草业学报 ›› 2023, Vol. 32 ›› Issue (2): 54-64.DOI: 10.11686/cyxb2022075
收稿日期:
2022-02-17
修回日期:
2022-04-28
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
马维伟
作者简介:
E-mail: Mww-007@163.com基金资助:
Wen-hua CHANG(), Wei-wei MA(), Guang LI, Guo-rong XU, Yong-chun LONG
Received:
2022-02-17
Revised:
2022-04-28
Online:
2023-02-20
Published:
2022-12-01
Contact:
Wei-wei MA
摘要:
为探讨高寒湿地退化对土壤氮转化酶活性的影响,以青藏高原东缘尕海湿地未退化(ND)、轻度退化(LD)、中度退化(MD)和重度退化(HD)4种不同退化程度0~40 cm土层沼泽草甸为研究对象,研究不同退化与土层中土壤氮转化酶(蛋白酶、脲酶、硝酸还原酶和亚硝酸还原酶)活性的变化特征及其与土壤理化性质之间的关系。结果表明:1)随沼泽草甸退化程度加剧,土壤含水量、全氮、铵态氮和微生物生物量氮含量均显著降低,土壤温度与硝态氮含量却显著增加。2)随退化程度加剧,各土层土壤脲酶活性增加、蛋白酶活性降低,且仅在20~40 cm土层存在显著差异;硝酸还原酶活性增加、亚硝酸还原酶活性降低,在0~20 cm土层存在显著差异。3)各退化程度中,土壤脲酶、蛋白酶、亚硝酸还原酶活性均随土层深度的增加而显著下降,硝酸还原酶活性仅在HD显著下降。4)退化程度和土层对4种土壤氮转化酶活性均存在显著影响,且对土壤硝酸酶和亚硝酸还原酶活性存在显著交互作用。5)冗余分析表明土壤含水量对土壤氮转化酶活性变化的贡献率高达67.1%,其是驱动尕海沼泽草甸退化演替过程中土壤氮转化酶活性变化的主导因素。研究结果可为高寒湿地生态系统退化中的土壤酶活性变化规律提供理论依据。
常文华, 马维伟, 李广, 徐国荣, 龙永春. 尕海湿地区沼泽草甸退化对土壤氮转化酶活性的影响[J]. 草业学报, 2023, 32(2): 54-64.
Wen-hua CHANG, Wei-wei MA, Guang LI, Guo-rong XU, Yong-chun LONG. Effects of swamp meadow degradation on soil nitrogen invertase activity in wet areas of Gahai[J]. Acta Prataculturae Sinica, 2023, 32(2): 54-64.
样地 Sample plot | 植被种类 Vegetation type | 植被盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·cm-2) | 基本情况 Basic conditions |
---|---|---|---|---|---|
HD | 地表仅有零星植被存在,风蚀严重。 Only sporadic vegetation exists on the surface, and wind erosion is serious. | ||||
ND | 藏嵩草 K. tibetica、蕨麻 P. anserina、早熟禾 P. annua | 96.25±5.32A | 16.71±2.98A | 355.90±174.64A | 枯落物和根系较多,有较浅的季节性积水。Lots of litter and roots, with shallow seasonal standing water. |
LD | 青藏苔草 C. moorcroftii、蕨麻P. anserina、棘豆 O. falcata | 86.34±7.36B | 13.02±2.24B | 293.02±143.93B | 有少量裸露,无积水。There is a small amount of dew, no standing water. |
MD | 矮生嵩草 Kobresia humilis、冷蒿 A. frigida、兰石草 L. tibetica | 45.33±13.34C | 7.43±0.97C | 185.73±134.90C | 植物种类较少,且出现一些毒草,地表轻微风蚀。There are few plant species, and some poisonous weeds appear, and the surface is slightly eroded by wind. |
表1 样地基本情况
Table 1 Basic information of the sample plot
样地 Sample plot | 植被种类 Vegetation type | 植被盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·cm-2) | 基本情况 Basic conditions |
---|---|---|---|---|---|
HD | 地表仅有零星植被存在,风蚀严重。 Only sporadic vegetation exists on the surface, and wind erosion is serious. | ||||
ND | 藏嵩草 K. tibetica、蕨麻 P. anserina、早熟禾 P. annua | 96.25±5.32A | 16.71±2.98A | 355.90±174.64A | 枯落物和根系较多,有较浅的季节性积水。Lots of litter and roots, with shallow seasonal standing water. |
LD | 青藏苔草 C. moorcroftii、蕨麻P. anserina、棘豆 O. falcata | 86.34±7.36B | 13.02±2.24B | 293.02±143.93B | 有少量裸露,无积水。There is a small amount of dew, no standing water. |
MD | 矮生嵩草 Kobresia humilis、冷蒿 A. frigida、兰石草 L. tibetica | 45.33±13.34C | 7.43±0.97C | 185.73±134.90C | 植物种类较少,且出现一些毒草,地表轻微风蚀。There are few plant species, and some poisonous weeds appear, and the surface is slightly eroded by wind. |
土层深度 Soil depth (cm) | 样地 Sample plot | 含水量 Moisture (m3·m-3) | 温度 Temperature (℃) | 全氮 Total nitrogen (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | ND | 0.48±0.00Aa | 12.48±0.07Da | 4.24±0.38Aa | 12.59±1.29Aa | 1.49±0.20Bb | 49.43±4.13Aa |
LD | 0.40±0.00Ba | 13.80±0.04Ca | 3.53±0.08Ba | 10.09±0.65Aa | 3.18±0.21Ba | 22.62±4.45Ca | |
MD | 0.27±0.00Cc | 14.37±0.03Ba | 3.06±0.09Ba | 6.65±1.15Ba | 6.15±1.81ABa | 39.09±3.32Ba | |
HD | 0.10±0.00Da | 15.40±0.06Aa | 2.16±0.04Ca | 5.48±0.48Ba | 10.52±3.20Aa | 25.71±4.35Ca | |
10~20 | ND | 0.44±0.00Ab | 12.28±0.04Ca | 3.15±0.26Ab | 6.74±1.47Ab | 0.96±0.10Bb | 33.96±3.95Aab |
LD | 0.34±0.01Bb | 13.47±0.03Ba | 2.95±0.18ABb | 6.65±0.61Ab | 2.77±1.38Ba | 18.56±1.22Aa | |
MD | 0.30±0.00Cb | 13.58±0.02Bb | 2.43±0.20BCb | 5.95±1.82Aa | 8.60±1.33Aa | 22.68±8.04Aab | |
HD | 0.09±0.00Db | 14.61±0.02Ab | 1.96±0.06Cb | 6.41±1.74Aa | 9.65±2.73Aa | 19.93±4.50Aa | |
20~40 | ND | 0.35±0.00Ab | 11.60±0.01Cb | 2.70±0.11Ab | 6.47±0.56Ab | 3.47±0.41Ca | 21.77±6.30Ab |
LD | 0.43±0.00Ba | 12.53±0.02Bb | 2.50±0.16Ab | 6.18±1.06Ab | 3.59±1.01Ca | 18.70±4.02Aa | |
MD | 0.34±0.00Ca | 12.51±0.01Bc | 1.83±0.14Bc | 3.50±0.61Bb | 8.31±0.63Ba | 19.47±1.49Ab | |
HD | 0.11±0.00Da | 13.64±0.02Ac | 1.98±0.04Bb | 2.68±0.32Bb | 11.05±0.46Aa | 16.11±0.80Aa | |
0~40 | ND | 0.45±0.00A | 12.12±0.01C | 3.37±0.15A | 8.60±0.33A | 1.97±0.22B | 35.05±4.13A |
LD | 0.36±0.01B | 13.27±0.02B | 2.99±0.11B | 7.64±0.18A | 3.18±0.38B | 20.58±2.82C | |
MD | 0.27±0.00C | 13.49±0.02B | 2.44±0.01C | 5.36±0.92B | 7.69±0.79A | 27.08±2.50B | |
HD | 0.10±0.00D | 14.56±0.02A | 2.03±0.02D | 4.86±0.80B | 10.42±2.04A | 19.96±2.66C |
表2 不同退化程度沼泽草甸土壤理化性质
Table 2 Soil physicochemical properties of marsh meadows with different degrees of degradation
土层深度 Soil depth (cm) | 样地 Sample plot | 含水量 Moisture (m3·m-3) | 温度 Temperature (℃) | 全氮 Total nitrogen (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | ND | 0.48±0.00Aa | 12.48±0.07Da | 4.24±0.38Aa | 12.59±1.29Aa | 1.49±0.20Bb | 49.43±4.13Aa |
LD | 0.40±0.00Ba | 13.80±0.04Ca | 3.53±0.08Ba | 10.09±0.65Aa | 3.18±0.21Ba | 22.62±4.45Ca | |
MD | 0.27±0.00Cc | 14.37±0.03Ba | 3.06±0.09Ba | 6.65±1.15Ba | 6.15±1.81ABa | 39.09±3.32Ba | |
HD | 0.10±0.00Da | 15.40±0.06Aa | 2.16±0.04Ca | 5.48±0.48Ba | 10.52±3.20Aa | 25.71±4.35Ca | |
10~20 | ND | 0.44±0.00Ab | 12.28±0.04Ca | 3.15±0.26Ab | 6.74±1.47Ab | 0.96±0.10Bb | 33.96±3.95Aab |
LD | 0.34±0.01Bb | 13.47±0.03Ba | 2.95±0.18ABb | 6.65±0.61Ab | 2.77±1.38Ba | 18.56±1.22Aa | |
MD | 0.30±0.00Cb | 13.58±0.02Bb | 2.43±0.20BCb | 5.95±1.82Aa | 8.60±1.33Aa | 22.68±8.04Aab | |
HD | 0.09±0.00Db | 14.61±0.02Ab | 1.96±0.06Cb | 6.41±1.74Aa | 9.65±2.73Aa | 19.93±4.50Aa | |
20~40 | ND | 0.35±0.00Ab | 11.60±0.01Cb | 2.70±0.11Ab | 6.47±0.56Ab | 3.47±0.41Ca | 21.77±6.30Ab |
LD | 0.43±0.00Ba | 12.53±0.02Bb | 2.50±0.16Ab | 6.18±1.06Ab | 3.59±1.01Ca | 18.70±4.02Aa | |
MD | 0.34±0.00Ca | 12.51±0.01Bc | 1.83±0.14Bc | 3.50±0.61Bb | 8.31±0.63Ba | 19.47±1.49Ab | |
HD | 0.11±0.00Da | 13.64±0.02Ac | 1.98±0.04Bb | 2.68±0.32Bb | 11.05±0.46Aa | 16.11±0.80Aa | |
0~40 | ND | 0.45±0.00A | 12.12±0.01C | 3.37±0.15A | 8.60±0.33A | 1.97±0.22B | 35.05±4.13A |
LD | 0.36±0.01B | 13.27±0.02B | 2.99±0.11B | 7.64±0.18A | 3.18±0.38B | 20.58±2.82C | |
MD | 0.27±0.00C | 13.49±0.02B | 2.44±0.01C | 5.36±0.92B | 7.69±0.79A | 27.08±2.50B | |
HD | 0.10±0.00D | 14.56±0.02A | 2.03±0.02D | 4.86±0.80B | 10.42±2.04A | 19.96±2.66C |
图1 不同退化程度土壤氮转化酶活性变化ND: 未退化 Non-degraded; LD: 轻度退化 Light degraded; MD: 中度退化 Moderate degraded; HD: 重度退化 Heavy degraded。不同大写字母表示不同退化程度间差异显著(P<0.05),不同小写字母表示同一退化程度不同土层深度间差异显著(P<0.05)。Different capital letters indicate significant differences among different degrees of degeneration (P<0.05). Different lowercase letters indicate significant differences among different soil depths at the same degree of degradation (P<0.05).
Fig.1 Changes in soil nitrogen invertase activity with different degrees of degradation
因素 Factor | 自由度 df | 土壤脲酶活性URE | 土壤蛋白酶活性PRO | 土壤硝酸还原酶活性NR | 土壤亚硝酸还原酶活性NIR | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
退化程度Degradation degree | 3 | 16.815 | <0.001 | 14.550 | <0.001 | 229.454 | <0.001 | 28.747 | <0.001 |
土层深度Soil depth | 2 | 37.007 | <0.001 | 165.988 | <0.001 | 15.041 | <0.001 | 69.107 | <0.001 |
退化×土层Degradation degree×soil depth | 6 | 1.166 | 0.357 | 0.045 | 0.868 | 26.295 | <0.001 | 5.578 | 0.001 |
表3 退化程度和土层交互作用下土壤氮转化酶活性方差分析
Table 3 Variance analysis of soil nitrogen invertase activity under degradation degree and soil layer interaction
因素 Factor | 自由度 df | 土壤脲酶活性URE | 土壤蛋白酶活性PRO | 土壤硝酸还原酶活性NR | 土壤亚硝酸还原酶活性NIR | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
退化程度Degradation degree | 3 | 16.815 | <0.001 | 14.550 | <0.001 | 229.454 | <0.001 | 28.747 | <0.001 |
土层深度Soil depth | 2 | 37.007 | <0.001 | 165.988 | <0.001 | 15.041 | <0.001 | 69.107 | <0.001 |
退化×土层Degradation degree×soil depth | 6 | 1.166 | 0.357 | 0.045 | 0.868 | 26.295 | <0.001 | 5.578 | 0.001 |
项目 Item | 轴1 Axis 1 | 轴2 Axis 2 | 轴3 Axis 3 | 轴4 Axis 4 |
---|---|---|---|---|
土壤氮转化酶活性特征值Soil nitrogen invertase activity characteristic value | 0.7541 | 0.0472 | 0.0001 | 0.0000 |
土壤氮转化酶活性与环境相关性Soil nitrogen invertase activity and environmental correlation | 0.909 | 0.751 | 0.234 | 0.096 |
土壤氮转化酶活性累计解释量Cumulative interpretation of soil nitrogen invertase activity characteristics (%) | 75.41 | 80.13 | 80.15 | 80.15 |
土壤氮转化酶活性-环境累计解释量Soil nitrogen invertase activity cumulative environmental interpretation (%) | 94.09 | 99.98 | 100.00 | 100.00 |
典范特征值Canonical eigenvalue | 0.8015 | |||
总特征值Total eigenvalue | 1.0000 |
表4 土壤氮转化酶活性RDA排序的特征值及解释量
Table 4 Eigenvalues and interpretations of RDA ranking of soil nitrogen invertase activity
项目 Item | 轴1 Axis 1 | 轴2 Axis 2 | 轴3 Axis 3 | 轴4 Axis 4 |
---|---|---|---|---|
土壤氮转化酶活性特征值Soil nitrogen invertase activity characteristic value | 0.7541 | 0.0472 | 0.0001 | 0.0000 |
土壤氮转化酶活性与环境相关性Soil nitrogen invertase activity and environmental correlation | 0.909 | 0.751 | 0.234 | 0.096 |
土壤氮转化酶活性累计解释量Cumulative interpretation of soil nitrogen invertase activity characteristics (%) | 75.41 | 80.13 | 80.15 | 80.15 |
土壤氮转化酶活性-环境累计解释量Soil nitrogen invertase activity cumulative environmental interpretation (%) | 94.09 | 99.98 | 100.00 | 100.00 |
典范特征值Canonical eigenvalue | 0.8015 | |||
总特征值Total eigenvalue | 1.0000 |
图2 土壤氮转化酶活性与理化因子的冗余分析URE: 脲酶 Urease; PRO: 蛋白酶Protease; NR:硝酸还原酶 Nitrate reductase;NIR:亚硝酸还原酶 Nitrite reductase; TN: 全氮 Total nitrogen; NH4+-N: 铵态氮 Ammonium nitrogen; NO3--N: 硝态氮 Nitrate nitrogen; MBN: 微生物生物量氮 Microbial biomass nitrogen; SWC: 土壤含水量 Soil water content; TEM: 温度 Temperature.
Fig.2 RDA analysis of soil nitrogen invertase activity and soil physicochemical properties
环境因子Environmental factors | 排序Ranking | 解释量Explanatory quantity (%) | F | P |
---|---|---|---|---|
SWC | 1 | 67.1 | 69.4 | 0.002 |
NO3--N | 2 | 57.8 | 46.6 | 0.006 |
TEM | 3 | 43.3 | 38.2 | 0.024 |
TN | 4 | 39.8 | 21.2 | 0.028 |
MBN | 5 | 22.1 | 5.4 | 0.278 |
NH4+-N | 6 | 8.9 | 2.1 | 0.605 |
表5 土壤理化因子解释量及显著性检验
Table 5 Ranking results of importance of interpretation of soil physical and chemical properties
环境因子Environmental factors | 排序Ranking | 解释量Explanatory quantity (%) | F | P |
---|---|---|---|---|
SWC | 1 | 67.1 | 69.4 | 0.002 |
NO3--N | 2 | 57.8 | 46.6 | 0.006 |
TEM | 3 | 43.3 | 38.2 | 0.024 |
TN | 4 | 39.8 | 21.2 | 0.028 |
MBN | 5 | 22.1 | 5.4 | 0.278 |
NH4+-N | 6 | 8.9 | 2.1 | 0.605 |
1 | Sinsabaugh R L, Hill B H, Follstad S J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462(7274): 795-798. |
2 | Dunn C, Jones T G, Girard A, et al. Methodologies for extracellular enzyme assays from wetland soils. Wetlands, 2014, 34(1): 9-17. |
3 | Wang L D, Wang F L, Guo C X, et al. Progress of soil enzymology. Soil, 2016, 48(1): 12-21. |
王理德, 王方琳, 郭春秀, 等. 土壤酶学研究进展. 土壤, 2016, 48(1): 12-21. | |
4 | Liu C, Zhao G Y, Song Y Y, et al. Soil enzyme activity in wetland under the background of climate change: Research progress. Chinese Agricultural Science Bulletin, 2019, 35(33): 91-97. |
刘超, 赵光影, 宋艳宇, 等. 气候变化背景下湿地土壤酶活性研究进展. 中国农学通报, 2019, 35(33): 91-97. | |
5 | Xu G R, Ma W W, Song L C, et al. Characteristics of soil nitrogen content and enzyme activity in Gahai wetland under different vegetation degradation states. Acta Ecologica Sinica, 2020, 40(24): 8917-8927. |
徐国荣, 马维伟, 宋良翠, 等. 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征. 生态学报, 2020, 40(24): 8917-8927. | |
6 | Wu J Q, Wang H Y, Li G, et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Scientific Reports, 2020, 10(1): 21271-21287. |
7 | Li H Y, Zhang J G, Yao T, et al. Soil nutrients, enzyme activities and ecological stoichiometry characteristic in degraded alpine grassland. Journal of Soil and Water Conservation, 2018, 32(5): 287-295. |
李海云, 张建贵, 姚拓, 等. 退化高寒草地土壤养分、酶活性及生态化学计量特征. 水土保持学报, 2018, 32(5): 287-295. | |
8 | Li J H, Yang G J, Wang S P. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 2020, 31(6): 2109-2118. |
李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征. 应用生态学报, 2020, 31(6): 2109-2118. | |
9 | Liu Y H. Study on soil enzyme activity of degraded alpine grassland in the source region of the Three Rivers. Jiangsu Agricultural Science, 2017, 45(6): 243-246. |
刘育红. 三江源区退化高寒草地土壤酶活性研究. 江苏农业科学, 2017, 45(6): 243-246. | |
10 | Jiang Y M, Shi S L, Tian Y L, et al. Characteristics of soil microorganism and soil enzyme activities in alpine meadows under different degrees of degradation. Journal of Soil and Water Conservation, 2017, 31(3): 244-249. |
蒋永梅, 师尚礼, 田永亮, 等. 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征. 水土保持学报, 2017, 31(3): 244-249. | |
11 | Ma W W, Li G, Wu J H, et al. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma, 2020, 377: 114565. |
12 | Ma W W, Alhassan A R M, Wang Y S, et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China. Nutrient Cycling in Agroecosystems, 2018, 112: 335-354. |
13 | Song L C, Ma W W, Li G, et al. Effect of temperature changes on nitrogen mineralization in soils with different degradation gradients in Gahai Wetland. Acta Prataculturae Sinica, 2021, 30(9): 27-37. |
宋良翠, 马维伟, 李广, 等. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响. 草业学报, 2021, 30(9): 27-37. | |
14 | Cao R, Wei X, Yang Y, et al. The effect of water table decline on plant biomass and species composition in the Zoige peatland: A four-year in situ field experiment. Agriculture, Ecosystems and Environment, 2017, 247: 389-395. |
15 | Ma W W, Li G, Shi W L, et al. Changes of plant biomass and species diversity in degradation process of gahai wetland in Gansu Province. Acta Agrestia Sinica, 2016, 24(5): 960-966. |
马维伟, 李广, 石万里, 等. 甘肃尕海湿地退化过程中植物生物量及物种多样性变化动态. 草地学报, 2016, 24(5): 960-966. | |
16 | Bao S D. Analysis of soil agriculture. Beijing: China Agriculture Press, 1999. |
鲍士旦. 土壤农业分析. 北京: 中国农业出版社, 1999. | |
17 | Guan S Y. Soil enzymes and their research methods. Beijing: Agricultural Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
18 | Wu Z J, Juan Y H, Chen L J, et al. An analytical method for detecting soil nitrate reductase activity, 101271060. Shenyang: Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 2011. |
武志杰, 隽英华, 陈利军, 等. 一种检测土壤硝酸还原酶活性的分析方法, 101271060. 沈阳: 中国科学院沈阳应用生态研究所, 2011. | |
19 | Gao Y, Schumann M, Chen H, et al. Impacts of grazing intensity on soil carbon and nitrogen in an alpine meadow on the eastern Tibetan Plateau. Applied Ecology & Environmental Research, 2008, 6(2): 69-79. |
20 | Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. |
胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. | |
21 | Su Y Z, Li Y L, Cui J Y, et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China. Catena, 2005, 59(3): 267-278. |
22 | Xu J J, Liu S Y H, Zhu X P, et al. Soil microorganism and enzymatic activity differences at various water gradients in swan lake alpine wetland of Bayanbulak grassland. Journal of Xinjiang Agricultural University, 2017, 40(5): 337-344. |
徐静静, 刘隋赟昊, 朱新萍, 等. 巴音布鲁克天鹅湖高寒湿地不同水分梯度土壤微生物及酶活性的差异. 新疆农业大学学报, 2017, 40(5): 337-344. | |
23 | Zhang Y, Liu C, Song A, et al. Relationship between soil physicochemical properties and soil enzyme activities in Huixian karst wetland system based on canonical correspondence analysis. Carsologica Sinica, 2016, 35(1): 11-18. |
张莹, 刘畅, 宋昂, 等. 基于典范对应分析的会仙岩溶湿地土壤理化性质与土壤酶活性关系研究. 中国岩溶, 2016, 35(1): 11-18. | |
24 | Ma W M, Liu C W, Zhou Q P, et al. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
马文明, 刘超文, 周青平, 等. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响. 草业学报, 2022, 31(1): 57-68. | |
25 | Liu Y J. Response of soil microbial community structure and function to water condition change in wetland. Nanchang: Nanchang University, 2017. |
刘亚军. 湿地土壤微生物群落结构和功能对水分条件变化的响应. 南昌: 南昌大学, 2017. | |
26 | Huang H L, Zong N, He N P, et al. Characteristics of soil enzyme stoichiometry along an altitude gradient on Qinghai-Tibet Plateau alpine meadow, China. Chinese Journal of Applied Ecology, 2019, 30(11): 3689-3696. |
黄海莉, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔土壤酶化学计量特征. 应用生态学报, 2019, 30(11): 3689-3696. | |
27 | Wang F F, Xu H, Li T, et al. Effects and mechanisms of grazing on key processes of soil nitrogen cycling in grassland: A review. Chinese Journal of Applied Ecology, 2019, 30(10): 3277-3284. |
王芳芳, 徐欢, 李婷, 等. 放牧对草地土壤氮素循环关键过程的影响与机制研究进展. 应用生态学报, 2019, 30(10): 3277-3284. | |
28 | Saggar S, Jha N, Deslippe J, et al. Denitrification and N2O∶N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Science of The Total Environment, 2013, 465: 173-195. |
29 | Liu J G, Liu W G. Advances in microbial-mediated nitrogen cycling. Acta Agrestia Sinica, 2018, 26(2): 277-283. |
刘建国, 刘卫国. 微生物介导的氮循环过程研究进展. 草地学报, 2018, 26(2): 277-283. | |
30 | Ding X H. Soil microbial characteristics in wet meadows of Zhalong wetlands. Harbin: Northeast Forestry University, 2011. |
丁新华. 扎龙湿地湿草甸土壤微生物特性研究. 哈尔滨: 东北林业大学, 2011. | |
31 | Pan P, Wang C T, Hu L, et al. The synergetic responses of plant community and soil to the restorative succession of cultivated grassland. Ecology and Environmental Sciences, 2020, 29(12): 2355-2364. |
潘攀, 王长庭, 胡雷, 等. 植物群落和土壤对人工草地恢复演替的协同响应. 生态环境学报, 2020, 29(12): 2355-2364. | |
32 | Wang X Y, Yao B H, Zhang C J, et al. Seasonal changes of soil physicochemical properties and enzyme activity of “bare land” degraded meadow in Gannan. Acta Agrestia Sinica, 2021, 29(2): 220-227. |
王小燕, 姚宝辉, 张彩军, 等. 甘南“黑土滩”型退化草甸土壤理化特性及酶活性季节变化. 草地学报, 2021, 29(2): 220-227. | |
33 | Li L, Wang J J, Gao F, et al. Effects of freeze-thaw cycles on soil nitrogen invertase of four temperate forests. Journal of Yangzhou University(Agricultural and Life Science Edition), 2021, 42(1): 111-118. |
李龙, 王佳佳, 高峰, 等. 冻融循环对4种温带森林土壤氮转化酶的影响. 扬州大学学报(农业与生命科学版), 2021, 42(1): 111-118. | |
34 | Wu G L, Ren G H, Dong Q M, et al. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. CLEAN-Soil Air Water, 2014, 42(3): 319-323. |
35 | Huang Y F, Shu Y G, Xiao S Y, et al. Quantification of soil nutrient levels and enzyme activities in different grassland categories in Karst mountains. Acta Prataculturae Sinica, 2020, 29(6): 93-104. |
黄玙璠, 舒英格, 肖盛杨, 等. 喀斯特山区不同草地土壤养分与酶活性特征. 草业学报, 2020, 29(6): 93-104. | |
36 | Li Y H, Zhu H Q, Fang L Z, et al. Soil enzyme activity characteristics and impact factors under plant communities of the Ebinur Lake wetland. Acta Ecologica Sinica, 2020, 40(2): 549-559. |
李艳红, 朱海强, 方丽章, 等. 艾比湖湿地植物群落土壤酶活性特征及影响因素. 生态学报, 2020, 40(2): 549-559. | |
37 | Zhu X M, Liu M, Kou Y P, et al. Differential effects of N addition on the stoichiometry of microbes and extracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland. Plant and Soil, 2020, 449(3): 285-301. |
38 | Tegeder M, Celine M D. Source and sink mechanisms of nitrogen transport and use. New Phytologist, 2018, 217(1): 35-53. |
39 | Fan S Y, Sun H, Yang J Y, et al. Variations in soil enzyme activities and microbial communities along an altitudinal gradient on the Eastern Qinghai-Tibetan Plateau. Forests, 2021, 12(6): 681-694. |
40 | Lipson D A, Schadt C W, Schmidt S K. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology, 2002, 43(3): 307-314. |
41 | Sharma N, Kumar S. Nitrogen transformation rates in the Himalayan soils at different temperature and elevation conditions. Journal of Soils and Sediments, 2021, 21(1): 13-26. |
42 | Yin P S. Responses of soil enzyme activities and organic carbon distribution characteristics to warming and nitrogen application in alpine swamp meadows on the Tibetan Plateau. Lanzhou: Lanzhou Jiaotong University, 2020. |
尹鹏松. 青藏高原高寒沼泽草甸土壤酶活性与有机碳分布特征对增温与施氮的响应. 兰州: 兰州交通大学, 2020. | |
43 | Ma S Q, Wang Z W, Chen Y C, et al. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China. Chinese Journal of Plant Ecology, 2021, 45(5): 516-527. |
马书琴, 汪子微, 陈有超, 等. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响. 植物生态学报, 2021, 45(5): 516-527. |
[1] | 韩枫, 张志涛, 张鑫, 王建浩, 王浩. 美国公共牧草地法治管理进程的经验借鉴与若干启示[J]. 草业学报, 2022, 31(9): 220-232. |
[2] | 彭艳, 孙晶远, 马素洁, 王向涛, 魏学红, 孙磊. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性[J]. 草业学报, 2022, 31(8): 49-60. |
[3] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[4] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[5] | 高丽, 丁勇. 世界退化草地恢复研究和实践进展[J]. 草业学报, 2022, 31(10): 189-205. |
[6] | 王斌, 李满有, 王欣盼, 董秀, 庞军宝, 兰剑. 深松浅旋对半干旱区退化紫花苜蓿人工草地改良效果研究[J]. 草业学报, 2022, 31(1): 107-117. |
[7] | 宋良翠, 马维伟, 李广, 刘帅楠, 陆刚. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响[J]. 草业学报, 2021, 30(9): 27-37. |
[8] | 赵京东, 乌云娜, 宋彦涛. 短期围封对辽西北退化草地群落牧草品质的影响[J]. 草业学报, 2021, 30(9): 51-61. |
[9] | 赵京东, 宋彦涛, 徐鑫磊, 乌云娜. 施氮和刈割对辽西北退化草地牧草产量和品质的影响[J]. 草业学报, 2021, 30(8): 36-48. |
[10] | 王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29(4): 9-18. |
[11] | 李成一, 李希来, 杨元武, 李宏林, 梁德飞. 氮添加对不同坡度退化高寒草甸土壤细菌多样性的影响[J]. 草业学报, 2020, 29(12): 161-170. |
[12] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[13] | 刘雅婧, 蒙仲举, 党晓宏, 宋文娟, 翟波. 狼毒浸提液对3种牧草种子萌发和幼苗生长的影响[J]. 草业学报, 2019, 28(8): 130-138. |
[14] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[15] | 王丽娜, 罗久富, 杨梅香, 张利, 刘学敏, 邓东周, 周金星. 氮添加对退化高寒草地土壤微生物量碳氮的影响[J]. 草业学报, 2019, 28(7): 38-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||