草业学报 ›› 2023, Vol. 32 ›› Issue (2): 65-74.DOI: 10.11686/cyxb2022035
郭丽珠1(), 孟慧珍1,2, 范希峰1, 滕珂1, 滕文军1, 温海峰1, 岳跃森1, 张辉1, 武菊英1()
收稿日期:
2022-01-18
修回日期:
2022-04-09
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
武菊英
作者简介:
E-mail: wujuying@grass-env.com基金资助:
Li-zhu GUO1(), Hui-zhen MENG1,2, Xi-feng FAN1, Ke TENG1, Wen-jun TENG1, Hai-feng WEN1, Yue-sen YUE1, Hui ZHANG1, Ju-ying WU1()
Received:
2022-01-18
Revised:
2022-04-09
Online:
2023-02-20
Published:
2022-12-01
Contact:
Ju-ying WU
摘要:
为揭示野牛草雌雄株对氮素形态的偏好及生理响应差异,以野牛草克隆分株为材料,采用温室砂培盆栽方法,分析了硝态氮(N1)、铵态氮(N2)、铵硝混合态氮(N3)和对照(CK)处理对野牛草雌、雄株生长性状、生物量、叶绿素含量、叶片氮含量及氮代谢相关酶活性的影响。结果表明,雌株在N2处理时其生长性状、各部位生物量及地上生物量和总生物量均显著小于N1和CK,且还小于N3处理,表明铵态氮处理可能抑制野牛草雌株生长。N1处理下的雄株间隔子长度、间隔子直径与CK无显著差异但显著大于N2和N3,同时其匍匐茎节数、匍匐茎长度、根生物量、地上生物量及总生物量显著大于其他处理。野牛草雌、雄株的叶绿素a含量和叶绿素总含量均在N1处理时显著高于对照,但雌株在3种N形态处理之间没有显著差异、而雄株在N1时与N2或N3处理差异显著。野牛草雌株的叶氮含量、3种氮代谢相关酶活性均在N3处理时显著大于其他处理,而雄株在N1处理表现较好。综上,野牛草雌、雄株的生长均偏喜硝态氮,然而雌株对唯一氮源—铵态氮作用敏感且生长受抑,但是铵硝混合态氮能够缓解甚至提高雌株的N代谢生理功能,而雄株无此表现。野牛草雌、雄株对不同形态氮素的响应存在显著差异,这为野牛草雌雄株的差异氮肥管理提供了理论依据和技术途径。
郭丽珠, 孟慧珍, 范希峰, 滕珂, 滕文军, 温海峰, 岳跃森, 张辉, 武菊英. 野牛草雌雄株对不同形态氮素的生理响应差异[J]. 草业学报, 2023, 32(2): 65-74.
Li-zhu GUO, Hui-zhen MENG, Xi-feng FAN, Ke TENG, Wen-jun TENG, Hai-feng WEN, Yue-sen YUE, Hui ZHANG, Ju-ying WU. Physiological responses of female and male Buchloe dactyloides plants to different nitrogen forms[J]. Acta Prataculturae Sinica, 2023, 32(2): 65-74.
项目 Item | 对照 N-free (CK) | 硝态氮 NO3-N (N1) | 铵态氮 NH4+-N (N2) | 混合态氮 NO3-N∶NH4+-N=1∶1 (N3) |
---|---|---|---|---|
氯化钾 KCl | 1.25 | - | 1.5 | 0.25 |
六水氯化钙 CaCl2·6H2O | 1.25 | - | 1.25 | - |
七水硫酸镁 MgSO4·7H2O | 0.5 | 0.5 | 0.5 | 0.5 |
磷酸二氢钾 KH2(PO4) | 0.25 | 0.25 | - | - |
硝酸钾 KNO3 | - | 1.25 | - | 1.25 |
四水硝酸钙 Ca(NO3)2·4H2O | - | 1.25 | - | 1.25 |
磷酸二氢铵 NH4H2PO4 | - | - | 0.25 | 0.25 |
氯化铵 NH4Cl | - | - | 3.5 | 3.5 |
硼酸 H3BO3 | 0.0116 | 0.0116 | 0.0116 | 0.0116 |
四水氯化锰 MnCl2·4H2O | 0.0046 | 0.0046 | 0.0046 | 0.0046 |
七水硫酸锌 ZnSO4·7H2O | 0.00019 | 0.00019 | 0.00019 | 0.00019 |
钼酸钠 Na2MoO4 | 0.00012 | 0.00012 | 0.00012 | 0.00012 |
五水硫酸铜 CuSO4·5H2O | 0.00008 | 0.00008 | 0.00008 | 0.00008 |
七水硫酸亚铁 FeSO4·7H2O | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
乙二酸四乙胺二钠 Na2EDTA | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
表1 不同形态氮素处理的营养液配方
Table 1 Nutrient solution composition of nitrogen form treatments (mmol·L-1)
项目 Item | 对照 N-free (CK) | 硝态氮 NO3-N (N1) | 铵态氮 NH4+-N (N2) | 混合态氮 NO3-N∶NH4+-N=1∶1 (N3) |
---|---|---|---|---|
氯化钾 KCl | 1.25 | - | 1.5 | 0.25 |
六水氯化钙 CaCl2·6H2O | 1.25 | - | 1.25 | - |
七水硫酸镁 MgSO4·7H2O | 0.5 | 0.5 | 0.5 | 0.5 |
磷酸二氢钾 KH2(PO4) | 0.25 | 0.25 | - | - |
硝酸钾 KNO3 | - | 1.25 | - | 1.25 |
四水硝酸钙 Ca(NO3)2·4H2O | - | 1.25 | - | 1.25 |
磷酸二氢铵 NH4H2PO4 | - | - | 0.25 | 0.25 |
氯化铵 NH4Cl | - | - | 3.5 | 3.5 |
硼酸 H3BO3 | 0.0116 | 0.0116 | 0.0116 | 0.0116 |
四水氯化锰 MnCl2·4H2O | 0.0046 | 0.0046 | 0.0046 | 0.0046 |
七水硫酸锌 ZnSO4·7H2O | 0.00019 | 0.00019 | 0.00019 | 0.00019 |
钼酸钠 Na2MoO4 | 0.00012 | 0.00012 | 0.00012 | 0.00012 |
五水硫酸铜 CuSO4·5H2O | 0.00008 | 0.00008 | 0.00008 | 0.00008 |
七水硫酸亚铁 FeSO4·7H2O | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
乙二酸四乙胺二钠 Na2EDTA | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
图2 不同氮素形态对野牛草雌雄株生长性状的影响不同小写字母表示在0.05水平上差异显著。下同。Different letters indicate significant differences at 0.05 level. The same below.
Fig.2 Effects of nitrogen forms on growth traits of female and male buffalograss
处理 Treatments | 雌株Female | 雄株Male | ||||||
---|---|---|---|---|---|---|---|---|
全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | 全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | |
CK | 1.520±0.10c | 0.620±0.08b | 0.103±0.02 | 0.723±0.09b | 0.799±0.07c | 0.411±0.06c | 0.202±0.02 | 0.613±0.08b |
N1 | 1.681±0.18bc | 0.795±0.12a | 0.128±0.02 | 0.924±0.14a | 1.542±0.09a | 0.610±0.11a | 0.276±0.11 | 0.886±0.10a |
N2 | 1.832±0.15b | 0.763±0.14ab | 0.117±0.03 | 0.880±0.16ab | 1.391±0.06b | 0.546±0.09b | 0.255±0.09 | 0.801±0.08ab |
N3 | 2.021±0.10a | 0.723±0.09ab | 0.116±0.01 | 0.838±0.10ab | 1.448±0.09ab | 0.477±0.07bc | 0.229±0.02 | 0.705±0.09b |
表 2 不同形态氮素对野牛草雌雄株叶绿素含量、N含量的影响
Table 2 Effects of nitrogen forms on chlorophyll and nitrogen content of female and male buffalograss (mean±SD)
处理 Treatments | 雌株Female | 雄株Male | ||||||
---|---|---|---|---|---|---|---|---|
全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | 全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | |
CK | 1.520±0.10c | 0.620±0.08b | 0.103±0.02 | 0.723±0.09b | 0.799±0.07c | 0.411±0.06c | 0.202±0.02 | 0.613±0.08b |
N1 | 1.681±0.18bc | 0.795±0.12a | 0.128±0.02 | 0.924±0.14a | 1.542±0.09a | 0.610±0.11a | 0.276±0.11 | 0.886±0.10a |
N2 | 1.832±0.15b | 0.763±0.14ab | 0.117±0.03 | 0.880±0.16ab | 1.391±0.06b | 0.546±0.09b | 0.255±0.09 | 0.801±0.08ab |
N3 | 2.021±0.10a | 0.723±0.09ab | 0.116±0.01 | 0.838±0.10ab | 1.448±0.09ab | 0.477±0.07bc | 0.229±0.02 | 0.705±0.09b |
1 | Slate M L, Rosenstiel T N, Eppley S M. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales). Annals of Botany, 2017, 120(5): 845-854. |
2 | Li N, Meng Z W, Tao M J, et al. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genomics, 2020, 21(1): 850. |
3 | Barrett S C H, Hough J. Sexual dimorphism in flowering plants. Journal of Experimental Botany, 2013, 63(2): 695-709. |
4 | Retuerto R, Vilas J S, Varga S. Sexual dimorphism in response to stress. Environmental and Experimental Botany, 2018, 146: 1-4. |
5 | Juvany M, Munné-Bosch S. Sex-related differences in stress tolerance in dioecious plants: A critical appraisal in a physiological context. Journal of Experimental Botany, 2015, 66(20): 6083-6092. |
6 | Xia Z C, He Y, Zhou B, et al. Sex-related responses in rhizosphere processes of dioecious Populus cathayana exposed to drought and low phosphorus stress. Environmental and Experimental Botany, 2020, 175: 104049. |
7 | Qian Y Q, Sun Z Y, Han L, et al. Photosynthate integration and regulation within clones of buffalograss under heterogeneous water supply. Acta Ecologica Sinica, 2010, 30(15): 3966-3973. |
钱永强, 孙振元, 韩蕾, 等. 异质水分环境下野牛草相连分株间光合同化物的生理整合及其调控. 生态学报, 2010, 30(15): 3966-3973. | |
8 | Li Y X, Wang X G, Cong L L, et al. Zymogram analysis of different sexual Buchloe dactyloide. Acta Agrestia Sinica, 2012, 20(3): 530-535. |
李永祥, 王显国, 丛丽丽, 等. 不同性别野牛草同工酶酶谱分析. 草地学报, 2012, 20(3): 530-535. | |
9 | Johnson P G, Riordan T P, Johnson-Cicalese J. Low-mowing tolerance in buffalograss. Crop Science, 2000, 40: 1339-1343. |
10 | Quinn J A, James L E. Life-history strategies and sex ratios for a cultivar and wild population of (Buchloe dacyloides (Nutt.) Engelm). American Journal of Botany, 1986, 73(6): 874-881. |
11 | Li D Y. Different response to water deficient male and female plants of buffalograss. Acta Horticulturae Sinica, 1996, 23(1): 62-66. |
李德颖. 野牛草雌雄单性植株对水分胁迫反应的差异. 园艺学报, 1996, 23(1): 62-66. | |
12 | Tatiana K, Gras D E, Gutiérrez A G, et al. A holistic view of nitrogen acquisition in plants.Journal of Experimental Botany, 2011, 62(4): 1455-1466. |
13 | Kaur B, Kaur G, Asthir B. Biochemical aspects of nitrogen use efficiency: An overview. Journal of Plant Nutrition, 2017, 40(4): 506-523. |
14 | Xu G, Fan X, Miller A. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63: 153-182. |
15 | Britto D T, Kronzucker H J. Ecological significance and complexity of N-source preference in plants. Annals of Botany, 2013, 112(6): 957-963. |
16 | Zou N, Huang L, Chen H J, et al. Nitrogen form plays an important role in the growth of moso bamboo (Phyllostachys edulis) seedlings. Peer J, 2020, 8(6): e9938. |
17 | Tehryung K, Mills H, Wetzstein H. Studies on effects of nitrogen form on growth, development, and nutrient uptake in pecan. Journal of Plant Nutrition, 2002, 25(3): 497-508. |
18 | Fan M Y, Pan K X, Han W J, et al. A strategy for introducing an endangered plant Mosla hangchowensis to urban area based on nitrogen preference. Acta Physiologiae Plantarum, 2016, 38(11): 265. |
19 | Hachiya T, Sakakibara H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 2017, 68(10): 2501-2512. |
20 | Bauer B, Wir E N V. Modulating tiller formation in cereal crops by the signaling function of fertilizer nitrogen forms. Scientific Reports, 2020,10: 20504. |
21 | Zhang Y L. Effects of N form on photosynthetic electron allocation and xanthophyll cycle activity of cucumber and rice. Hangzhou: Zhejiang University, 2007. |
张一利. 不同氮素形态对黄瓜和水稻光合电子传递及叶黄素循环的影响. 杭州: 浙江大学, 2007. | |
22 | Piñero M C, Perez-Jimenez M, Lopez-Marin J, et al. Differential effect of the nitrogen form on the leaf gas exchange, amino acid composition, and antioxidant response of sweet pepper at elevated CO2 . Plant Growth Regulation, 2018, 86: 37-48. |
23 | Sun Y D, Luo W R, Liu H C. Effects of different nitrogen forms on the nutritional quality and physiological characteristics of Chinese chive seedlings. Plant Soil & Environment, 2014, 60(5): 216-220. |
24 | Saleh S, Liu G, Liu M, et al. Do NH4∶NO3 ratio and harvest time affect celery (Apium graveolens) productivity and product quality? Folia Horticulturae, 2019, 31(2): 343-353. |
25 | Pompeiano A, Patton A J. Growth and root architecture responses of zoysiagrass to changes in fertilizer nitrate∶urea ratio. Journal of Plant Nutrition and Soil Science, 2017, 180: 528-534. |
26 | Guo H R, Wu S L, Lu X L, et al. Effects of different nitrogen supply forms on the growth and quality of Zoysia japonica cv. lanyin No. 3. Journal of Huazhong Agricultural University, 2008, 27(1): 59-64. |
郭和蓉, 吴淑龙, 卢小良, 等. 氮形态对兰引3号结缕草(Zoysia japonica cv. lanyin No.3)生长及草坪质量的影响. 华中农业大学学报, 2008, 27(1): 59-64. | |
27 | Frank K W, Gaussoin R E, Riordan T P, et al. Nitrogen rate and mowing height effects on turf-type buffalograss. Crop Science, 2004, 44(5): 1615-1621. |
28 | Springer T L, Taliaferro C M, Hattey J A. Nitrogen source and rate effects on the production of buffalograss forage grown with irrigation. Crop Science, 2005, 45(2): 668-672. |
29 | Alderman E J, Hoyle J A, Keeley S J, et al. Buffalograss divot recovery as affected by nitrogen source and rate. Crop, Forage & Turfgrass Management, 2017, 3: cftm2016.06.0044. |
30 | Darwin C. The different forms of flowers on plants of the same species. Cambridge: Cambridge University Press, 1877. |
31 | Quinn J A. Relationship between synaptospermy and dioecy in the life history strategies of Buchloe dactyloides (Gamineae). American Journal of Botany, 1987, 74(8): 1167-1172. |
32 | deLima C P, Backes C, Santos A J M, et al. Nutrients quantities extracted by bermuda grass in function of nitrogen doses. Bioscience Journal, 2015, 31(5): 1432-1440. |
33 | Jiang Y, Li Y, Nie G, et al. Leaf and root growth, carbon and nitrogen contents, and gene expression of perennial ryegrass to different nitrogen supplies. Journal of the American Society for Horticultural Science, 2016, 141(6): 555-562. |
34 | Niu Z M, Zhang G B, Liu Z F, et al. Effects of different nitrogen forms on nutrient uptake, yield formation and quality of cabbage. Acta Prataculturae Sinica, 2013, 22(6): 68-76. |
牛振明, 张国斌, 刘赵帆, 等. 氮素形态及配比对甘蓝养分吸收、产量以及品质的影响. 草业学报, 2013, 22(6): 68-76. | |
35 | Britto D T, Herbert J, Kronzucker. NH4 + toxicity in higher plants: A critical review. Journal of Plant Physiology, 2002, 159: 567-584. |
36 | Esteban R, Ariz I, Cruz C, et al. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 2016, 248: 92-101. |
37 | Roosta H, Estaji A, Niknam F. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica, 2018, 56(2): 606-615. |
38 | Dai T B, Cao W X, Sun C F, et al. Effect of enhanced ammonium nutrition on photosynthesis and nitrate reductase and glutamine synthetase activities of winter wheat. Chinese Journal of Applied Ecology, 2003, 14(9): 1529-1532. |
戴廷波, 曹卫星, 孙传范, 等. 增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响. 应用生态学报, 2003, 14(9): 1529-1532. | |
39 | Miflin B J, Dimah Z H. The role of glutamine systhetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 2002, 53(370): 979-987. |
40 | Pang Q Q, Chen R Y, Liu H C, et al. Effects of fulvic acid on the growth and activities of nitrogen metabolism enzymes in pakchoi under NO3 - stress. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2136-2140. |
庞强强, 陈日远, 刘厚诚, 等. 硝酸盐胁迫下黄腐酸对小白菜生长及氮代谢相关酶活性的影响. 浙江农业学报, 2015, 27(12): 2136-2140. | |
41 | Lam H M, Coschigano K T, Oliveira I C, et al. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 569-593. |
[1] | 郭文婷, 王国华, 缑倩倩, 刘婧. 河西走廊荒漠绿洲过渡带3种典型一年生藜科植物构件生长及生物量分配特征[J]. 草业学报, 2022, 31(2): 25-38. |
[2] | 邹博坤, 王欣铭, 褚章杉, 黄馨慧, 陈雨峰, 钱永强. 氮素形态对野牛草生长及氮素吸收利用的影响[J]. 草业学报, 2022, 31(11): 118-127. |
[3] | 汪梦寒, 董利利, 李富翠, 韩烈保, 王祥. 不同有机/无机氮添加对草原土壤氮素分配和转化特征的影响[J]. 草业学报, 2022, 31(1): 36-46. |
[4] | 薛晴, 陈斌, 杨小梅, 杨宇佳, 李子葳, 薄杉, 何淼. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征[J]. 草业学报, 2022, 31(1): 69-80. |
[5] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[6] | 彭磊, 张力, 周小龙, 万彦博, 师庆东. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响[J]. 草业学报, 2021, 30(5): 65-74. |
[7] | 范高华, 黄迎新, 赵学勇, 神祥金. 种群密度对沙米异速生长的影响[J]. 草业学报, 2017, 26(3): 53-64. |
[8] | 罗栋,钱永强,刘俊祥,韩蕾,李伟,孙振元. 克隆植物野牛草对异质营养的表型可塑性响应[J]. 草业学报, 2014, 23(3): 104-109. |
[9] | 刘秀香,杨允菲. 松嫩平原不同生境芦苇生殖分株的异速生长分析[J]. 草业学报, 2012, 21(4): 313-318. |
[10] | 李有涵,谢昭良,解新明. 5个象草品种的构件生物量特征及分配动态[J]. 草业学报, 2011, 20(5): 11-18. |
[11] | 武建双,沈振西,张宪洲,付刚. 藏北高原人工垂穗披碱草种群生物量分配对施氮处理的响应[J]. 草业学报, 2009, 18(6): 113-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||