草业学报 ›› 2022, Vol. 31 ›› Issue (9): 206-219.DOI: 10.11686/cyxb2021341
• 综合评述 • 上一篇
杨策1,2(), 张玉雪1,2, 张鹤3, 郑春燕1, 朱峰1()
收稿日期:
2021-09-13
修回日期:
2021-12-13
出版日期:
2022-09-20
发布日期:
2022-08-12
通讯作者:
朱峰
作者简介:
Corresponding author. E-mail: zhufeng@sjziam.ac.cn基金资助:
Ce YANG1,2(), Yu-xue ZHANG1,2, He ZHANG3, Chun-yan ZHENG1, Feng ZHU1()
Received:
2021-09-13
Revised:
2021-12-13
Online:
2022-09-20
Published:
2022-08-12
Contact:
Feng ZHU
摘要:
牧草混播是人工草地的重要种植方式之一,大量研究表明牧草混播具有显著的增产提质效果。了解其种间互作机理并探究其生态系统功能和服务,对于维持混播草地的稳定生产和实现人工草地种植的可持续发展具有重要意义。本研究根据目前国内外研究成果,从种间互补与竞争及地上、地下等方面分析了牧草混播的种间互作机理,从生态系统功能和服务角度论述了混播对牧草产量、品质提升、养分利用、土壤动物和微生物、系统稳定性等方面的影响。最后,指出未来我国人工混播草地研究中应注重有针对地选择特定功能的物种,明确影响物种间互作的因素,同时关注地上-地下耦联机制及草-畜互作等方面。
杨策, 张玉雪, 张鹤, 郑春燕, 朱峰. 牧草混播生态系统功能研究进展[J]. 草业学报, 2022, 31(9): 206-219.
Ce YANG, Yu-xue ZHANG, He ZHANG, Chun-yan ZHENG, Feng ZHU. Recent advances in understanding the ecosystem functioning of diverse forage mixtures[J]. Acta Prataculturae Sinica, 2022, 31(9): 206-219.
1 | Gao S Q, Hu Z M, Han Y, et al. Role and potential of ecological grass-based livestock husbandry to target poverty alleviation in China-Practice and model exploration of poverty alleviation through science and technology in Institute of Botany, Chinese Academy of Sciences. Bulletin of Chinese Academy of Sciences, 2019, 34(2): 223-230. |
高树琴, 胡兆民, 韩勇, 等. 生态草牧业在我国精准扶贫中的作用和潜力——中国科学院植物研究所科技扶贫实践与模式探索. 中国科学院院刊, 2019, 34(2): 223-230. | |
2 | Fang J Y, Pan Q M, Gao S Q, et al. “Small vs. Large Area” Principle: Protecting and restoration a large area of natural grassland by establishing a small area of cultivated pasture. Pratacultural Science, 2016, 33(10): 1913-1916. |
方精云, 潘庆民, 高树琴, 等. “以小保大”原理: 用小面积人工草地建设换取大面积天然草地的保护与修复. 草业科学, 2016, 33(10): 1913-1916. | |
3 | Shi Y, Ma Y L, Ma W H, et al. Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 2013, 58(3): 226-239. |
石岳, 马殷雷, 马文红, 等. 中国草地的产草量和牧草品质: 格局及其与环境因子之间的关系. 科学通报, 2013, 58(3): 226-239. | |
4 | Zhang X S, Tang H P, Dong X B, et al. The dilemma of steppe and it’s transformation in China. Chinese Science Bulletin, 2016, 61(2): 165-177. |
张新时, 唐海萍, 董孝斌, 等. 中国草原的困境及其转型. 科学通报, 2016, 61(2): 165-177. | |
5 | Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671-677. |
6 | Huang M, Liu X, Cadotte M W, et al. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos, 2020, 129(8): 1185-1195. |
7 | Elgersma A, Søegaard K. Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting. European Journal of Agronomy, 2016, 78: 73-83. |
8 | Nyfeler D, Huguenin-Elie O, Suter M, et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. Journal of Applied Ecology, 2009, 46(3): 683-691. |
9 | Kyriazopoulos A P, Abraham E M, Parissi Z M, et al. Forage production and nutritive value of Dactylis glomerata and Trifolium subterraneum mixtures under different shading treatments. Grass and Forage Science, 2013, 68(1): 72-82. |
10 | Crème A, Rumpel C, Gastal F, et al. Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant and Soil, 2016, 402(1): 117-128. |
11 | Lamb E G, Kennedy N, Siciliano S D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 2011, 338(1): 483-495. |
12 | Hofer D, Suter M, Haughey E, et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. Journal of Applied Ecology, 2016, 53(4): 1023-1034. |
13 | Hauggaard-Nielsen H, Jensen E S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research, 2001, 72(3): 185-196. |
14 | Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412(6842): 72-76. |
15 | Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 2001, 294(5543): 804-808. |
16 | Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857-1861. |
17 | Yachi S, Loreau M. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 2007, 10(1): 54-62. |
18 | Qi J, Zheng W, Zhang X H, et al. Determination and comparison of the production performance of pastures among different spatial structure of legume-grass mixtures. Pratacultural Science, 2016, 33(1): 116-128. |
祁军, 郑伟, 张鲜花, 等. 不同豆禾混播模式的草地生产性能. 草业科学, 2016, 33(1): 116-128. | |
19 | Lorentzen S, Roscher C, Schumacher J, et al. Species richness and identity affect the use of aboveground space in experimental grasslands. Perspectives in Plant Ecology Evolution and Systematics, 2008, 10(2): 73-87. |
20 | Spehn E M, Joshi J, Schmid B, et al. Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Functional Ecology, 2000, 14(3): 326-337. |
21 | Duchini P, Guzatti G, Ribeiro F H, et al. Intercropping black oat (Avena strigosa) and annual ryegrass (Lolium multiflorum) can increase pasture leaf production compared with their monocultures. Crop and Pasture Science, 2016, 67(5): 574-581. |
22 | Fargione J, Tilman D. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia, 2005, 143(4): 598-606. |
23 | Mckane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 2002, 415(6867): 68-71. |
24 | Kardol P, Cornips N J, Kempen M M L V, et al. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecological Monographs, 2007, 77(2): 147-162. |
25 | Heijden M, Bardgett R D, Straalen N. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296-310. |
26 | Felten S V, Hector A, Buchmann N, et al. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology, 2009, 90(5): 1389-1399. |
27 | Levine J M, Hillerislambers J. The importance of niches for the maintenance of species diversity. Nature, 2009, 461(7261): 254-257. |
28 | Pirhofer-Walzl K, Eriksen J, Rasmussen J, et al. Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands. Plant and Soil, 2013, 371: 313-325. |
29 | Lehner B, Döll P, Alcamo J, et al. Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change, 2006, 75(3): 273-299. |
30 | Gilgen A K, Buchmann N. Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences, 2009, 6(11): 2525-2539. |
31 | Hoekstra N J, Suter M, Finn J A, et al. Do belowground vertical niche differences between deep- and shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures? Plant and Soil, 2015, 394(1): 21-34. |
32 | Hoekstra N J, Finn J A, Hofer D, et al. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by δ 18O natural abundance. Biogeosciences, 2014, 11(16): 4493-4506. |
33 | Wang P, Wang T H, Zhou W, et al. Soil moisture and interspecific relationships between grass and legume on mixed grassland: A research review. Chinese Journal of Applied Ecology, 2007(3): 653-658. |
王平, 王天慧, 周雯, 等. 禾-豆混播草地中土壤水分与种间关系研究进展. 应用生态学报, 2007(3): 653-658. | |
34 | Xie K Y, Zhao Y, Li X L, et al. Relationships between grasses and legumes in mixed grassland: A review. Acta Prataculturae Sinica, 2013, 22(3): 284-296. |
谢开云, 赵云, 李向林, 等. 豆-禾混播草地种间关系研究进展. 草业学报, 2013, 22(3): 284-296. | |
35 | Nyfeler D, Huguenin-Elie O, Suter M, et al. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agriculture Ecosystems & Environment, 2011, 140(1): 155-163. |
36 | Lüscher A, Mueller-Harvey I, Soussana J-F, et al. Potential of legume-based grassland-livestock systems in Europe: A review. Grass and Forage Science, 2014, 69(2): 206-228. |
37 | Frankow-Lindberg B E, Dahlin A S. N2 fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. Plant and Soil, 2013, 370(1): 567-581. |
38 | Heijden M, Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139-1150. |
39 | Dahlin A S, Stenberg M. Transfer of N from red clover to perennial ryegrass in mixed stands under different cutting strategies. European Journal of Agronomy, 2010, 33(3): 149-156. |
40 | Roscher C, Thein S, Weigelt A, et al. N2 fixation and performance of 12 legume species in a 6-year grassland biodiversity experiment. Plant and Soil, 2011, 341(1): 333-348. |
41 | Pirhofer-Walzl K, Rasmussen J, Høgh-Jensen H, et al. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant and Soil, 2012, 350(1): 71-84. |
42 | Malhi S S, Zentner R P, Heier K. Effectiveness of alfalfa in reducing fertilizer N input for optimum forage yield, protein concentration, returns and energy performance of bromegrass-alfalfa mixtures. Nutrient Cycling in Agroecosystems, 2002, 62(3): 219-227. |
43 | Anten N P R, Hirose T. Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. Journal of Ecology, 1999, 87(4): 583-597. |
44 | Li L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415. |
李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24(4): 403-415. | |
45 | Isbell F I, Polley H W, Wilsey B J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecology Letters, 2009, 12(5): 443-451. |
46 | Husse S, Huguenin-Elie O, Buchmann N, et al. Larger yields of mixtures than monocultures of cultivated grassland species match with asynchrony in shoot growth among species but not with increased light interception. Field Crops Research, 2016, 194: 1-11. |
47 | Connell J H, Slatyer R O. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 1977, 111(982): 1119-1144. |
48 | Tilman D, Isbell F, Cowles J M. Biodiversity and ecosystem functioning. Annual Review of Ecology Evolution and Systematics, 2014, 45(1): 471-493. |
49 | Maestre F T, Callaway R M, Valladares F, et al. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 2009, 97(2): 199-205. |
50 | Kunstler G, Falster D, Coomes D A, et al. Plant functional traits have globally consistent effects on competition. Nature, 2016, 529(7585): 204-207. |
51 | Morcillo L, Camacho-Garzón A, Calderón J S, et al. Functional similarity and competitive symmetry control productivity in mixtures of Mediterranean perennial grasses. PLoS One, 2019, 14(8): e0221667. |
52 | Xie K Y, Cao K, Wan J C, et al. Change in productivity of swards of different forage legume and grass species monocultures and combinations in the semi-arid region of Xinjiang Province. Acta Prataculturae Sinica, 2020, 29(4): 29-40. |
谢开云, 曹凯, 万江春, 等. 新疆半干旱区不同豆科/禾本科牧草混播草地生产力的变化研究. 草业学报, 2020, 29(4): 29-40. | |
53 | Høgh-Jensen H, Schjoerring J K. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant and Soil, 1997, 197(2): 187-199. |
54 | Xie K Y, Zhang Y J, Li X L, et al. Competition and coexistence of alfalfa (Medicago sativa L.) and smooth brome (Bromus inermis Layss.) in mixture. Scientia Agricultura Sinica, 2015, 48(18): 3767-3778. |
谢开云, 张英俊, 李向林, 等. 无芒雀麦和紫花苜蓿在(1∶1)混播中的竞争与共存. 中国农业科学, 2015, 48(18): 3767-3778. | |
55 | Feng J F, Li Y, Zhu L. Discrimination of concepts of ecosystem functions and ecosystem services. Ecology and Environmental Sciences, 2009, 18(4): 1599-1603. |
冯剑丰, 李宇, 朱琳. 生态系统功能与生态系统服务的概念辨析. 生态环境学报, 2009, 18(4): 1599-1603. | |
56 | Li Q, Zhu J H, Xiao W F. Relationships and trade-offs between, and management of biodiversity and ecosystem services. Acta Ecologica Sinica, 2019, 39(8): 2655-2666. |
李奇, 朱建华, 肖文发. 生物多样性与生态系统服务——关系、权衡与管理. 生态学报, 2019, 39(8): 2655-2666. | |
57 | Yan Z Q, Qi Y C, Dong Y S, et al. Nitrogen cycling in grassland ecosystems in response to climate change and human activities. Acta Prataculturae Sinica, 2014, 23(6): 279-292. |
闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2014, 23(6): 279-292. | |
58 | Deyn G B D, Cornelissen J H C, Bardgett R D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 2008, 11(5): 516-531. |
59 | Tilman D, Reich P B, Knops J M, et al. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294(5543): 843-845. |
60 | Bardgett R D. Plant-soil interactions in a changing world. F1000 Biology Reports, 2011, 3(1): 16. |
61 | Deyn G B D, Quirk H, Yi Z, et al. Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. Journal of Ecology, 2009, 97(5): 864-875. |
62 | Balvanera P, Pfisterer A B, Buchmann N, et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 2006, 9(10): 1146-1156. |
63 | Sanderson M A, Goslee S C, Soder K J, et al. Plant species diversity, ecosystem function, and pasture management-A perspective. Canadian Journal of Plant Science, 2007, 87(3): 479-487. |
64 | Lemaire G, Wilkins R, Hodgson J. Challenges for grassland science: Managing research priorities. Agriculture Ecosystems & Environment, 2005, 108(2): 99-108. |
65 | Weigelt A, Weisser W W, Buchmann N, et al. Biodiversity for multifunctional grasslands: Equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences, 2009, 6(8): 1695-1706. |
66 | Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experiments in European grasslands. Science, 1999, 286(5442): 1123-1127. |
67 | Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3-35. |
68 | Huston M A. Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 1997, 110(4): 449-460. |
69 | Loreau M. Separating sampling and other effects in biodiversity experiments. Oikos, 1998, 82(3): 600-602. |
70 | Tilman D. The ecological consequence of changes in biodiversity: A search for general principles. Ecology, 1999, 80(5): 1455-1474. |
71 | Du L, Ge F. Recent advances on the relation between biodiversity and ecosystem function. Chinese Journal of Eco-Agriculture, 2004(2): 24-27. |
杜丽, 戈峰. 生物多样性与生态系统功能的关系研究进展. 中国生态农业学报, 2004(2): 24-27. | |
72 | Liu M, Gong J R, Wang Y H, et al. Effects of legume-grass mixed sowing on forge grass yield and quality in artificial grassland. Arid Zone Research, 2016, 33(1): 179-185. |
刘敏, 龚吉蕊, 王忆慧, 等. 豆禾混播建植人工草地对牧草产量和草质的影响. 干旱区研究, 2016, 33(1): 179-185. | |
73 | Zheng W, Zhu J Z, Jianaerguli, et al. Effects of different mixed sowing patterns on production performance of legume-grass mixtures. Chinese Journal of Grassland, 2011, 33(5): 45-52. |
郑伟, 朱进忠, 加娜尔古丽, 等. 不同混播方式对豆禾混播草地生产性能的影响. 中国草地学报, 2011, 33(5): 45-52. | |
74 | Wang X, Zeng Z H, Hu Y G, et al. Progress and prospect on mixture of Gramineae herbage and Leguminosae herbage. Chinese Journal of Grassland, 2007(4): 92-98. |
王旭, 曾昭海, 胡跃高, 等. 豆科与禾本科牧草混播效应研究进展. 中国草地学报, 2007(4): 92-98. | |
75 | Zheng K, Gu H R, Shen Y X, et al. Evaluation system of forage quality and research advances in forage quality breeding. Pratacultural Science, 2006(5): 57-61. |
郑凯, 顾洪如, 沈益新, 等. 牧草品质评价体系及品质育种的研究进展. 草业科学, 2006(5): 57-61. | |
76 | Ergon Å, Kirwan L, Fystro G, et al. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies. Ⅱ. Nutritional quality. Grass and Forage Science, 2017, 72(2): 333-342. |
77 | Veira D M, Lysyk T J, Thompson D J, et al. Effect of grazing mixtures of alfalfa and orchardgrass grown in strips on the incidence of bloat in cattle. Canadian Journal of Animal Science, 2010, 90(1): 109-112. |
78 | Sleugh B, Moore K J, George J R, et al. Binary legume-grass mixtures improve forage yield, quality, and seasonal distribution. Agronomy Journal, 2000, 92(1): 24-29. |
79 | Sanderson M A. Stability of production and plant species diversity in managed grasslands: A retrospective study. Basic and Applied Ecology, 2010, 11(3): 216-224. |
80 | Du Q F, Wang D J, Yu X Y, et al. The effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptakes. Acta Prataculturae Sinica, 2016, 25(3): 225-233. |
杜青峰, 王党军, 于翔宇, 等. 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响. 草业学报, 2016, 25(3): 225-233. | |
81 | Bell L W, Sparling B, Tenuta M, et al. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland. Agriculture Ecosystems & Environment, 2012, 158: 156-163. |
82 | Zheng W, Jianaerguli, Tang G R, et al. Effects of mixed species, mixed ratios of legume to grass on soil nutrients in surface soil of legume-grass mixture pasture. Pratacultural Science, 2015, 32(3): 329-339. |
郑伟, 加娜尔古丽, 唐高溶, 等. 混播种类与混播比例对豆禾混播草地浅层土壤养分的影响. 草业科学, 2015, 32(3): 329-339. | |
83 | Zhang Q, Zhang Z H, Ma L, et al. Effects of mixed sowing of different pasture grass on soil nutrients and biomass in degraded alpine meadows. Acta Agrestia Sinica, 2019, 27(6): 1659-1666. |
张骞, 张中华, 马丽, 等. 不同牧草混播对退化高寒草甸土壤养分及生物量的影响. 草地学报, 2019, 27(6): 1659-1666. | |
84 | Deyn G B D, Shiel R S, Ostle N J, et al. Additional carbon sequestration benefits of grassland diversity restoration. Journal of Applied Ecology, 2011, 48(3): 600-608. |
85 | Li Q, Yu P, Li G, et al. Grass-legume ratio can change soil carbon and nitrogen storage in a temperate steppe grassland. Soil and Tillage Research, 2016, 157: 23-31. |
86 | Mommer L, Ruijven J V, Caluwe H D, et al. Unveiling below-ground species abundance in a biodiversity experiment: A test of vertical niche differentiation among grassland species. Journal of Ecology, 2010, 98(5): 1117-1127. |
87 | Fornara D A, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 2008, 96(2): 314-322. |
88 | Fornara D A, Tilman D, Hobbie S E. Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. Journal of Ecology, 2009, 97(1): 48-56. |
89 | Fox A, Suter M, Widmer F, et al. Positive legacy effect of previous legume proportion in a ley on the performance of a following crop of Lolium multiflorum. Plant and Soil, 2020, 447(1): 497-506. |
90 | Shao Y H, Zhang W X, Liu S J, et al. Diversity and function of soil fauna. Acta Ecologica Sinica, 2015, 35(20): 6614-6625. |
邵元虎, 张卫信, 刘胜杰, 等. 土壤动物多样性及其生态功能. 生态学报, 2015, 35(20): 6614-6625. | |
91 | He J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 2013, 21(4): 412-421. |
贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 2013, 21(4): 412-421. | |
92 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270. |
93 | Ma L, Ma K, Yang G L, et al. Effects of continuous potato cropping on the diversity of soil microorganisms. Chinese Journal of Eco-Agriculture, 2015, 23(5): 589-596. |
马玲, 马琨, 杨桂丽, 等. 马铃薯连作栽培对土壤微生物多样性的影响. 中国生态农业学报, 2015, 23(5): 589-596. | |
94 | Dennis P G, Miller A J, Hirsch P R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities. Fems Microbiology Ecology, 2010, 72(3): 313-327. |
95 | Philippot L, Raaijmakers J M, Lemanceau P, et al. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11: 789-799. |
96 | Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota. Science, 2004, 304(5677): 1629-1633. |
97 | Hannula S E, Kielak A M, Steinauer K, et al. Time after time: Temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. mBio, 2019, 10(6): e02635-19. |
98 | Thakur M P, Milcu A, Manning P, et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 2015, 21(11): 4076-4085. |
99 | Chen C, Chen H, Chen X, et al. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 2019, 10(1): 1-10. |
100 | Lange M, Eisenhauer N, Sierra C, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6(1): 1-8. |
101 | Zhao Y J, Liu X J, Wu Y, et al. Effects of Medicago sativa-Triticale wittmack intercropping system on rhizosphere soil nutrients and bacterial community in semi-arid region of Northwest China. Chinese Journal of Applied Ecology, 2020, 31(5): 1645-1652. |
赵雅姣, 刘晓静, 吴勇, 等. 西北半干旱区紫花苜蓿-小黑麦间作对根际土壤养分和细菌群落的影响. 应用生态学报, 2020, 31(5): 1645-1652. | |
102 | Rottstock T, Joshi J, Kummer V, et al. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology, 2014, 95(7): 1907-1917. |
103 | Dietrich P, Roscher C, Clark A T, et al. Diverse plant mixtures sustain a greater arbuscular mycorrhizal fungi spore viability than monocultures after 12 years. Journal of Plant Ecology, 2020, 13(4): 478-488. |
104 | Borer E T, Seabloom E W, Tilman D. Plant diversity controls arthropod biomass and temporal stability. Ecology Letters, 2012, 15(12): 1457-1464. |
105 | Barnes A D, Scherber C, Brose U, et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Science Advances, 2020, 6(45): 1-8. |
106 | Frankow-Lindberg B E, Brophy C, Collins R P, et al. Biodiversity effects on yield and unsown species invasion in a temperate forage ecosystem. Annals of Botany, 2009, 103(6): 913-921. |
107 | Cadotte M W, Dinnage R, Tilman D. Phylogenetic diversity promotes ecosystem stability. Ecology, 2012, 93(8): 223-233. |
108 | Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463-1468. |
109 | Ives A R, Klug J L, Gross K. Stability and species richness in complex communities. Ecology Letters, 2000, 3(5): 399-411. |
110 | Haughey E, Suter M, Hofer D, et al. Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance. Scientific Reports, 2018, 8(1): 15047. |
111 | Jing J, Søegaard K, Cong W F, et al. Species diversity effects on productivity, persistence and quality of multispecies swards in a four-year experiment. PLoS One, 2017, 12(1): e0169208. |
112 | Loreau M, Mazancourt C D. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist, 2008, 172(2): 48-66. |
113 | Feng P, Shen X H, Li R L, et al. Effect of alfalfa with smooth brome on the root traits and cold resistance of alfalfa. Journal of China Agricultural University, 2017, 22(6): 56-66. |
冯鹏, 申晓慧, 李如来, 等. 苜蓿与无芒雀麦混播对苜蓿根系性状影响及抗寒效应研究. 中国农业大学学报, 2017, 22(6): 56-66. | |
114 | Schaub S, Finger R, Leiber F, et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nature Communications, 2020, 11(1): 768. |
115 | Schaub S, Buchmann N, Lüscher A, et al. Economic benefits from plant species diversity in intensively managed grasslands. Ecological Economics, 2020, 168: 106488. |
116 | Ren J Z, Xu G, Li X L, et al. Trajectory and prospect of China’s prataculture. Chinese Science Bulletin, 2016, 61(2): 178-192. |
任继周, 胥刚, 李向林, 等. 中国草业科学的发展轨迹与展望. 科学通报, 2016, 61(2): 178-192. | |
117 | Connolly J, Sebastià M T, Kirwan L, et al. Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continental-scale experiment. Journal of Applied Ecology, 2018, 55(2): 852-862. |
118 | Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526(7574): 574-577. |
119 | Tilman D, Reich P B, Isbell F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10394-10397. |
120 | Barry K E, Ruijven J V, Mommer L, et al. Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology, 2020, 101(1): e02905. |
121 | Bennett J A, Cahill J F. Evaluating the relationship between competition and productivity within a native grassland. PLoS One, 2012, 7(8): e43703. |
122 | Isbell F, Adler P R, Eisenhauer N, et al. Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology, 2017, 105(4): 871-879. |
123 | Kaiser K, Wemheuer B, Korolkow V, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 2016, 6(1): 33696. |
124 | Fierer N, Strickland M S, Liptzin D, et al. Global patterns in belowground communities. Ecology Letters, 2009, 12(11): 1238-1249. |
125 | Leff J W, Bardgett R D, Wilkinson A, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME Journal, 2018, 12(7): 1794-1805. |
126 | Mokany K, Ash J, Roxburgh S H. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 2008, 96(5): 884-893. |
127 | Lei L J, Kong D L, Li X M, et al. Plant functional traits, functional diversity, and ecosystem functioning: Current knowledge and perspectives. Biodiversity Science, 2016, 24(8): 922-931. |
雷羚洁, 孔德良, 李晓明, 等. 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 2016, 24(8): 922-931. | |
128 | Lu X, Kelsey K C, Yan Y, et al. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: A synthesis. Ecosphere, 2017, 8(1): e01656. |
129 | Zhang R, Wang Z, Han G, et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the desert steppe, Northern China. Agriculture, Ecosystems & Environment, 2018, 265(1): 73-83. |
130 | Ren Q J, Wu G L, Ren G H. Effect of grazing intensity on characteristics of alpine meadow communities in the eastern Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2009, 18(5): 256-261. |
仁青吉, 武高林, 任国华. 放牧强度对青藏高原东部高寒草甸植物群落特征的影响. 草业学报, 2009, 18(5): 256-261. | |
131 | Zhang J, Zuo X, Zhou X, et al. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, Northern China. Environmental Monitoring and Assessment, 2017, 189(5): 216. |
132 | Dong Q M, Zhao X Q, Wu G L, et al. Response of soil properties to yak grazing intensity in a Kobresia parva-meadow on the Qinghai-Tibetan Plateau, China. Journal of Soil Science and Plant Nutrition, 2012, 12(3): 535-546. |
133 | Kirwan L, Luscher A, Sebastia M T, et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. Journal of Ecology, 2007, 95(3): 530-539. |
134 | Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441(7093): 629-632. |
[1] | 汪精海, 李广, 银敏华, 齐广平, 康燕霞, 马彦麟. 调亏灌溉对高寒荒漠区人工混播草地土壤环境与牧草生长的影响[J]. 草业学报, 2022, 31(1): 95-106. |
[2] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[3] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[4] | 孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58. |
[5] | 李文, 魏廷虎, 永措巴占, 才仁塔次, 周玉海, 张雁平, 李文浩, 郭卫兴. 混播比例对三江源人工草地植被和土壤养分特征的影响[J]. 草业学报, 2021, 30(12): 39-48. |
[6] | 梁军, 全小龙, 张杰雪, 史惠兰, 段中华, 乔有明. 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用[J]. 草业学报, 2020, 29(7): 81-89. |
[7] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[8] | 官惠玲, 樊江文, 李愈哲. 不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响[J]. 草业学报, 2019, 28(9): 192-201. |
[9] | 伍文宪, 张蕾, 黄小琴, 杨潇湘, 薛龙海, 刘勇. 川西北高寒牧区不同人工草地对土壤微生物多样性影响[J]. 草业学报, 2019, 28(3): 29-41. |
[10] | 曹文侠,刘皓栋,李文,徐长林,李小龙,师尚礼. 连续两年施氮对15龄混作禾草草地的改良效果研究[J]. 草业学报, 2015, 24(9): 130-137. |
[11] | 杨政,王冬,刘玉,朱元骏,武高林. 矿区排土场人工草地土壤水分及入渗特征效应[J]. 草业学报, 2015, 24(12): 29-37. |
[12] | 王书转,郝明德,普琼,吴振海. 黄土区苜蓿人工草地群落生态与生产功能演替[J]. 草业学报, 2014, 23(6): 1-10. |
[13] | 万里强,陈玮玮,李向林,何峰,万江春,吴维达,赵云. 放牧强度对山羊采食行为的影响[J]. 草业学报, 2013, 22(4): 275-282. |
[14] | 张莉,王长庭,刘伟,王启兰,李里,向泽宇. 不同建植期人工草地优势种植物根系活力、群落特征及其土壤环境的关系[J]. 草业学报, 2012, 21(5): 185-194. |
[15] | 李馨,熊康宁,龚进宏,陈永毕. 人工草地在喀斯特石漠化治理中的作用及其研究现状[J]. 草业学报, 2011, 20(6): 279-286. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||