欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2021, Vol. 30 ›› Issue (11): 1-12.DOI: 10.11686/cyxb2020569

• 研究论文 •    

基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算

张殿岱1(), 王雪梅1,2(), 昝梅1,2   

  1. 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
    2.新疆维吾尔自治区重点实验室,新疆干旱区湖泊环境与资源实验室,新疆 乌鲁木齐 830054
  • 收稿日期:2020-12-16 修回日期:2021-05-10 出版日期:2021-10-19 发布日期:2021-10-19
  • 通讯作者: 王雪梅
  • 作者简介:Corresponding author. E-mail: wangxm_1225@sina.com
    张殿岱(1994-),女,新疆伊犁人,在读硕士。E-mail: 1543920079@qq.com
  • 基金资助:
    新疆维吾尔自治区重点实验室招标课题(XJNUSYS2019A14);国家自然科学基金(41561051);新疆维吾尔自治区自然科学基金(2020D01A79)

Estimation of vegetation aboveground biomass in the Wei-Ku Oasis based on Landsat 8 OLI images

Dian-dai ZHANG1(), Xue-mei WANG1,2(), Mei ZAN1,2   

  1. 1.College of Geography Science and Tourism,Xinjiang Normal University,Urumqi 830054,China
    2.Xinjiang Uygur Autonomous Region Key Laboratory,Xinjiang Laboratory of Lake Environment and Resources in Arid Zone,Urumqi 830054,China
  • Received:2020-12-16 Revised:2021-05-10 Online:2021-10-19 Published:2021-10-19
  • Contact: Xue-mei WANG

摘要:

干旱区绿洲植被地上生物量估算研究可为绿洲生态系统稳定性评价与区域碳储量估算提供重要依据。以渭干河-库车河三角洲绿洲为研究区,利用ENVI 5.3软件对Landsat 8 OLI 影像数据进行预处理,提取反映植被地上生物量信息的植被指数和波段因子,并结合样地实测数据,采用常规统计模型、多元逐步回归和偏最小二乘回归方法建立研究区植被地上生物量最优估测模型,从而揭示该绿洲植被地上生物量的空间分布特征。结果表明:1)所选的20个遥感因子与实测植被地上生物量呈极显著正相关关系,相关系数为0.5~0.7(P<0.01)。2)乔木与灌木地上生物量最优估测模型均为多元逐步回归模型,草本与农作物地上生物量的估测模型以偏最小二乘回归模型为最优,模型验证决定系数均在0.6以上,均方根误差和平均绝对误差均较小。3)研究区植被地上生物量主要在280~1450 g·m-2 分布,面积约为6973.82 km2,低水平地上生物量(ABG<65 g·m-2)分布区域约占研究区总面积的15.02%。地上生物量由高到低依次为:农作物>乔木>灌木>草本。根据不同的植被类型,基于地物光谱特征构建的遥感估测模型可准确估算干旱区绿洲植被地上生物量,并对其空间分布特征进行遥感定量反演。

关键词: 植被地上生物量, 估测模型, 遥感反演, 空间分布, 渭干河-库车河三角洲绿洲

Abstract:

Estimation of vegetation aboveground biomass in the arid oasis can provide important evidence for evaluating the stability of the oasis ecosystem and estimating regional carbon storage. This research targeted the delta oasis of the Weigan-Kuqa Rivers and used ENVI 5.3 software to preprocess Landsat 8 Operational Land Imager (OLI) image data to survey vegetation aboveground biomass in the study area. We extraced vegetation indices and band factors reflecting aboveground biomass information, combined with measured data from sample plots and used conventional statistical models, multiple stepwise regression and partial least square regression methods to establish an optimal model of vegetation aboveground biomass, so as to reveal the spatial distribution characteristics of vegetation aboveground biomass in this oasis. It was found: 1) There was a extremely significant positive correlation between the 20 selected remote sensing factors and the measured aboveground biomass and the values of the correlation coefficients ranged from 0.5-0.7 (P<0.01). 2) The optimal estimation models for arbors and shrub aboveground biomass were multiple stepwise regression models. The partial least squares regression models were the best models for estimating the aboveground biomass of herbs and crops. The verification determination coefficients of the model were above 0.6, and the root-mean-square error and mean absolute error were both lower. 3)The vegetation aboveground biomass in the study area was typically within the range of 280-1450 g·m-2with an area of about 6973.82 ha. Land with low lever aboveground biomass (<65 g·m-2) accounted for about 15.02% of the total land area in the survey area. The ranking of aboveground biomass from high to low for different vegetation categories was: Crops>arbors>shrubs>herbs. For the various vegetation types, the remote sensing estimation model based on the spectral characteristics of ground objects was able to accurately estimate vegetation aboveground biomass in the arid oasis, and carry out remote sensing quantitative inversion of spatial distribution characteristics of its vegetation.

Key words: vegetation aboveground biomass, estimation model, remote sensing inversion, spatial distribution, the delta oasis of Weigan-Kuqa Rivers