草业学报 ›› 2022, Vol. 31 ›› Issue (1): 95-106.DOI: 10.11686/cyxb2020476
汪精海1,2(), 李广1(), 银敏华2, 齐广平2, 康燕霞2, 马彦麟2
收稿日期:
2020-10-20
修回日期:
2020-12-07
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
李广
作者简介:
Corresponding author. E-mail: lig@gsau.edu.cn基金资助:
Jing-hai WANG1,2(), Guang LI1(), Min-hua YIN2, Guang-ping QI2, Yan-xia KANG2, Yan-lin MA2
Received:
2020-10-20
Revised:
2020-12-07
Online:
2021-12-01
Published:
2021-12-01
Contact:
Guang LI
摘要:
针对中国高寒荒漠草原区牧草种植模式单一、产量水平低下的草业畜牧业生产现状,探究更为有效的灌水模式以提高牧草产量,以实现区域水土资源高效利用。以燕麦和箭筈豌豆混播草地为研究对象,采用大田试验对比分析了7种调亏灌溉模式(拔节期轻度亏水BW1:65%~75%,拔节期中度亏水BW2:55%~65%,拔节期重度亏水BW3:45%~55%,开花期轻度亏水KW1:65%~75%,开花期中度亏水KW2:55%~65%,开花期重度亏水KW3:45%~55%,以全生育期充分灌水QW0:75%~85%为对照)对混播草地土壤水分、土壤温度和土壤养分及牧草株高、茎叶比、产量和水氮利用效率的影响。结果表明:1)平均土壤贮水量随灌水亏缺程度的提高呈降低趋势,同一亏缺度条件下,拔节期亏水与开花期亏水间无显著差异。2)水分亏缺处理的平均土壤温度显著高于充分灌水处理,且水分亏缺度一定时,拔节期亏水处理的平均土壤温度显著高于开花期亏水处理。3)收获后各处理的土壤养分含量较播种前呈降低趋势。与充分灌水相比,开花期轻度亏水可显著提高土壤速效氮含量,而中度或重度水分亏缺不利于牧草对土壤速效磷和钾的吸收。4)同一灌水模式下,燕麦株高、茎叶比和产量均显著高于箭筈豌豆。7种灌水模式的草地耗水量为386.1~502.6 mm,与处理QW0相比,处理KW2的灌水量减少20.6%,牧草总产量无显著差异,可获得较高的水分利用效率(31.5 kg·hm-2·mm-1)、灌水利用效率(81.0 kg·hm-2·mm-1)、氮素吸收效率(0.99 kg·kg-1)和氮肥偏生产力(191.1 kg·kg-1),是高寒荒漠区燕麦与箭筈豌豆混播人工草地节水、增产和高效的水分管理模式。
汪精海, 李广, 银敏华, 齐广平, 康燕霞, 马彦麟. 调亏灌溉对高寒荒漠区人工混播草地土壤环境与牧草生长的影响[J]. 草业学报, 2022, 31(1): 95-106.
Jing-hai WANG, Guang LI, Min-hua YIN, Guang-ping QI, Yan-xia KANG, Yan-lin MA. Effects of regulated deficit irrigation on the soil environment and forage growth of mixed-species forage plantings in China’s high-cold desert area[J]. Acta Prataculturae Sinica, 2022, 31(1): 95-106.
项目 Item | 拔节期Jointing stage | 开花期Flowering stage | 全生育期Whole growth stage | ||||
---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W3 | W0 | |
处理编号Code | BW1 | BW2 | BW3 | KW1 | KW2 | KW3 | QW0(CK) |
表1 试验处理设计
Table 1 Experimental treatment design
项目 Item | 拔节期Jointing stage | 开花期Flowering stage | 全生育期Whole growth stage | ||||
---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W3 | W0 | |
处理编号Code | BW1 | BW2 | BW3 | KW1 | KW2 | KW3 | QW0(CK) |
图4 不同灌水模式下牧草生育期平均土壤贮水量不同小写字母表示处理间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences among treatments (P<0.05). The same below.
Fig.4 Average soil water storage during the growth period of forages under different irrigation patterns
处理 Treatment | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
QW0 | 19.29±0.25a | 0.85±0.11a | 0.56±0.07a | 13.88±0.15a | 56.98±1.33b | 1.58±0.06bc | 26.63±0.59c |
BW1 | 18.56±0.05b | 0.87±0.09a | 0.61±0.10a | 13.95±0.11a | 52.56±1.00c | 1.49±0.05c | 27.32±0.28c |
BW2 | 18.34±0.07c | 0.88±0.05a | 0.58±0.08a | 13.79±0.25a | 50.54±0.95d | 1.65±0.04b | 29.10±0.21a |
BW3 | 18.20±0.04c | 0.84±0.12a | 0.58±0.09a | 13.90±0.22a | 50.43±0.89d | 1.83±0.04a | 29.55±0.35a |
KW1 | 19.25±0.11a | 0.84±0.07a | 0.60±0.05a | 13.91±0.16a | 60.34±1.25a | 1.53±0.04c | 27.56±0.35c |
KW2 | 19.30±0.15a | 0.85±0.09a | 0.59±0.07a | 14.00±0.03a | 57.55±1.24b | 1.86±0.05a | 28.87±0.34ab |
KW3 | 18.65±0.06b | 0.83±0.06a | 0.61±0.07a | 14.05±0.03a | 53.01±0.85c | 1.79±0.06a | 28.37±0.37b |
表2 收获后不同灌水模式耕层(0~30 cm)土壤平均养分含量(质量比)
Table 2 Average soil nutrient content (mass ratio) of the cultivated layer (0-30 cm) under different irrigation patterns after harvest
处理 Treatment | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
QW0 | 19.29±0.25a | 0.85±0.11a | 0.56±0.07a | 13.88±0.15a | 56.98±1.33b | 1.58±0.06bc | 26.63±0.59c |
BW1 | 18.56±0.05b | 0.87±0.09a | 0.61±0.10a | 13.95±0.11a | 52.56±1.00c | 1.49±0.05c | 27.32±0.28c |
BW2 | 18.34±0.07c | 0.88±0.05a | 0.58±0.08a | 13.79±0.25a | 50.54±0.95d | 1.65±0.04b | 29.10±0.21a |
BW3 | 18.20±0.04c | 0.84±0.12a | 0.58±0.09a | 13.90±0.22a | 50.43±0.89d | 1.83±0.04a | 29.55±0.35a |
KW1 | 19.25±0.11a | 0.84±0.07a | 0.60±0.05a | 13.91±0.16a | 60.34±1.25a | 1.53±0.04c | 27.56±0.35c |
KW2 | 19.30±0.15a | 0.85±0.09a | 0.59±0.07a | 14.00±0.03a | 57.55±1.24b | 1.86±0.05a | 28.87±0.34ab |
KW3 | 18.65±0.06b | 0.83±0.06a | 0.61±0.07a | 14.05±0.03a | 53.01±0.85c | 1.79±0.06a | 28.37±0.37b |
图6 不同灌水模式下收获时混播牧草的株高不同小写字母表示同一品种不同处理间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences among different treatments of the same variety (P<0.05). The same below.
Fig.6 Plant heights of mixed forages at harvest under different irrigation patterns
图8 不同灌水模式下混播牧草的产量不同小写字母表示混播牧草不同处理间差异显著(P<0.05)。下同。Different lowercase letters mean significant differences among different treatments of mixed forages (P<0.05). The same below.
Fig.8 Yield of mixed forages under different irrigation patterns
处理 Treatment | 耗水量 Water consumption (WC, mm) | 灌水量 Irrigation (I, mm) | 灌水量/耗水量 Ratio of I and WC (%) | 降水量 Precipitaion (P, mm) | 降水量/耗水量 Ratio of P and WC (%) | 土壤贮水消耗量 Consumption of soil water storage (CSWS, mm) | 土壤贮水消耗量/耗水量Ratio of CSWS and WC (%) |
---|---|---|---|---|---|---|---|
QW0 | 502.6±9.1a | 223.0±12.2a | 44.4±1.7a | 212±9a | 42.2±0.7e | 67.6±1.4c | 13.5±0.5d |
BW1 | 480.8±11.2b | 193.5±6.4b | 40.2±0.5b | 212±9a | 44.1±0.8d | 75.3±1.9a | 15.7±0.5b |
BW2 | 442.8±6.0d | 159.5±2.5e | 36.0±1.4d | 212±9a | 47.9±0.5b | 71.3±1.5b | 16.1±0.3ab |
BW3 | 386.1±12.1e | 126.5±8.4f | 32.8±1.1e | 212±9a | 54.9±3.2a | 47.6±2.5e | 12.3±0.2e |
KW1 | 455.5±5.9c | 190.0±6.1b | 41.7±0.8b | 212±9a | 46.5±0.6c | 53.5±3.8d | 11.7±0.2f |
KW2 | 455.0±5.6c | 177.0±5.2c | 38.9±0.7c | 212±9a | 46.6±0.7c | 66.0±3.5c | 14.5±0.4c |
KW3 | 455.1±5.5c | 166.0±2.6d | 36.5±1.5d | 212±9a | 46.6±0.6c | 77.1±2.1a | 16.9±0.6a |
表3 不同灌水模式对混播牧草耗水量及耗水来源比例的影响
Table 3 Effects of different irrigation patterns on the water consumption and the proportion of water consumption sources of mixed forages
处理 Treatment | 耗水量 Water consumption (WC, mm) | 灌水量 Irrigation (I, mm) | 灌水量/耗水量 Ratio of I and WC (%) | 降水量 Precipitaion (P, mm) | 降水量/耗水量 Ratio of P and WC (%) | 土壤贮水消耗量 Consumption of soil water storage (CSWS, mm) | 土壤贮水消耗量/耗水量Ratio of CSWS and WC (%) |
---|---|---|---|---|---|---|---|
QW0 | 502.6±9.1a | 223.0±12.2a | 44.4±1.7a | 212±9a | 42.2±0.7e | 67.6±1.4c | 13.5±0.5d |
BW1 | 480.8±11.2b | 193.5±6.4b | 40.2±0.5b | 212±9a | 44.1±0.8d | 75.3±1.9a | 15.7±0.5b |
BW2 | 442.8±6.0d | 159.5±2.5e | 36.0±1.4d | 212±9a | 47.9±0.5b | 71.3±1.5b | 16.1±0.3ab |
BW3 | 386.1±12.1e | 126.5±8.4f | 32.8±1.1e | 212±9a | 54.9±3.2a | 47.6±2.5e | 12.3±0.2e |
KW1 | 455.5±5.9c | 190.0±6.1b | 41.7±0.8b | 212±9a | 46.5±0.6c | 53.5±3.8d | 11.7±0.2f |
KW2 | 455.0±5.6c | 177.0±5.2c | 38.9±0.7c | 212±9a | 46.6±0.7c | 66.0±3.5c | 14.5±0.4c |
KW3 | 455.1±5.5c | 166.0±2.6d | 36.5±1.5d | 212±9a | 46.6±0.6c | 77.1±2.1a | 16.9±0.6a |
1 | Gang Y H, Zhang H B. The position and function of oats in the sustainable development of grassland animal husbandry in Qinghai alpine region. Grassland and Prataculture, 2019, 31(3): 12-15. |
刚永和, 张海博. 燕麦在青海高寒地区草原畜牧业可持续发展中的地位和作用. 草原与草业, 2019, 31(3): 12-15. | |
2 | Qiao Z M, Liu M G, Yang H M. Effects of irrigation on yields, water and light efficiencies of first year alfalfa in the alpine region. Chinese Journal of Grassland, 2020, 42(3): 86-93. |
乔子楣, 刘敏国, 杨惠敏. 高寒地区灌溉对建植当年紫花苜蓿产量、水分和光能利用效率的影响. 中国草地学报, 2020, 42(3): 86-93. | |
3 | Liu S J, Wei X H, Zheng Q Q, et al. Soil organic carbon contents characteristics in the alpine desert area of Ali, Tibet, China. Journal of Desert Research, 2020, 40(4): 234-240. |
刘淑娟, 魏兴琥, 郑倩倩, 等. 西藏阿里高寒荒漠区土壤有机碳含量特征. 中国沙漠, 2020, 40(4): 234-240. | |
4 | Gu Y J, Han C L, Kong M, et al. Plastic film mulch promotes high alfalfa production with phosphorus-saving and low risk of soil nitrogen loss. Field Crops Research, 2018, 229: 44-54. |
5 | Zhang X M, Ma Q H, Zhang Z L, et al. Effects of fertilization rate on forage yield and water use efficiency of artificial grassland in an alpine arid area. Scientia Agricultura Sinica, 2019, 52(8): 1368-1379. |
张学梅, 马千虎, 张子龙, 等. 施肥对高寒荒漠草原区混播人工草地产量和水分利用的影响. 中国农业科学, 2019, 52(8): 1368-1379. | |
6 | Lin F, Liu X J, Zhang J Y. Effects of planting patterns on soil aggregates and organic matter characteristics of sandy soil. Journal of Desert Research, 2018, 38(6): 1219-1229. |
蔺芳, 刘晓静, 张家洋. 人工草地种植模式对沙化土壤团聚体及有机质含量的影响. 中国沙漠, 2018, 38(6): 1219-1229. | |
7 | Zhang Y, Sun X F, Zhang R, et al. Adaptability evaluation of different mix sowing rates of oat-vetch and nitrogen fertilizer rate in alpine region. Northern Horticulture, 2017(22): 37-42. |
张洋, 孙小凤, 张荣, 等. 不同燕麦-箭筈豌豆混播比例和施氮量在高寒地区的适应性评价. 北方园艺, 2017(22): 37-42. | |
8 | Dhima K V, Lithourgidis A S, Vasilakoglou I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 2007, 100(2/3): 249-256. |
9 | Li J K, Sun T, Wang Z, et al. Effects on mixture sowing ratio on the yield and quality of both vetch and oat in Tibet. Acta Agrestia Sinica, 2011, 19(5): 830-833. |
李佶恺, 孙涛, 旺扎, 等. 西藏地区燕麦与箭筈豌豆不同混播比例对牧草产量和质量的影响. 草地学报, 2011, 19(5): 830-833. | |
10 | Wu X J, Yang M, Lu Y X, et al. Effects of mixing ratio and nitrogen fertilization on root characteristics in the common vetch/oat mixture. Acta Prataculturae Sinica, 2020, 29(9): 106-116. |
吴晓娟, 杨梅, 芦奕晓, 等. 混播比例和施氮肥对箭筈豌豆/燕麦草地根系特性的影响. 草业学报, 2020, 29(9): 106-116. | |
11 | Zhu Y Q, Yu H, Zheng W, et al. Effects of different planting configurations on yield of Avena sativa and Vicia sativa mixed plantings with soybean in alpine pastures. Acta Prataculturae Sinica, 2020, 29(1): 74-85. |
朱亚琼, 于辉, 郑伟, 等. 燕麦+箭筈豌豆混播草地混播优势的测度与影响因素分析. 草业学报, 2020, 29(1): 74-85. | |
12 | Ma L L, Li Z P, Wang W C, et al. Effects of irrigation frequency on forage yield and water use efficiency of oat and common vetch mixture. Journal of Qinghai University, 2019, 37(4): 7-13. |
马利利, 李正鹏, 汪文成, 等. 灌溉频次对燕麦和箭筈豌豆混播产量及水分利用效率的影响. 青海大学学报, 2019, 37(4): 7-13. | |
13 | Sun A H, Lu H P, Ma S H. Experimental study of vetch+oat mixture system in highland region. Pratacultural Science, 2003, 20(8): 37-38. |
孙爱华, 鲁鸿佩, 马绍慧. 高寒地区箭筈豌豆+燕麦混播复种试验研究. 草业科学, 2003, 20(8): 37-38. | |
14 | Yu X X, Qi G P, Kang Y X, et al. Effects of irrigation patterns on yield and water consumption characteristics of mixed artificial grassland in alpine desert area. Water Resources Planning and Design, 2020, 3: 130-134, 178. |
余晓雄, 齐广平, 康燕霞, 等. 灌水模式对高寒荒漠区混播人工草地产量及耗水特性的影响. 水利规划与设计, 2020, 3: 130-134, 178. | |
15 | Pardo J J, Martinez-Romero A, Lellis B C, et al. Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions. Agricultural Water Management, 2020, 228(2): 105925. |
16 | Ali S, Xu Y Y, Ma X C, et al. Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns. Agricultural Water Management, 2019, 219(6): 1-11. |
17 | Martinez-Romero A, Dominguez A, Landeras G. Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions. Agricultural Water Management, 2019, 216(5): 164-176. |
18 | Zhang K, Chen N L, Han G J, et al. Gas exchange and photosynthetic response to light in tomato leaf under regulated deficit irrigation. Journal of Desert Research, 2015, 35(4): 923-929. |
张凯, 陈年来, 韩国君, 等. 调亏灌溉下番茄叶片气体交换日变化和光响应特性. 中国沙漠, 2015, 35(4): 923-929. | |
19 | Li J, Zhang H J, Zhou H. Water consumption characteristics and growth dynamics of potato under mulched drip irrigation with soil water deficit regulation. Agricultural Research in the Arid Areas, 2017, 35(3): 80-87. |
李晶, 张恒嘉, 周宏. 土壤水分调亏处理膜下滴灌马铃薯耗水特征及生长动态. 干旱地区农业研究, 2017, 35(3): 80-87. | |
20 | Wan W L, Guo P F, Hu Y Y, et al. Distribution and yield of spring wheat under drip irrigation in Xinjiang. Journal of Soil and Water Conservation, 2018, 32(6): 166-174. |
万文亮, 郭鹏飞, 胡语妍, 等. 调亏灌溉对新疆滴灌春小麦土壤水分、硝态氮分布及产量的影响. 水土保持学报, 2018, 32(6): 166-174. | |
21 | Yin M H, Li Y N, Li H, et al. Effects of mulching patterns on farmland soil environment and winter wheat growth. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 127-135, 227. |
银敏华, 李援农, 李昊, 等. 覆盖模式对农田土壤环境与冬小麦生长的影响. 农业机械学报, 2016, 47(4): 127-135, 227. | |
22 | Zhao C, Chai Q, Yin W, et al. Correlation between soil temperature and dry matter accumulation of maize under no-tillage with mulch film. Journal of Gansu Agricultural University, 2017, 52(1): 57-62. |
赵财, 柴强, 殷文, 等. 不同灌水水平及一膜两年覆盖对玉米干物质积累与土壤温度的影响. 甘肃农业大学学报, 2017, 52(1): 57-62. | |
23 | Xue D X, Zhang H J, Ba Y C, et al. Effects of regulated deficit irrigation on soil environment and yield of potato under drip irrigation in oasis region. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 229-238. |
薛道信, 张恒嘉, 巴玉春, 等. 绿洲膜下滴灌调亏对马铃薯土壤环境及产量的影响. 华北农学报, 2017, 32(3): 229-238. | |
24 | Zou H, Huang X F, Gong S H. Effects of water deficit on soil moisture and temperature regimes in subsurface drip irrigated summer corn field. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(9): 199-207. |
邹慧, 黄兴法, 龚时宏. 水分调亏对地下滴灌夏玉米田水热动态的影响. 农业机械学报, 2012, 43(9): 199-207. | |
25 | Meng Z J, Duan A W, Gao Y, et al. Effect of regulated deficit irrigation on uptake and utilization of nitrogen, phosphorus and potassium for winter wheat. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 203-212. |
孟兆江, 段爱旺, 高阳, 等. 调亏灌溉对冬小麦氮、磷、钾养分吸收与利用的影响. 农业机械学报, 2016, 47(12): 203-212. | |
26 | Yin M H, Li Y N, Yang Y, et al. Effects of irrigation treatments and film mulching times on physiology of spring maize. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(12): 199-207. |
银敏华, 李援农, 杨洋, 等. 水分处理及覆膜历时对春玉米生理特性的影响. 西北农林科技大学学报(自然科学版), 2014, 42(12): 199-207. | |
27 | Kou D, Su D R, Wu D, et al. Effects of regulated deficit irrigation on water consumption, hay yield and quality of alfalfa under subsurface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 116-123. |
寇丹, 苏德荣, 吴迪, 等. 地下调亏滴灌对紫花苜蓿耗水、产量和品质的影响. 农业工程学报, 2014, 30(2): 116-123. | |
28 | Zhang W H, Zhang H J, Li F Q, et al. Effects of regulated drip irrigation at different growth stages on yield, quality and water use efficiency of potato in oasis region. Acta Agriculturae Boreali-Sinica, 2019, 34(5): 145-152. |
张万恒, 张恒嘉, 李福强, 等. 不同生育期调亏滴灌对绿洲马铃薯产量、品质及水分利用效率的影响. 华北农学报, 2019, 34(5): 145-152. | |
29 | Lin B J, Zhang R, Dong B, et al. Effects of drought stress on WUE, yield and quality of greenhouse grape at different growth stages. Journal of Irrigation and Drainage, 2019, 38(12): 11-18. |
蔺宝军, 张芮, 董博, 等. 不同生育期干旱胁迫对温室葡萄WUE、产量及品质的影响. 灌溉排水学报, 2019, 38(12): 11-18. | |
30 | Liu X F, Li B, Meng Z J, et al. Effects of regulated deficit irrigation under furrow irrigation on physiological characteristics of flag leaf after anthesis and yield formation of winter wheat. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 320-328. |
刘小飞, 李彪, 孟兆江, 等. 隔沟调亏灌溉对冬小麦旗叶生理特性与产量形成的影响. 农业机械学报, 2019, 50(9): 320-328. | |
31 | Kang W Y, Qi G P, Kang Y X, et al. Effect of different irrigation patterns on yield and quality of mixed crops and beans artificial grassland. Water Resources Planning and Design, 2020(4): 103-109, 131. |
康文彦, 齐广平, 康燕霞, 等. 不同灌水模式对禾豆混播人工草地产量与品质的影响. 水利规划与设计, 2020(4): 103-109, 131. |
[1] | 张家驹, 于洁, 李明娜, 康俊梅, 杨青川, 龙瑞才. 蒺藜苜蓿lncRNA167及其剪切产物miR167c的鉴定和功能分析[J]. 草业学报, 2022, 31(1): 164-180. |
[2] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[3] | 赵利清, 彭向永, 刘俊祥, 毛金梅, 孙振元. GSH对铅胁迫下多年生黑麦草生长及光合生理的影响[J]. 草业学报, 2021, 30(9): 97-104. |
[4] | 徐强, 田新会, 杜文华. 高寒牧区黑麦和箭筈豌豆混播对草产量和营养品质的影响研究[J]. 草业学报, 2021, 30(8): 49-59. |
[5] | 霍俊宏, 詹康, 黄秋生, 钟小军, 占今舜, 严学兵. 不同精粗比日粮对山羊生产性能、血清生化指标和瘤胃发酵的影响[J]. 草业学报, 2021, 30(6): 151-161. |
[6] | 蓝婧婷, 任瑞, 周瑞, 戴洪伟, 舒文秀, 朱凯, 王略宇, 徐红伟, 臧荣鑫. 花椰菜尾菜发酵饲料对保育猪生长性能、血清生化指标、小肠组织形态及经济效益的影响[J]. 草业学报, 2021, 30(6): 180-189. |
[7] | 高鹏, 魏江铭, 李瑶, 张丽红, 赵祥, 杜利霞, 韩伟. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报, 2021, 30(6): 82-93. |
[8] | 索效军, 张年, 杨前平, 陶虎, 熊琪, 李晓锋, 张凤, 陈明新. 日粮添加花生秧和苜蓿草粉对波麻杂交羊增重性能、内脏器官发育及血液指标的影响[J]. 草业学报, 2021, 30(5): 146-154. |
[9] | 包赛很那, 王向涛, 武俊喜, 苗彦军, 贾祥, 田彦婷. 苗期劲直黄芪根浸提液对8种西藏野生植物化感作用的研究[J]. 草业学报, 2021, 30(5): 211-220. |
[10] | 任艳, 刘莎, 刘付松, 王道清, 吴发明. 不同生长年限黄芪田间杂草群落结构特征[J]. 草业学报, 2021, 30(5): 34-41. |
[11] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[12] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[13] | 张宁, 曹允馨, 徐伟, 常智慧. 干旱胁迫下污泥对草地早熟禾生长及激素代谢的影响[J]. 草业学报, 2021, 30(3): 167-176. |
[14] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[15] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||