a |
RS | 3.99±0.10bc | 4.68±0.33bc | 3.54±0.24ab | 1.71±0.04b | 1.84±0.01b | 1.78±0.03ab |
FS | 4.02±0.09b | 4.75±0.26bc | 3.62±0.35ab | 1.78±0.02b | 1.86±0.02b | 1.79±0.03a |
R0 | 3.72±0.09c | 4.18±0.41c | 3.46±0.24ab | 1.63±0.04c | 1.85±0.02b | 1.78±0.03ab |
F0 | 3.71±0.09c | 4.14±0.36c | 3.08±0.29b | 1.62±0.01c | 1.81±0.01b | 1.76±0.03b |
图3 不同种植方式对扁蓿豆表现种子产量和实际种子产量的影响不同小写字母表示差异显著(P<0.05)。The different small letters mean the significant differences at P<0.05.
Fig.3 Effects of different planting methods on performance seed yield and actual seed yield of M. ruthenica
1 | Han H B, Shi W G, Li Z Y, et al. Research progress of resistance of Medicago ruthenica. Practacultural Science, 2011, 28(4): 631-635. |
韩海波, 师文贵, 李志勇, 等. 扁蓿豆的抗性研究进展. 草业科学, 2011, 28(4): 631-635. | |
2 | Chen L J, Xu C L, Yu X J, et al. Production performance and quality of 20 Medicago ruthenica germplasms in Wuwei City, Gansu Province. Grassland and Turf, 2015, 35(4): 5-11. |
陈陆军, 徐长林, 鱼小军, 等. 20份扁蓿豆材料在甘肃武威地区的生产性能与品质表现. 草原与草坪, 2015, 35(4): 5-11. | |
3 | Zhang Y T, Shi F L, Wu R N, et al. Progress in Medicago ruthenica breeding study. Chinese Journal of Grassland, 2018, 40(5): 102-108. |
张雨桐, 石凤翎, 乌日娜, 等. 扁蓿豆育种研究进展. 中国草地学报, 2018, 40(5): 102-108. | |
4 | Wu X P, Shen Y F, Wang H Q, et al. Analysis of genetic diversity and population genetic structure of Medicago archiducis-nolai and Medicago ruthenica populations based on cpDNA trnL-trnF sequences. Practacultural Science, 2016, 33(6): 1136-1146. |
吴小培, 沈迎芳, 王海庆, 等. 基于trnL-trnF序列的扁蓿豆和青藏扁蓿豆遗传多样性及其群体遗传结构分析. 草业科学, 2016, 33(6): 1136-1146. | |
5 | Wang J T, Zhao E Z. Production of forage seeds in China (2013). China Animal Industry, 2015(4): 26-27. |
王加亭, 赵恩泽. 我国牧草种子生产情况(2013年). 中国畜牧业, 2015(4): 26-27. | |
6 | Chen C Y. Ancient and modern changes of ecological environment in Longzhong. Meteorological Knowledge, 2006(3): 28-33. |
陈昌毓. 陇中古今生态环境巨变. 气象知识, 2006(3): 28-33. | |
7 | Shi S L, Cao W X, Yin G L, et al. Construction of eco-agriculture model based on integrated development of forage and crop in Longzhong semi-arid regions. Grassland and Turf, 2017, 37(5): 1-7. |
师尚礼, 曹文侠, 尹国丽, 等. 陇中干旱区草粮兼顾型生态农业模式构建. 草原与草坪, 2017, 37(5): 1-7. | |
8 | Yang C G. Characteristics of soil water and soil temperature for winter wheat with mulching in semiarid rain-fed regions. Lanzhou: Gansu Agricultural University, 2015. |
杨长刚. 半干旱雨养区覆盖种植冬麦田土壤水热效应. 兰州: 甘肃农业大学, 2015. | |
9 | Zhang Z Q, Chen W, Wu Y S, et al. Design and test of automatic punching seepage system for micro-ridge and plastic mulching potato side seeder. Journal of Arid Land Resources and Environment, 2018, 32(10): 203-208. |
张志强, 陈伟, 吴英思, 等. 马铃薯微垄覆膜侧播机种侧自动扎孔渗水系统设计与试验. 干旱区资源与环境, 2018, 32(10): 203-208. | |
10 | Han F X. Effects of mulching on soil temperature and moisture and growth of summer-autumn crops in semiarid rained regions. Lanzhou: Gansu Agricultural University, 2018. |
韩凡香. 旱地覆盖种植对夏秋作物土壤水热环境及生长的影响. 兰州: 甘肃农业大学, 2018. | |
11 | Li F M, Guo A H, Wei H, et al. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Research, 1999, 63(1): 79-86. |
12 | Li S Z, Fan T L, Zhao G, et al. Effects of different cultivation patterns on soil moisture, temperature, yield and quality of dryland maize. Acta Prataculturae Sinica, 2018, 27(4): 34-44. |
李尚中, 樊廷录, 赵刚, 等. 旱地玉米不同覆盖栽培模式的土壤水热特征及产量品质效应. 草业学报, 2018, 27(4): 34-44. | |
13 | Wang W D, Huo Y Z, Han C L. Effects of different mulching methods on soil water-fertilizer-heat condition and yield of maize. Water-Saving Irrigation, 2017(7): 38-41. |
王文达, 霍轶珍, 韩翠莲. 不同覆盖方式对土壤水肥热状况及玉米产量的影响.节水灌溉, 2017(7): 38-41. | |
14 | Kong M. Effects of plastic film mulching on maize development and soil ecological environment in the semi-arid loess area. Lanzhou: Lanzhou University, 2016. |
孔猛. 半干旱黄土区地膜覆盖对玉米生长及土壤生态环境的影响. 兰州: 兰州大学, 2016. | |
15 | Wu H J, Yao W T, Guo M L, et al. Influences of different film covering modes on soil moisture and yield of ‘Qingshu 9’ in arid area. Chinese Potato Journal, 2018, 32(2): 86-89. |
武汉军, 姚文涛, 郭美玲, 等. 干旱区不同覆膜方式对‘青薯9号’集雨保墒效果及产量的影响. 中国马铃薯, 2018, 32(2): 86-89. | |
16 | Huang K, He X Q, Li D M, et al. Effects of different mulching methods on characteristics of growth, yield and quality for potato in semi-arid area of Longzhong. Chinese Potato Journal, 2017, 31(5): 272-277. |
黄凯, 何小谦, 李德明, 等. 陇中半干旱区不同覆盖方式对马铃薯生长指标, 产量及品质的影响. 中国马铃薯, 2017, 31(5): 272-277. | |
17 | Ji X L, Zang J, Qiao W Y, et al. Effects of different mulching methods on yield and water use efficiency of potato. Agricultural Research in the Arid Areas, 2016, 34(6): 58-62. |
纪晓玲, 张静, 乔文远, 等. 不同覆盖方式对旱地马铃薯产量和水分利用效率的影响. 干旱地区农业研究, 2016, 34(6): 58-62. | |
18 | Wang F. Effect of mulching on soil temperature and yield of winter wheat in arid region. Lanzhou: Gansu Agricultural University, 2017. |
王芳. 覆盖对旱地冬小麦土壤温度及产量的影响. 兰州: 甘肃农业大学, 2017. | |
19 | Wang P, Guo X J, Zang L J, et al. Effects of different mulching patterns on soil hydrothermal characteristics and wheat yield. Bulletin of Soil and Water Conservation, 2017, 37(5): 69-75. |
王平, 郭小俊, 张丽娟, 等. 不同覆盖方式对小麦产量和土壤水热状况的影响. 水土保持通报, 2017, 37(5): 69-75. | |
20 | Song Y L, Yang C G, Li B W, et al. Effect of bundled straw mulching on yield of winter wheat and soil moisture in arid region. Journal of Triticeae Crops, 2016, 36(6): 765-772. |
宋亚丽, 杨长刚, 李博文, 等. 秸秆带状覆盖对旱地冬小麦产量及土壤水分的影响. 麦类作物学报, 2016, 36(6): 765-772. | |
21 | Hao L F, Li J, Li H Y, et al. Principal component and cluster analysis of phenotypic diversity of wild Medicago ruthenica germplasm resources in three ecological regions of Inner Mongolia. Journal of Northern Agriculture, 2017, 45(3): 6-12. |
郝林峰, 李俊, 李鸿雁, 等. 内蒙古3个生态区野生扁蓿豆种质资源表型多样性的主成分和聚类分析. 北方农业学报, 2017, 45(3): 6-12. | |
22 | Li H, Shi F L, Xiong M, et al. Effect of 60Co-γ ray irradiation on seed yields and component factors of Melilotoides ruthenicus (L.) sojak cv. zhilixing. Chinese Journal of Grassland, 2013, 35(6): 9-13, 39. |
李慧, 石凤翎, 熊梅, 等. 60Co-γ辐射对直立型扁蓿豆种子产量及构成因子的影响. 中国草地学报, 2013, 35(6): 9-13, 39. | |
23 | Li H Y, Li Z Y, Shi W G, et al. Path analysis on seed yield components of wild Medicago ruthenica. Acta Agrestia Sinica, 2012, 20(3): 479-483. |
李鸿雁, 李志勇, 师文贵, 等. 野生扁蓿豆单株种子产量与主要农艺性状的通径分析. 草地学报, 2012, 20(3): 479-483. | |
24 | Wang Y, Yu D F, Lin J X, et al. Determination of the appropriate harvest time of seed production in Medicago ruthenica. Heilongjiang Animal Science and Veterinary Medicine, 2015(5): 113-115. |
王颖, 于达夫, 蔺吉祥, 等. 扁蓿豆种子生产适宜收获时间的确定. 黑龙江畜牧兽医, 2015(5): 113-115. | |
25 | Jia Y Z, Wang C S. Wheat ridge cultivation experiment. Modern Agriculture, 1993(12): 13. |
贾玉柱, 王长生.小麦垄作栽培试验. 现代化农业, 1993(12): 13. | |
26 | Wang X L, Yuan H M, Chen D S, et al. Study on ridge planting and water-saving cultivation technology of spring wheat in Ningxia Yellow River irrigation area. Ningxia Journal of Agriculture and Forestry Science and Technology, 2005(3): 15-17. |
王小亮, 袁汉民, 陈东升, 等. 宁夏引黄灌区春小麦垄作节水栽培技术研究. 宁夏农林科技, 2005(3): 15-17. | |
27 | Zhang W F, Li L Y, Wei Y F, et al. The advantages and key technologies of cultivating leeks. Modern Agricultural Sciences and Technology, 2019(9): 58-59. |
张未芳, 栗利元, 魏一凡, 等. 细叶韭垄作栽培的优点及关键技术. 现代农业科技, 2019(9): 58-59. | |
28 | Deng H L, Zhang H J, Xiao R, et al. Effects of different covered-rainwater harvesting planting patterns on growth characteristics and yield of spring maize in semi-arid region in Loess Plateau. Journal of Maize Sciences, 2020, 28(3): 135-141. |
邓浩亮, 张恒嘉, 肖让, 等. 陇中旱塬不同覆盖集雨种植方式对春玉米生长特性和产量的影响. 玉米科学, 2020, 28(3): 135-141. | |
29 | Zhang W W, Wang P, Wang Y H, et al. Study on the factors of increasing yield of spring corn covered with plastic film mulching. Horticulture & Seed, 2000(2): 28-30. |
张万文, 王萍, 王彦华, 等. 春玉米地膜覆盖增产因素研究. 园艺与种苗, 2000(2): 28-30. | |
30 | Tang W. Effects of plastic-film mulch and straw mulch on growth and development of Vicia unijuga at Gannan region. Lanzhou: Lanzhou University, 2019. |
唐伟. 地膜或秸秆覆盖对甘南地区歪头菜(Vicia unijuga)生长和发育的影响. 兰州: 兰州大学, 2019. | |
31 | Jing Y Y, Xu C L, Jin L, et al. Effects of planting methods on the above-and below-ground growth characters of the alfalfa in the second year in alpine semiarid area. Chinese Journal of Grassland, 2018, 40(4): 56-61. |
景媛媛, 徐长林, 金玲, 等. 种植方式对高寒半干旱区苜蓿第二年地上及地下生长特征的影响. 中国草地学报, 2018, 40(4): 56-61. | |
32 | Zhang S F. Influence of plastic film mulching on soil moisture and temperature in wheat. Lanzhou: Gansu Agricultural University, 2010. |
张淑芳. 小麦地膜覆盖对土壤水分和温度的影响. 兰州: 甘肃农业大学, 2010. | |
33 | Li H, Wu J M, Chai S Y, et al. Effects of corn straw strip mulching on soil temperature and potato yield in Northwest arid land of China. Journal of Desert Research, 2018, 38(3): 592-599. |
李辉, 吴建民, 柴守玺, 等. 玉米秸秆带状覆盖对西北旱地土壤温度及马铃薯产量的影响. 中国沙漠, 2018, 38(3): 592-599. | |
34 | Xu L, Liu L, Liu Z, et al. Impacts of straw and degradable film mulching on quality and yield of garlic. Shandong Agricultural Sciences, 2015, 47(4): 43-45, 48. |
徐磊, 刘玲, 刘振, 等. 秸秆覆盖与可降解地膜覆盖对大蒜品质和产量的影响. 山东农业科学, 2015, 47(4): 43-45, 48. | |
35 | Mu H Y, Huang F Y, Zhang C, et al. Effects of different mulching patterns in autumn on soil water, soil temperature and water use efficiency in the semi-arid areas of Northwest China. Journal of Maize Sciences, 2018, 26(6): 86-93. |
牟鸿燕, 黄方圆, 张超, 等. 半干旱区不同秋覆盖方式对农田土壤水温效应及玉米水分利用效率的影响. 玉米科学, 2018, 26(6): 86-93. | |
36 | Xu D Q. Photosynthesis rate, photosynthesis efficiency and crop yield. Bulletin of Biology, 1999, 34(8): 8-10. |
许大全. 光合速率、光合效率与作物产量. 生物学通报, 1999, 34(8): 8-10. | |
37 | Xu C Z, Kong X M, Wang C, et al. Effect of sowing in ridge on root system leaves and yield components of summer maize. Journal of Maize Sciences, 2008, 16(1): 102-103. |
徐成忠, 孔晓民, 王超, 等. 垄作栽培对夏玉米根系和叶片生长发育及产量性状的影响研究. 玉米科学, 2008, 16(1): 102-103. | |
38 | Li S X, Wang Z H, Li S Q, et al. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agricultural Water Management, 2013, 116: 39-49. |
39 | Yu X L, Wu P T, Wang Y K, et al. Effects of different quantity of straw mulching on physiological character of winter wheat and soil moisture and temperature. Journal of Irrigation and Drainage, 2007, 26(4): 41-44. |
于晓蕾, 吴普特, 汪有科, 等. 不同秸秆覆盖量对冬小麦生理及土壤温、湿状况的影响. 灌溉排水学报, 2007, 26(4): 41-44. | |
40 | Zhang J, Wang W, Ji X L, et al. Effects of different covering methods on photosynthetic rate and yield of black bean. Journal of Yulin University, 2018, 28(4): 10-12. |
张静, 王雯, 纪晓玲, 等. 不同覆盖方式对黑豆光合速率及产量的影响. 榆林学院学报, 2018, 28(4): 10-12. | |
41 | Zhang C M, Zhao X Y, Yan H B, et al. Effects of film mulching modes and population density on photosynthesis characteristics and yield of mung bean in arid land, Crops, 2018(3): 108-115. |
张春明, 赵雪英, 闫虎斌, 等. 覆膜方式和密度对旱地绿豆光合特性及产量的影响. 作物杂志, 2018(3): 108-115. | |
42 | Mei S W, Zhu H Z, Wang S, et al. Effects of different mulching methods on soil moisture, nutrient, temperature status and corn yield. Journal of Irrigation and Drainage, 2020, 39(4): 68-73. |
梅四卫, 朱涵珍, 王术, 等. 不同覆盖方式对土壤水肥热状况以及玉米产量影响. 灌溉排水学报, 2020, 39(4): 68-73. | |
43 | Gu X B. Effect of planting patterns and nitrogen fertilization on soil environment and yield of winter oilseed rape. Yanglin: Northwest A & F University, 2018. |
谷晓博. 种植方式和施氮量对土壤环境及冬油菜产量的影响. 杨凌: 西北农林科技大学, 2018. | |
44 | Huang M, Wu J Z, Li Y J, et al. Effects of tillage method and straw mulching on grain yield and protein content in wheat and soil nitrate residue under a winter wheat and summer soybean crop rotation in drylands. Acta Prataculturae Sinica, 2018, 27(9): 34-44. |
黄明, 吴金芝, 李友军, 等. 耕作方式和秸秆覆盖对旱地麦豆轮作下小麦籽粒产量、蛋白质含量和土壤硝态氮残留的影响. 草业学报, 2018, 27(9): 34-44. | |
45 | Stagnari F, Galieni A, Speca S, et al. Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Research, 2014, 167: 51-63. |
46 | Fu X, Wang J, Zhang Q, et al. Effects of straw and plastic film mulching on soil nitrogen fractions and yield in the Weibei rainfed highland. Acta Ecologica Sinica, 2018, 38(19): 6912-6920. |
付鑫, 王俊, 张祺, 等. 秸秆和地膜覆盖对渭北旱作玉米农田土壤氮组分与产量的影响. 生态学报, 2018, 38(19): 6912-6920. | |
47 | Ma D, Chen L, Qu H, et al. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis. Agricultural Water Management, 2018, 2(2): 166-173. |
48 | Feng M, Liu Q L, Luo Z Y, et al. Effects of different corn stalk covering on soil water and heat and potato yield in farmland. Modern Agricultural Sciences and Technology, 2019(20): 47-48, 51. |
冯梅, 刘全亮, 罗中有, 等. 不同玉米秸秆覆盖模式对农田土壤水热及马铃薯产量的影响. 现代农业科技, 2019(20): 47-48, 51. | |
49 | Li Q H, Zhang L S. Yield and water use efficiency of dryland potato in response to plastic film mulching on the Loess Plateau. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2017, 68(2): 1-14. |
50 | Deng H L, Zhang H J, Xiao R, et al. Effects of different covering planting patterns on soil moisture, temperature characteristics and maize yield in semi-arid region of the Loess Plateau. Scientia Agricultura Sinica, 2020, 53(2): 273-287. |
邓浩亮, 张恒嘉, 肖让, 等. 陇中半干旱区不同覆盖种植方式对土壤水热效应和玉米产量的影响. 中国农业科学, 2020, 53(2): 273-287. | |
51 | Chen Y Z, Chai S X, Tian H H, et al. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agricultural Water Management, 2019, 211(1): 142-151. |
52 | Han J G. Forage seed science. Beijing: China Agricultural University Press, 2000. |
韩建国. 牧草种子学. 北京: 中国农业大学出版社, 2000. | |
53 | Li H X, Shi F L. Current situation of yield improvement and seed production of Melilotoides ruthenica in China. Grassland and Turf, 2006(3): 16-18. |
李海贤, 石凤翎. 我国扁蓿豆种子生产研究现状及提高产量的途径. 草原与草坪, 2006(3): 16-18. | |
54 | Li H X, Shi F L, Gao C P. Primary study on flowering behaviour and the shedding of flowering and pod of Melilotoides ruthenica. Seed, 2006, 25(4): 11-15. |
李海贤, 石凤翎, 高翠萍. 扁蓿豆开花习性及花荚脱落现象的初步研究. 种子, 2006, 25(4): 11-15. | |
55 | Feng F, Zhang Q P, Wang Q, et al. Pollution of mulching plastic film and controlling measures. Territory & Natural Resources Study, 2015(1): 42-43. |
冯芳, 张起鹏, 王倩, 等. 农业地膜应用危害及其防治措施探讨. 国土与自然资源研究, 2015(1): 42-43. | |
56 | Immirzi B, Santagata G, Vox G, et al. Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch. Biosystems Engineering, 2009, 102(4): 461-472. |
[1] | 伏兵哲, 周燕飞, 李雪, 倪彪, 高雪芹. 宁夏引黄灌区羊草水肥耦合效应研究[J]. 草业学报, 2020, 29(5): 98-108. |
[2] | 冯军, 石超, 门胜男, Hafiz Athar Hussain, 柯剑鸿, Linna Cholidah, 陈锦芬, 郭欣, 武海燕, 冉泰霖, 向信华, 王龙昌. 不同降雨下旱地油菜节水节肥技术对土壤养分及酶活性的调控效应[J]. 草业学报, 2020, 29(4): 51-62. |
[3] | 张梦, 李本银, 刘春增, 吕玉虎, 张成兰, 陈雪青, 曹卫东. 紫云英荚果分层成熟特性及其种子产量研究[J]. 草业学报, 2020, 29(2): 64-72. |
[4] | 刘凯强, 刘文辉, 魏小星, 贾志锋, 石正海. 不同播量和行距对‘青燕1号’燕麦种子产量的影响[J]. 草业学报, 2020, 29(2): 82-91. |
[5] | 张旭, 聂刚, 黄琳凯, 唐露, 周洲, 刘福, 周洁, 邹静, 任思彦, 张新全. 植物生长调节剂对鸭茅种子产量的影响[J]. 草业学报, 2019, 28(6): 93-100. |
[6] | 刘慧, NZABANITAClement, 李彦忠. 苜蓿籽蜂寄生沙打旺种子的时期研究[J]. 草业学报, 2019, 28(4): 146-156. |
[7] | 王贺正, 黄明, 张均, 马超, 吴金芝, 李友军, 陈明灿, 付国占. 秸秆覆盖量对旱地小麦结实期抗氧化性的影响[J]. 草业学报, 2019, 28(11): 96-104. |
[8] | 黄明, 吴金芝, 李友军, 王贺正, 付国占, 陈明灿, 李学来, 马俊利. 耕作方式和秸秆覆盖对旱地麦豆轮作下小麦籽粒产量、蛋白质含量和土壤硝态氮残留的影响[J]. 草业学报, 2018, 27(9): 34-44. |
[9] | 骆凯, 张吉宇, 王彦荣. 种植密度和施磷肥对黄花草木樨种子产量的影响[J]. 草业学报, 2018, 27(7): 112-119. |
[10] | 钟华,董洁,董宽虎. 盐胁迫对扁蓿豆幼苗脯氨酸积累及其代谢关键酶活性的影响[J]. 草业学报, 2018, 27(4): 189-194. |
[11] | 张美艳, 薛世明, 南志标. 纳罗克非洲狗尾草良种繁育技术研究进展[J]. 草业学报, 2018, 27(1): 195-203. |
[12] | 陈玲玲, 任伟, 毛培胜, 乌仁图雅, 王胜男, 梁庆伟. 氮素对紫花苜蓿种子产量与氮累积动态变化的影响[J]. 草业学报, 2017, 26(6): 98-104. |
[13] | 肖红, 徐长林, 张德罡, 张建文, 杨海磊, 柴锦隆, 潘涛涛, 王艳, 鱼小军. 阴山扁蓿豆光合特性对模拟牦牛、藏羊践踏和降水的短期响应[J]. 草业学报, 2017, 26(2): 43-52. |
[14] | 沈迎芳, 马超, 吴小培, 张业猛, 王海庆. 扁蓿豆SK2型脱水素基因MrDHN3的异源表达提高大肠杆菌对盐和高温胁迫的抗性[J]. 草业学报, 2016, 25(8): 118-127. |
[15] | 陈冬冬, 王彦荣, 韩云华. 灌溉次数和施肥量对甘肃引黄灌区紫花苜蓿种子产量的影响[J]. 草业学报, 2016, 25(3): 154-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||