草业学报 ›› 2021, Vol. 30 ›› Issue (10): 41-52.DOI: 10.11686/cyxb2020389
刘慧霞1(), 董乙强1,3,4, 崔雨萱1, 刘星宏1, 何盘星1, 孙强2(), 孙宗玖1,3,4()
收稿日期:
2020-08-19
修回日期:
2020-10-26
出版日期:
2021-09-16
发布日期:
2021-09-16
通讯作者:
孙强,孙宗玖
作者简介:
Corresponding author. E-mail: nmszj@21cn.com基金资助:
Hui-xia LIU1(), Yi-qiang DONG1,3,4, Yu-xuan CUI1, Xing-hong LIU1, Pan-xing HE1, Qiang SUN2(), Zong-jiu SUN1,3,4()
Received:
2020-08-19
Revised:
2020-10-26
Online:
2021-09-16
Published:
2021-09-16
Contact:
Qiang SUN,Zong-jiu SUN
摘要:
为探究新疆阿勒泰地区荒漠草地土壤有机碳空间分布特征,采用路线调查和典型样地布设相结合的方法确定104个样地,对0~5 cm、5~10 cm、10~20 cm土层土壤有机碳含量进行测定,同时运用数量生态学和地统计学方法,揭示荒漠土壤有机碳含量及密度空间变异的影响因素。结果表明:0~20 cm荒漠土壤有机碳含量为0.98~11.80 g·kg-1、平均值为3.79 g·kg-1,土壤有机碳密度为257.57~2904.19 g·m-2、平均值为1057.49 g·m-2;随土层深度的增加,土壤有机碳含量(0~5 cm,5~10 cm,10~20 cm)及土壤有机碳密度(0~10 cm,10~20 cm)呈现降低趋势。高值区均主要集中在富蕴县北部地区,低值区主要分布在哈巴河县、布尔津县和福海县南部地区;在0~20 cm土层中,不同荒漠亚类土壤有机碳含量及密度均表现为土质荒漠>砾砂质荒漠>砾石质荒漠>沙质荒漠,且土质荒漠土壤有机碳含量、有机碳密度分别是沙质荒漠土壤的1.74、1.72倍(P<0.05);从冗余分析结果来看,各环境因子对土壤有机碳的实际解释总量为30.93%,其中植被覆盖度、土石比、根部土壤湿度是引起阿勒泰地区荒漠草地土壤有机碳变化的主导因素。总之,研究结果更新与补充了阿勒泰地区荒漠草地土壤有机碳库数据,初步阐明了有机碳变化的主导因素,为荒漠草地管理和可持续利用及碳预算提供资料支撑。
刘慧霞, 董乙强, 崔雨萱, 刘星宏, 何盘星, 孙强, 孙宗玖. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J]. 草业学报, 2021, 30(10): 41-52.
Hui-xia LIU, Yi-qiang DONG, Yu-xuan CUI, Xing-hong LIU, Pan-xing HE, Qiang SUN, Zong-jiu SUN. Environmental factors influencing soil organic carbon and its characteristics in desert grassland in Altay, Xinjiang[J]. Acta Prataculturae Sinica, 2021, 30(10): 41-52.
土层 Soil layer (cm) | 变量 Variable | 均值 Mean | 中位数 Median | 标准差 Standard deviation | 偏度 Skewness | 峰度 Kurtosis | 最小值 Min | 最大值 Max | 变异系数 Coefficient of variation (%) | P值 P-value |
---|---|---|---|---|---|---|---|---|---|---|
0~5 | SOC (g·kg-1) | 4.43 | 3.83 | 2.55 | 1.59 | 3.68 | 0.89 | 15.51 | 57.56 | 0.16 |
SOCD (g·m-2) | 313.07 | 261.36 | 168.74 | 1.18 | 1.22 | 80.03 | 820.88 | 53.90 | 0.06 | |
5~10 | SOC (g·kg-1) | 3.71 | 3.16 | 2.11 | 1.64 | 3.65 | 0.50 | 11.68 | 56.87 | 0.11 |
SOCD (g·m-2) | 265.35 | 232.09 | 143.11 | 1.35 | 2.21 | 44.81 | 796.13 | 53.93 | 0.10 | |
10~20 | SOC (g·kg-1) | 3.51 | 3.16 | 1.87 | 1.08 | 1.48 | 0.92 | 10.00 | 53.28 | 0.10 |
SOCD (g·m-2) | 479.07 | 421.25 | 259.45 | 1.09 | 1.13 | 99.06 | 1287.17 | 54.16 | 0.06 | |
0~20 | SOC (g·kg-1) | 3.79 | 3.64 | 1.99 | 1.44 | 3.05 | 0.98 | 11.80 | 52.51 | 0.17 |
SOCD (g·m-2) | 1057.49 | 945.87 | 534.91 | 1.19 | 1.53 | 257.57 | 2904.19 | 50.58 | 0.19 |
表1 阿勒泰地区荒漠草地表层土壤有机碳含量及密度的描述性统计
Table 1 Descriptive statistics of soil organic carbon content and density of desert grassland in Altay region
土层 Soil layer (cm) | 变量 Variable | 均值 Mean | 中位数 Median | 标准差 Standard deviation | 偏度 Skewness | 峰度 Kurtosis | 最小值 Min | 最大值 Max | 变异系数 Coefficient of variation (%) | P值 P-value |
---|---|---|---|---|---|---|---|---|---|---|
0~5 | SOC (g·kg-1) | 4.43 | 3.83 | 2.55 | 1.59 | 3.68 | 0.89 | 15.51 | 57.56 | 0.16 |
SOCD (g·m-2) | 313.07 | 261.36 | 168.74 | 1.18 | 1.22 | 80.03 | 820.88 | 53.90 | 0.06 | |
5~10 | SOC (g·kg-1) | 3.71 | 3.16 | 2.11 | 1.64 | 3.65 | 0.50 | 11.68 | 56.87 | 0.11 |
SOCD (g·m-2) | 265.35 | 232.09 | 143.11 | 1.35 | 2.21 | 44.81 | 796.13 | 53.93 | 0.10 | |
10~20 | SOC (g·kg-1) | 3.51 | 3.16 | 1.87 | 1.08 | 1.48 | 0.92 | 10.00 | 53.28 | 0.10 |
SOCD (g·m-2) | 479.07 | 421.25 | 259.45 | 1.09 | 1.13 | 99.06 | 1287.17 | 54.16 | 0.06 | |
0~20 | SOC (g·kg-1) | 3.79 | 3.64 | 1.99 | 1.44 | 3.05 | 0.98 | 11.80 | 52.51 | 0.17 |
SOCD (g·m-2) | 1057.49 | 945.87 | 534.91 | 1.19 | 1.53 | 257.57 | 2904.19 | 50.58 | 0.19 |
图2 不同地区土壤有机碳含量及密度分布特征不同字母表示不同地区间差异显著(P<0.05),下同。ALT:阿勒泰市;BEJ:布尔津县;HBH:哈巴河县;FH:福海县;FY:富蕴县;JMN:吉木乃县;QH:青河县。 Different letters indicate significant differences among different regions (P<0.05),the same below. ALT: Altay City; BEJ: Burjin County; HBH: Habahe County; FH: Fuhai County; FY: Fuyun County; JMN: Jeminay County; QH: Qinghe County.
Fig. 2 Distribution characteristics of soil organic carbon content and density in different regions
图3 阿勒泰地区荒漠草地0~20 cm土壤有机碳含量及密度空间分布
Fig.3 Spatial distribution of soil organic carbon content and density in desert grassland at 0-20 cm in Altay region
图4 0~20 cm土壤有机碳含量及密度预测值与实测值线性相关性分析
Fig. 4 Linear correlation analysis between predicted and measured values of soil organic carbon content and density in 0-20 cm soil
项目 Item | 统计量 Statistic | 0~5 cm | 5~10 cm | 10~20 cm | 0~20 cm | |||||
---|---|---|---|---|---|---|---|---|---|---|
第1轴Axis1 | 第2轴Axis2 | 第1轴Axis1 | 第2轴Axis2 | 第1轴Axis1 | 第2轴Axis2 | 第1轴Axis1 | 第2轴Axis2 | |||
冗余分析RDA | 特征值Characteristic value | 0.32 | 0.03 | 0.29 | 0.03 | 0.24 | 0.08 | 0.26 | 0.05 | |
解释量 Explain content (%) | 32.01 | 34.69 | 29.39 | 32.74 | 24.07 | 31.79 | 25.59 | 30.93 | ||
变量-环境因子关系Variable-environment correlations | 0.57 | 0.95 | 0.55 | 0.95 | 0.51 | 0.93 | 0.52 | 0.97 | ||
累计解释量 Cumulative interpretation (%) | 92.28 | 100.00 | 89.75 | 100.00 | 75.72 | 100.00 | 82.73 | 100.00 | ||
置换检验 Displacement | 所有轴 All axis | F | 3.1 | 2.9 | 2.7 | 2.6 | ||||
P | 0.002 | 0.002 | 0.002 | 0.002 |
表2 土壤有机碳含量及密度与环境因子的RDA二维排序结果
Table 2 RDA ranking results of soil organic carbon content, density and environmental factors
项目 Item | 统计量 Statistic | 0~5 cm | 5~10 cm | 10~20 cm | 0~20 cm | |||||
---|---|---|---|---|---|---|---|---|---|---|
第1轴Axis1 | 第2轴Axis2 | 第1轴Axis1 | 第2轴Axis2 | 第1轴Axis1 | 第2轴Axis2 | 第1轴Axis1 | 第2轴Axis2 | |||
冗余分析RDA | 特征值Characteristic value | 0.32 | 0.03 | 0.29 | 0.03 | 0.24 | 0.08 | 0.26 | 0.05 | |
解释量 Explain content (%) | 32.01 | 34.69 | 29.39 | 32.74 | 24.07 | 31.79 | 25.59 | 30.93 | ||
变量-环境因子关系Variable-environment correlations | 0.57 | 0.95 | 0.55 | 0.95 | 0.51 | 0.93 | 0.52 | 0.97 | ||
累计解释量 Cumulative interpretation (%) | 92.28 | 100.00 | 89.75 | 100.00 | 75.72 | 100.00 | 82.73 | 100.00 | ||
置换检验 Displacement | 所有轴 All axis | F | 3.1 | 2.9 | 2.7 | 2.6 | ||||
P | 0.002 | 0.002 | 0.002 | 0.002 |
图6 土壤有机碳含量及密度与环境因子冗余分析实心箭头代表各土层的有机碳含量及密度,SOC:土壤有机碳含量,SOCD:土壤有机碳密度;空心箭头代表各环境因子, AT:≥10 ℃年积温;MAP:年均降水;MAT:年均温度;BD:土壤容重;SRR:土石比;Cov:植被覆盖度;ABG:地上生物量;GSP:生长季降水;GST:生长季温度;Eva:蒸散发;SSM:表层土壤湿度;RSM:根部土壤湿度;SIF:平均叶绿素荧光; EC:电导率。下同。The solid arrows represdfdent the organic carbon content and density of each soil layer, SOC: Soil organic carbon content, SOCD: Soil organic carbon density; The hollow arrows represent various environmental factors, AT: ≥10 ℃ annual accumulated temperature; MAP: Average annual precipitation; MAT: Average annual temperature; BD: Soil bulk density; SRR: Soil-rock ratio; Cov: Vegetation coverage; ABG: Above-ground biomass; GSP: Growing season precipitation; GST: Growing season temperature; Eva: Evapotranspiration; SSM: Surface soil temperature; RSM: Root soil moisture; SIF: Annual average chlorophyll fluorescence value;EC: Electrical conductivity. The same below.
Fig.6 Redundant analysis of soil organic carbon content, carbon density, and environmental factors
图7 环境因子偏冗余分析*表示各环境因子的蒙特卡罗置换检验结果P<0.05,达显著水平。* Indicates the Monte Carlo permutation test results of each environmental factor P<0.05, reaching a significant level.
Fig.7 Partial redundancy analysis of influence factors
1 | Wang S Q, Zhou C H. Estimating soil carbon reservior of terrestrial ecosystem in China. Geographical Research, 1999, 18(4): 14-21. |
王绍强, 周成虎. 中国陆地土壤有机碳库的估算. 地理研究, 1999, 18(4): 14-21. | |
2 | Scharlemann J P, Tanner E V, Hiederer R, et al. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 2014, 5(1): 81-91. |
3 | Brevik E C, Cerdà A, Mataix-Solera J, et al. The interdisciplinary nature of soil. Soil, 2015, 1(1): 117-129. |
4 | Feng S J, Zhao Y Y, Li Y H, et al. The differences and influencing factors of topsoil organic carbon storage in typical steppe of Inner Mongolia. Chinese Journal of Grassland, 2019, 41(2): 118-122. |
丰思捷, 赵艳云, 李元恒, 等. 内蒙古典型草原表层土壤有机碳储量差异及影响因素. 中国草地学报, 2019, 41(2): 118-122. | |
5 | Chen C, Hu K L, Zhang L E, et al. Estimation and spatial distribution of soi organic carbon density in alluvial plain area. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 64-71. |
陈冲, 胡克林, 张玲娥, 等. 冲积平原区土壤碳密度估算及其空间分布. 农业工程学报, 2014, 30(7): 64-71. | |
6 | Tang X, Zhao X, Bai Y, et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 2018, 115(16): 4021-4026. |
7 | Ge J, Xu W, Liu Q, et al. Patterns and environmental controls of soil organic carbon density in Chinese shrublands. Geoderma, 2020, 363: 114161. |
8 | Yang H T, Wang Z R, Jia R L. Distribution and storage of soil organic carbon across the desert grasslands in the Southeastern fringe of the Tengger Desert, China. Chinese Journal of Plant Ecology, 2018, 42(3): 288-296. |
杨昊天, 王增如, 贾荣亮. 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征. 植物生态学报, 2018, 42(3): 288-296. | |
9 | Fu H, Chen Y M, Wang Y R, et al. Organic carbon content in major grassland types in Alex, Inner Mongolia. Acta Ecologica Sinica, 2004, 24(3): 469-476. |
傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素. 生态学报, 2004, 24(3): 469-476. | |
10 | Sun Z J, An S Z, Duan J J. Effect of enclosure on vegetation and soil nutrient of sagebrush desert grassland in Xinjiang. Arid Zone Research, 2009, 26(6): 109-114. |
孙宗玖, 安沙舟, 段娇娇. 围栏封育对新疆蒿类荒漠草地植被及土壤养分的影响. 干旱区研究, 2009, 26(6): 109-114. | |
11 | Li R X. The research of grassland carbon sequestration potential in Xinjiang. Urumqi: Xinjiang Agricultural University, 2016. |
李瑞霞. 新疆草地固碳潜力研究. 乌鲁木齐: 新疆农业大学, 2016. | |
12 | Evans R D, Koyama A, Sonderegger D L, et al. Greater ecosystem carbon in the Mojave desert after ten years exposure to elevated CO2. Nature Climate Change, 2014, 4(5): 394-397. |
13 | Xu P. Grassland resources and their utilization in Xinjiang. Urumqi: Xinjiang Science and Technology Health Press, 1993: 105-172. |
许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993: 105-172. | |
14 | Ping X Y, Lin C C, Bai Y, et al.The ecological effects of planting Apocynum venetum in the plain desert of the Altay Region, Xinjiang Province. Acta Prataculturae Sinica, 2014, 23(2): 49-58. |
平晓燕, 林长存, 白宇, 等. 新疆阿勒泰平原荒漠罗布麻种植区的生态效益评价. 草业学报, 2014, 23(2): 49-58. | |
15 | Guo Z G, Liang T G, Liu X Y. Features of grassland resources and their classified management in Alatai region of Xinjiang. Chinese Journal of Applied Ecology, 2004, 15(9): 1594-1598. |
郭正刚, 梁天刚, 刘兴元. 新疆阿勒泰地区草地类型特征及其分类经营. 应用生态学报, 2004, 15(9): 1594-1598. | |
16 | Shayila·S. Analysis on typical grassland types and their productivity changes in Altay mountain, Xinjiang. Tai’an: Shandong Agricultural University, 2011. |
沙依拉·沙尔合提. 新疆阿勒泰山典型草原类型及其草地生产力变化分析. 泰安: 山东农业大学, 2011. | |
17 | Bao S D. Soil agrochemical analysis (Third Edition). Beijing: China Agricultural Publishing House, 2005: 25-109. |
鲍士旦.土壤农化分析(第三版).北京: 中国农业出版社, 2005: 25-109. | |
18 | Brecht M, Miralles D G, Hans L, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 2017, 10(5): 1903-1925. |
19 | Li X, Xiao J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sensing, 2019, 11(5): 517. |
20 | Yang W R, Wang R S, Huang J L, et al. Application of inverse distance weighted interpolation method in contaminated site assessment. Chinese Journal of Applied Ecology, 2007, 18(9): 2013-2018. |
阳文锐, 王如松, 黄锦楼, 等. 反距离加权插值法在污染场地评价中的应用. 应用生态学报, 2007, 18(9): 2013-2018. | |
21 | Leps J, Smilauer P. Multivariate analysis of ecological data using Canoco. Cambridge: Cambridge University Press, 2003: 50-51. |
22 | Wu Y S, Ma W L, Li H, et al. Seansonal variations of soil organic carbon and microbial biomass carbon in degraded desert steppes of Inner Mongolia. Chinese Journal of Applied Ecology, 2010, 21(2): 312-316. |
吴永胜, 马万里, 李浩, 等. 内蒙古退化荒漠草原土壤有机碳和微生物生物量碳含量的季节变化. 应用生态学报, 2010, 21(2): 312-316. | |
23 | Knapp A K, Briggs J M, Collins S L, et al. Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 2008, 14: 615-623. |
24 | Peng F, Xue X, You Q, et al. Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet plateau. Ecological Indicators, 2018, 93: 572-580. |
25 | Wang L H, Xue J Y, Xie Y, et al. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China. Chinese Journal of Plant Ecology, 2018, 42(3): 297-306. |
王丽华, 薛晶月, 谢雨, 等. 不同气候类型下四川草地土壤有机碳空间分布及影响因素. 植物生态学报, 2018, 42(3): 297-306. | |
26 | Li B Y, Ma H J, Zhuang X C, et al. Characteristics of diurnal variation of precipitation in warm season in Altay of Xinjiang during 2010-2016. Journal of Arid Meteorology, 2017(5): 91-99. |
李博渊, 马宏君, 庄晓翠, 等. 2010-2016年新疆阿勒泰地区暖季降水日变化特征. 干旱气象, 2017(5): 91-99. | |
27 | Cao C Y, Jiang D M, Quan G J, et al. Soil physical and chemical characters changes of Caragana microphylla plantation for sand fixation in Keerqin sandy land. Journal of Soil and Water Conservation, 2004, 18(6): 108-111, 131. |
曹成有, 蒋德明, 全贵静, 等. 科尔沁沙地小叶锦鸡儿人工固沙区土壤理化性质的变化. 水土保持学报, 2004, 18(6): 108-111, 131. | |
28 | Geng Q Q, Yang J Y, Li F S, et al. Adaptative characteristics of leaf epidermis micromorphology of Caragana sp. in different climates and environments in Inner Mongolia plateau. Chinese Journal of Applied & Environmental Biology, 2019, 25(2): 281-290. |
耿倩倩, 杨九艳, 李奉时, 等. 内蒙古高原锦鸡儿属地理替代种植物叶表皮微形态对不同气候环境的适应特征. 应用与环境生物学报, 2019, 25(2): 281-290. | |
29 | Shen R C, Xu M, Fang C M, et al. Thermal adaptation of soil microbial respiration under global warming: Evidence, mechanisms and controversies. Acta Ecologica Sinica, 2018, 38(1): 11-19. |
沈瑞昌, 徐明, 方长明, 等. 全球变暖背景下土壤微生物呼吸的热适应性: 证据、机理和争议. 生态学报, 2018, 38(1): 11-19. | |
30 | Zhang W T, Chen S, Liu Y H, et al. Soil bulk density variation of grassland in Ili valley and the measurement standardization. Xinjiang Agricultural Sciences, 2017, 54(1): 165-170. |
张文太, 陈诗, 刘耘华, 等. 伊犁河谷草地土壤容重的变异性与测定标准化. 新疆农业科学, 2017, 54(1): 165-170. | |
31 | Du Y, Xing P F, Jia Z N, et al. Spatial variation and driving factors of carbon and nitrogen density of Artemisia sacrorum communities in Shanxi Province. Acta Agrestia Sinica, 2020, 28(1): 170-176. |
杜艺, 邢鹏飞, 贾镇宁, 等. 山西铁杆蒿草地群落碳、氮密度区域差异及其驱动因素. 草地学报, 2020, 28(1): 170-176. | |
32 | Xi J Y, Bai W, Yin P S, et al. Effects of simulated warming on soil organic carbon composition and biomass in alpine swamp meadow in the headwaters region of the Yangtze River. Ecological Science, 2019, 38(1): 92-101. |
奚晶阳, 白炜, 尹鹏松, 等. 模拟增温对长江源区高寒沼泽草甸土壤有机碳组分与植物生物量的影响研究. 生态科学, 2019, 38(1): 92-101. | |
33 | Wang X Y, Zhao X Y, Li Y L, et al. Characteristics of litter migration in habitat units of dunes in the Horqin sandy land. Journal of Desert Research, 2016, 36(1): 167-173. |
王新源, 赵学勇, 李玉霖, 等. 科尔沁沙地沙丘生境单元凋落物运移特征. 中国沙漠, 2016, 36(1): 167-173. | |
34 | Chen X T, Xu T L, Li X J, et al. Soil organic concentrations and the influencing factors in natural ecosystem of northern China. Chinese Journal of Ecology, 2019, 38(4): 1133-1140. |
陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素. 生态学杂志, 2019, 38(4): 1133-1140. | |
35 | Chang H T, Zhao J, Liu J N, et al. Changes in soil physico-chemical properties and related fractal featyres during conversion of cropland into agroforestry and grassland: A case study of desertified steppe in Ningxia. Acta Prataculturae Sinica, 2019, 28(7): 14-25. |
常海涛, 赵娟, 刘佳楠, 等. 退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例. 草业学报, 2019, 28(7): 14-25. | |
36 | Jin W H, Yang J S, Wang X P. Spatial distribution of organic carbon in coastal saline soil and its correlation with reclamation age. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(5): 89-94. |
金雯晖, 杨劲松, 王相平. 滩涂土壤有机碳空间分布与围垦年限相关性分析. 农业工程学报, 2013, 29(5): 89-94. |
[1] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[2] | 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14. |
[3] | 季波, 何建龙, 吴旭东, 王占军, 谢应忠, 蒋齐. 宁夏典型天然草地土壤有机碳及其活性组分变化特征[J]. 草业学报, 2021, 30(1): 24-35. |
[4] | 徐绮雯, 马淑敏, 朱波, 张小短, 邢毅, 段美春, 王龙昌. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J]. 草业学报, 2020, 29(5): 121-131. |
[5] | 王晓娇, 齐鹏, 蔡立群, 陈晓龙, 谢军红, 甘慧炯, 张仁陟. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响[J]. 草业学报, 2020, 29(10): 58-69. |
[6] | 于双, 许冬梅, 许爱云, 刘金龙, 陶利波. 不同恢复措施对宁夏荒漠草原土壤碳氮储量的影响[J]. 草业学报, 2019, 28(3): 12-19. |
[7] | 张苗苗, 陈伟, 林丽, 张德罡, 吴玉鑫, 肖海龙. 青海省不同高寒草地土壤主要养分及可溶性有机碳特性研究[J]. 草业学报, 2019, 28(3): 20-28. |
[8] | 王旭洋, 李玉强, 连杰, 罗永清, 牛亚毅, 龚相文. CENTURY模型在不同生态系统的土壤有机碳动态预测研究进展[J]. 草业学报, 2019, 28(2): 179-189. |
[9] | 于双, 陶利波, 许冬梅, 许爱云, 刘金龙. 封育对荒漠草原土壤有机碳及其活性组分的影响[J]. 草业学报, 2019, 28(2): 190-196. |
[10] | 田梦, 孙宗玖, 李莹, 李培英, 谢开云. 蒿类荒漠草地土壤种子库特征及其萌发植物多样性对降水增加的响应[J]. 草业学报, 2019, 28(12): 17-28. |
[11] | 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J]. 草业学报, 2019, 28(12): 197-204. |
[12] | 郭春秀, 马俊梅, 何芳兰, 王理德, 李金辉, 安富博, 袁宏波, 刘开琳. 石羊河下游不同类型荒漠草地黑果枸杞群落结构特征及土壤特性研究[J]. 草业学报, 2018, 27(9): 14-24. |
[13] | 蒋腊梅, 杨晓东, 杨建军, 何学敏, 吕光辉. 不同管理模式对干旱区草地土壤有机碳氮库的影响及其影响因素探究[J]. 草业学报, 2018, 27(12): 22-33. |
[14] | 汪雪琴, 刘廷玺, 张俊怡, 王冠丽, 段利民. 科尔沁草甸湿地土壤碳氮剖面分布及生长季动态特征[J]. 草业学报, 2018, 27(12): 34-44. |
[15] | 刘栋, 崔政军, 高玉红, 剡斌, 张中凯, 吴兵, 谢亚萍, 牛俊义. 不同轮作序列对旱地胡麻土壤有机碳稳定性的影响[J]. 草业学报, 2018, 27(12): 45-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||