草业学报 ›› 2023, Vol. 32 ›› Issue (1): 16-25.DOI: 10.11686/cyxb2022029
李江文1,2(), 何邦印1, 李彩1, 回虹燕1,2, 刘博1,2, 张晓曦1,2, 樊慧1, 苏文钰1
收稿日期:
2022-01-22
修回日期:
2022-04-18
出版日期:
2023-01-20
发布日期:
2022-11-07
通讯作者:
李江文
作者简介:
(1987-),男,陕西商洛人,讲师,博士。E-mail: jiangwen-0105@163.com基金资助:
Jiang-wen LI1,2(), Bang-yin HE1, Cai LI1, Hong-yan HUI1,2, Bo LIU1,2, Xiao-xi ZHANG1,2, Hui FAN1, Wen-yu SU1
Received:
2022-01-22
Revised:
2022-04-18
Online:
2023-01-20
Published:
2022-11-07
Contact:
Jiang-wen LI
摘要:
植物功能性状与功能多样性是评价草地生态系统功能的重要工具。本研究以黄土高原丘陵沟壑区不同恢复年限人工刺槐林林下草地和自然撂荒草地作为研究对象,通过对草地植物群落及功能性状进行调查,分析不同恢复年限草地群落水平植物功能性状及功能多样性动态变化,结果显示:1)林下草地和自然撂荒草地植物群落主要以多年生菊科和蔷薇科为主;2)随恢复年限增加,林下草地植物从以双子叶为主逐渐演替到以单子叶为主,从以菊科为主逐渐演替到以禾本科为主;而撂荒草地物种始终以菊科为主,且在恢复过程中逐渐演替为以灌木和半灌木为主的群落;3)林下草地群落水平叶片功能性状值大于撂荒草地,而群落水平盖度、密度和地上生物量性状小于撂荒草地。撂荒草地物种多样性和功能多样性指数高于林下草地,撂荒草地相较林下草地具有更高的生态效益。本研究可为黄土高原丘陵沟壑区草地生态系统功能评估提供理论依据。
李江文, 何邦印, 李彩, 回虹燕, 刘博, 张晓曦, 樊慧, 苏文钰. 不同恢复年限草地群落水平植物功能性状及功能多样性分析[J]. 草业学报, 2023, 32(1): 16-25.
Jiang-wen LI, Bang-yin HE, Cai LI, Hong-yan HUI, Bo LIU, Xiao-xi ZHANG, Hui FAN, Wen-yu SU. Analysis of grassland community-level plant functional traits and functional diversity at different times during restoration[J]. Acta Prataculturae Sinica, 2023, 32(1): 16-25.
恢复年限 Restoration years (a) | 平均海拔 Altitude (m) | 坡向 Aspect | 林下草地Understory grassland | 撂荒草地Abandoned grassland | ||
---|---|---|---|---|---|---|
坐标Coordinate | 主要物种Main species | 坐标Coordinate | 主要物种Main species | |||
10 | 1337 | 东南Southeast | N 36°44′05″, E 109°15′14″ | 猪毛蒿A. scoparia、山莓Rubus corchorifolius | N 36°44′06″, E 109°15′13″ | 阿尔泰狗娃花Heteropappus altaicus、狗尾草S. viridis |
20 | 1208 | 正南South | N 36°43′44″, E 109°15′13″ | 野菊C. indicum、异叶败酱Patrinia heterophylla | N 36°43′40″, E 109°14′14″ | 小花鬼针草Bidens parviflora、早熟禾Poa annua |
30 | 1155 | 东南Southeast | N 36°44′45″, E 109°15′18″ | 铁杆蒿A. sacrorum、龙牙草Agrimonia pilosa | N 36°44′43″, E 109°14′48″ | 猪毛蒿A. scoparia、二裂委陵菜Potentilla bifurca |
45 | 1254 | 正南South | N 36°44′39″, E 109°15′30″ | 披碱草E. dahuricus、艾蒿Artemisia argyi | N 36°44′29″, E 109°15′26″ | 黄刺玫R. xanthina、苦荬菜Ixeris polycephala |
表1 研究地基本情况
Table 1 The basic situation of the research site
恢复年限 Restoration years (a) | 平均海拔 Altitude (m) | 坡向 Aspect | 林下草地Understory grassland | 撂荒草地Abandoned grassland | ||
---|---|---|---|---|---|---|
坐标Coordinate | 主要物种Main species | 坐标Coordinate | 主要物种Main species | |||
10 | 1337 | 东南Southeast | N 36°44′05″, E 109°15′14″ | 猪毛蒿A. scoparia、山莓Rubus corchorifolius | N 36°44′06″, E 109°15′13″ | 阿尔泰狗娃花Heteropappus altaicus、狗尾草S. viridis |
20 | 1208 | 正南South | N 36°43′44″, E 109°15′13″ | 野菊C. indicum、异叶败酱Patrinia heterophylla | N 36°43′40″, E 109°14′14″ | 小花鬼针草Bidens parviflora、早熟禾Poa annua |
30 | 1155 | 东南Southeast | N 36°44′45″, E 109°15′18″ | 铁杆蒿A. sacrorum、龙牙草Agrimonia pilosa | N 36°44′43″, E 109°14′48″ | 猪毛蒿A. scoparia、二裂委陵菜Potentilla bifurca |
45 | 1254 | 正南South | N 36°44′39″, E 109°15′30″ | 披碱草E. dahuricus、艾蒿Artemisia argyi | N 36°44′29″, E 109°15′26″ | 黄刺玫R. xanthina、苦荬菜Ixeris polycephala |
群落加权平均性状 Community weighted mean trait | 草地类型 Grassland types | 10 a | 20 a | 30 a | 45 a |
---|---|---|---|---|---|
CWM高度 Average height of CWM | 林下草地Understory grassland | 41.04±2.08Aa | 44.90±4.25Aa | 39.43±4.77Aa | 51.81±7.04Aa |
撂荒草地Abandoned grassland | 39.41±1.78Aa | 32.63±4.92Aa | 36.40±6.71Aa | 42.46±3.08Aa | |
CWM盖度 Coverage of CWM | 林下草地Understory grassland | 15.83±6.84Aa | 8.19±1.90Aa | 22.42±4.40Aa | 15.37±4.03Ba |
撂荒草地Abandoned grassland | 16.18±2.73Aab | 12.16±3.21Ab | 25.88±7.16Aab | 30.00±3.24Aa | |
CWM密度 Density of CWM | 林下草地Understory grassland | 7.04±2.68Ba | 17.22±1.81Aa | 24.08±17.84Aa | 21.09±5.43Ba |
撂荒草地Abandoned grassland | 106.20±36.24Aa | 27.50±8.90Ab | 24.29±6.65Ab | 111.44±22.81Aa | |
CWM地上生物量 Aboveground biomass of CWM | 林下草地Understory grassland | 24.18±7.00Aab | 16.45±3.30Ab | 78.78±34.61Aa | 27.18±4.47Bab |
撂荒草地Abandoned grassland | 24.38±4.22Ab | 23.47±4.69Ab | 54.87±20.05Aab | 63.83±11.10Aa | |
CWM叶面积 Leaf area of CWM | 林下草地Understory grassland | 2310.50±301.23Aa | 413.26±87.09Ab | 1175.51±425.70Ab | 1097.77±226.14Ab |
撂荒草地Abandoned grassland | 364.26±65.64Bb | 510.23±87.97Aab | 677.10±78.28Aa | 101.14±18.41Bc | |
CWM叶片质量 Leaf biomass of CWM | 林下草地Understory grassland | 0.10±0.01Aa | 0.02±0.00Ab | 0.06±0.02Aab | 0.06±0.01Aab |
撂荒草地Abandoned grassland | 0.02±0.00Bbc | 0.03±0.01Aab | 0.04±0.01Aa | 0.01±0.00Bc |
表2 不同恢复年限草地植物群落加权平均性状的差异性
Table 2 Difference in community weighted mean trait (CWM) of grassland plant communities in different restoration years
群落加权平均性状 Community weighted mean trait | 草地类型 Grassland types | 10 a | 20 a | 30 a | 45 a |
---|---|---|---|---|---|
CWM高度 Average height of CWM | 林下草地Understory grassland | 41.04±2.08Aa | 44.90±4.25Aa | 39.43±4.77Aa | 51.81±7.04Aa |
撂荒草地Abandoned grassland | 39.41±1.78Aa | 32.63±4.92Aa | 36.40±6.71Aa | 42.46±3.08Aa | |
CWM盖度 Coverage of CWM | 林下草地Understory grassland | 15.83±6.84Aa | 8.19±1.90Aa | 22.42±4.40Aa | 15.37±4.03Ba |
撂荒草地Abandoned grassland | 16.18±2.73Aab | 12.16±3.21Ab | 25.88±7.16Aab | 30.00±3.24Aa | |
CWM密度 Density of CWM | 林下草地Understory grassland | 7.04±2.68Ba | 17.22±1.81Aa | 24.08±17.84Aa | 21.09±5.43Ba |
撂荒草地Abandoned grassland | 106.20±36.24Aa | 27.50±8.90Ab | 24.29±6.65Ab | 111.44±22.81Aa | |
CWM地上生物量 Aboveground biomass of CWM | 林下草地Understory grassland | 24.18±7.00Aab | 16.45±3.30Ab | 78.78±34.61Aa | 27.18±4.47Bab |
撂荒草地Abandoned grassland | 24.38±4.22Ab | 23.47±4.69Ab | 54.87±20.05Aab | 63.83±11.10Aa | |
CWM叶面积 Leaf area of CWM | 林下草地Understory grassland | 2310.50±301.23Aa | 413.26±87.09Ab | 1175.51±425.70Ab | 1097.77±226.14Ab |
撂荒草地Abandoned grassland | 364.26±65.64Bb | 510.23±87.97Aab | 677.10±78.28Aa | 101.14±18.41Bc | |
CWM叶片质量 Leaf biomass of CWM | 林下草地Understory grassland | 0.10±0.01Aa | 0.02±0.00Ab | 0.06±0.02Aab | 0.06±0.01Aab |
撂荒草地Abandoned grassland | 0.02±0.00Bbc | 0.03±0.01Aab | 0.04±0.01Aa | 0.01±0.00Bc |
图3 不同恢复年限草地植物群落物种多样性的差异性不同小写字母表示不同恢复年限之间差异性显著(P<0.05);不同大写字母表示林下草地与撂荒草地之间差异性显著(P<0.05)。Different lowercase letters indicate significant differences between different restoration years(P<0.05); Different capital letters indicate significant differences between understory grassland and abandoned grassland(P<0.05).*: P<0.05; NS: P>0.05; T: 恢复类型Type of restoration; Y: 恢复年限Restoration years; 下同The same below.
Fig.3 Differences in species diversity of grassland plant communities in different restoration years
1 | Petchey O L, Gaston K J. Functional diversity (FD), species richness and community composition. Ecology Letters, 2002, 5(3): 402-411. |
2 | Petchey O L, Gaston K J. Functional diversity: Back to basics and looking forward. Ecology Letters, 2006, 9(6): 741-758. |
3 | Xiang X, Huang Y M, Yang C Y, et al. Effect of altitude on community-level plant functional traits in the Qinghai Lake Basin, China. Chinese Journal of Plant Ecology, 2021, 45(5): 456-466. |
向响, 黄永梅, 杨崇曜, 等. 海拔对青海湖流域群落水平植物功能性状的影响. 植物生态学报, 2021, 45(5): 456-466. | |
4 | Liu J, Wu J, Su H, et al. Effects of grazing exclusion in Xilin Gol grassland differ between regions. Ecological Engineering, 2017, 99: 271-281. |
5 | Chai Q L. Effects of different managements on community structure and ecological functions in a typical steppe. Xianyang: Northwest A&F University, 2019. |
柴清琳. 不同管理措施对典型草原群落结构和生态功能的影响. 咸阳: 西北农林科技大学, 2019. | |
6 | Ding W, Wang Y B, Xiang G H, et al. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe. Chinese Journal of Plant Ecology, 2020, 44(1): 33-43. |
丁威, 王玉冰, 向官海, 等. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 2020, 44(1): 33-43. | |
7 | Guo P, Xie L N, Man L, et al. Effects of the expansion of Caragana shrubs on forage yield and plant diversity in desert steppe. Pratacultural Science, 2019, 36(5): 1215-1223. |
郭璞, 解李娜, 满良, 等. 荒漠化草原锦鸡儿属灌丛扩增对牧草产量和植物多样性的影响. 草业科学, 2019, 36(5): 1215-1223. | |
8 | Qu H, Wang B T, Wang D, et al. Research of artificial forest plant diversity under different configuration of loess area. Ecology and Environmental Sciences, 2010, 19(4): 843-848. |
曲红, 王百田, 王棣, 等. 黄土区不同配置人工林物种多样性研究. 生态环境学报, 2010, 19(4): 843-848. | |
9 | Yu X, Wang X, Wu T, et al. Effects of enclosure on species diversity and functional diversity of desert steppe. Journal of Soil and Water Conservation, 2021, 35(6): 243-250. |
余轩, 王兴, 吴婷, 等. 围封对荒漠草原物种多样性和功能多样性的影响. 水土保持学报, 2021, 35(6): 243-250. | |
10 | Shannon C, Weaver W. The mathematical theory of communication. Urbana-USA: University of Illinois Press, 1949. |
11 | Pielou E C. Ecological diversity. New York: Wiley, 1975. |
12 | Simpson E H. Measurements of diversity. Nature, 1949(163): 688. |
13 | Mason N W H, De-bello F. Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 2013, 24(5): 777-780. |
14 | Mason N W H, Mac-Gillivray K, Steel J B, et al. An index of functional diversity. Journal of Vegetation Science, 2003, 14: 571-578. |
15 | Casanoves F, Pla L, Rienzo J A D, et al. FDiversity: A software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2011, 2(3): 233-237. |
16 | Villéger S, Mason N W, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 2008, 89(8): 2290-2301. |
17 | Mason N W H, De-bello F, Mouillot D, et al. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 2013, 24(5): 794-806. |
18 | Wang S M, Pang Y X, Song A Y, et al. Soil physiochemical properties and diversity of herbaceous plants dynamic on the different ages mixed forests of Populus×Euramercana ‘Neva’ and Robinia pseucdoacacia in coastal saline-alkali area. Acta Ecologica Sinica, 2018, 38(18): 6539-6548. |
王树梅, 庞元湘, 宋爱云, 等. 基于林龄的滨海盐碱地杨树刺槐混交林土壤理化性质及草本植物多样性动态. 生态学报, 2018, 38(18): 6539-6548. | |
19 | Liu J L, Yang Z L, Dang P, et al. Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: A chronosequence approach. Plant and Soil, 2017, 423(1): 327-338. |
20 | Wang M Z, Bi H J, Jin S, et al. Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain. Acta Ecologica Sinica, 2019, 39(3): 981-988. |
王媚臻, 毕浩杰, 金锁, 等. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响. 生态学报, 2019, 39(3): 981-988. | |
21 | Zhang W, Liu W C, Xu M P, et al. Response of forest growth to C∶N∶P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma, 2019, 337: 280-289. |
22 | Wang J, Zhao W W, Zhang X, et al. Effects of reforestation on plant species diversity on the Loess Plateau of China: A case study in Danangou catchment. Science of the Total Environment, 2019, 651: 979-989. |
23 | Qiao W J, Dai Y Y, Zhang W, et al. Relationship between the vegetation community and soil nutrient and enzyme activity during the restoration of abandoned land in the Loess Hilly Region. Environmental Science, 2018, 39(12): 5687-5698. |
乔文静, 戴银月, 张伟, 等. 黄土丘陵区撂荒恢复过程中植物群落组成与土壤养分及酶活性变化的关系. 环境科学, 2018, 39(12): 5687-5698. | |
24 | Yang L X, Chen S F, An J J, et al. Relationships among community diversity and soil organic matter, total nitrogen under different vegetation types in the gully region of loess region. Acta Agrestia Sinica, 2014, 22(2): 291-298. |
杨丽霞, 陈少锋, 安娟娟, 等. 陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究. 草地学报, 2014, 22(2): 291-298. | |
25 | An Q Q, Qiao W Y, Li W J, et al. Effect of shrub encroachment on grassland community structure and above-ground biomass on the Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(4): 664-671. |
安琪琪, 乔文英, 李维军, 等. 灌丛化对黄土高原草地植物群落结构和地上生物量的影响. 西北植物学报, 2021, 41(4): 664-671. | |
26 | Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85: 2630-2637. |
27 | Díaz S, Lavorel S, De-bello F, et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 2004, 104: 20684-20689. |
28 | Violle C, Reich P B, Pacala S W, et al. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 13690-13696. |
29 | Nunes A, Köbel M, Pinho P, et al. Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands. Agricultural and Forest Meteorology, 2017, 239: 176-184. |
30 | Mitchell R M, Ames G M, Wright J P. Intra specific trait variability shapes leaf trait response to altered fire regimes. Annals of Botany, 2021, 127(4): 543-552. |
31 | Ren C J, Zhao F Z, Kang D, et al. Linkages of C∶N∶P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 2016, 376: 59-66. |
32 | Fanin N, Bertrand I. Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biology and Biochemistry, 2016, 94(1): 46-60. |
33 | Barliza J C, Pelaez J D L, Campo J. Recovery of biogeochemical processes in restored tropical dry forest on a coal mine spoil in La Guajira, Colombia. Land Degradation & Development, 2018, 29(9): 3174-3183. |
34 | Alon M, Sternberg M. Effects of extreme drought on primary production, species composition and species diversity of a Mediterranean annual plant community. Journal of Vegetation Science, 2019, 30(6): 1045-1055. |
35 | Li X G, Zhu Z H, Zhou X S, et al. Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China. Chinese Journal of Plant Ecology, 2011, 35(11): 1136-1147. |
李晓刚, 朱志红, 周晓松, 等. 刈割、施肥和浇水对高寒草甸物种多样性与初级生产力关系的影响. 植物生态学报, 2011, 35(11): 1136-1147. | |
36 | Ge Z X, Sun G L, Yuan Y, et al. Herbaceous plant species diversity and functional diversity in the forest-steppe zone of Hebei, China. Acta Prataculturae Sinica, 2017, 26(7): 35-44. |
葛兆轩, 孙国龙, 袁业, 等. 河北省森林草原区草本植物物种多样性和功能多样性. 草业学报, 2017, 26(7): 35-44. | |
37 | Guo M M, Wang W L, Kang H L, et al. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China. Journal of Arid Land, 2018, 10(5): 712-725. |
38 | Kong D X, Miao C Y, Borthwick A G L, et al. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: Possible causes and potential impacts. Environmental Science and Pollution Research, 2018, 25(14): 13633-13644. |
39 | Tuo D F, Gao G Y, Chang R Y, et al. Effects of revegetation and precipitation gradient on soil carbon and nitrogen variations in deep profiles on the Loess Plateau of China. Science of the Total Environment, 2018, 626: 399-411. |
[1] | 潘占东, 马倩倩, 陈晓龙, 蔡立群, 蔡雪梅, 董博, 武均, 张仁陟. 添加生物质炭对黄土高原旱作农田土壤养分、腐殖质及其组分的影响[J]. 草业学报, 2022, 31(2): 14-24. |
[2] | 段媛媛, 张静, 王玲玲, 刘彩凤, 王乙茉, 周俗, 郭正刚. 高原鼠兔对高寒草甸植物物种多样性和功能多样性关系的影响[J]. 草业学报, 2022, 31(11): 25-35. |
[3] | 侯金伟, 陈焘, 南志标. 不同埋藏方式及杀菌剂处理对黄土高原3种植物种子存活的影响[J]. 草业学报, 2021, 30(3): 129-136. |
[4] | 车昭碧, 徐鹏飞, 郭亚亚, 曹佳敏, 黄星宇, 杨寒珺, 鲁为华. 北方蚁(Formica aquilonia)对山地草甸土壤种子库的影响[J]. 草业学报, 2021, 30(11): 40-51. |
[5] | 车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明. 半干旱沙地草本植物群落特征对短期降水变化的响应[J]. 草业学报, 2020, 29(4): 19-28. |
[6] | 施颖, 胡廷花, 高红娟, 罗巧玉, 于应文. 两种放牧模式下高寒草甸群落植被构成及稳定性特征[J]. 草业学报, 2019, 28(9): 1-10. |
[7] | 刘家鹤, 牛伊宁, 罗珠珠, 蔡立群, 张仁陟, 谢军红. 黄土高原坡耕地植物篱-作物间作系统水分利用特征研究[J]. 草业学报, 2018, 27(6): 111-119. |
[8] | 李佳琪, 赵敏, 魏斌, 胡廷花, 于应文. 蘑菇圈形成对高寒草甸群落植被结构及稳定性的作用[J]. 草业学报, 2018, 27(4): 1-9. |
[9] | 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰. 立式深旋松耕对西北半干旱区土壤水分性状及马铃薯产量的影响[J]. 草业学报, 2018, 27(12): 156-165. |
[10] | 王春燕, 燕霞, 顾梦鹤. 黄土高原弃耕地植被演替及其对土壤养分动态的影响[J]. 草业学报, 2018, 27(11): 26-35. |
[11] | 栗文瀚, 干珠扎布, 曹旭娟, 闫玉龙, 李钰, 罗文蓉, 胡国铮, 旦久罗布, 何世丞, 高清竹. 海拔梯度对藏北高寒草地生产力和物种多样性的影响[J]. 草业学报, 2017, 26(9): 200-207. |
[12] | 梁志婷, 邓建强, 王自奎, 沈禹颖, 王先之. 陇东旱塬区不同粮草轮作模式下土壤细菌群落组成特征[J]. 草业学报, 2017, 26(8): 180-191. |
[13] | 葛兆轩, 孙国龙, 袁业, 黄选瑞, 张志东. 河北省森林草原区草本植物物种多样性和功能多样性[J]. 草业学报, 2017, 26(7): 35-44. |
[14] | 张明莉, 常宏磊, 马淼. 基于Biolog技术的外来种意大利苍耳与本地种苍耳根际土壤微生物功能多样性的比较[J]. 草业学报, 2017, 26(10): 179-187. |
[15] | 杨勇, 刘爱军, 李兰花, 陈海军, 宋向阳, 王保林, 罗冬, 王明玖. 围封对内蒙古典型草原群落特征及土壤性状的影响[J]. 草业学报, 2016, 25(5): 21-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||