草业学报 ›› 2023, Vol. 32 ›› Issue (3): 163-178.DOI: 10.11686/cyxb2022129
• 研究论文 • 上一篇
张一龙1(), 喻启坤1, 李雯1, 李培英1,2,3(), 孙宗玖1,2,3
收稿日期:
2022-03-25
修回日期:
2022-05-05
出版日期:
2023-03-20
发布日期:
2022-12-30
通讯作者:
李培英
作者简介:
E-mail: 823797457@qq.com基金资助:
Yi-long ZHANG1(), Qi-kun YU1, Wen LI1, Pei-ying LI1,2,3(), Zong-jiu SUN1,2,3
Received:
2022-03-25
Revised:
2022-05-05
Online:
2023-03-20
Published:
2022-12-30
Contact:
Pei-ying LI
摘要:
为了研究干旱胁迫对不同抗旱性狗牙根形态建成及内源激素的影响,明确不同抗旱性狗牙根响应干旱的表型特征及内源激素差异,探讨狗牙根表型特征与内源激素的相关性,丰富狗牙根抗旱理论以及生产实践中利用外源激素调控其抗旱性提供参考。采用PVC管栽植狗牙根,控制不同水分达到预设梯度维持10 d,对其叶、根相对含水量、相对电导率、内源激素[吲哚乙酸(IAA)、脱落酸(ABA)、赤霉素(GA3)、玉米素核苷(ZR)、油菜素内酯(Br)]、叶部特征(叶长、叶宽、叶面积)、根部特征(总根长、根表面积、根体积、根平均直径、根干重、最长根长、根系活力)进行测定,分析干旱胁迫下不同抗旱性狗牙根叶、根内源激素比例变化及表型特征与激素的相关性。结果表明,随着干旱胁迫加剧,显著降低了2类狗牙根的叶长、叶宽、叶面积、根平均直径,促进了根部生长发育;提高了叶、根ABA含量,降低了IAA、GA3、ZR、Br含量,且IAA/ABA、GA3/IAA与叶部指标、根部指标呈相反相关性,这均从侧面表明狗牙根叶、根在干旱胁迫下选择了相反的生存策略,即促进地下部生长,抑制地上部生长。抗旱狗牙根通过本身具有较大叶面积或者更发达的根系系统,以及相同胁迫下较高的ZR/ABA、GA3/ABA、IAA/ABA、Br/ABA来维持一定的生长以及减缓衰老来更好地适应干旱胁迫环境。
张一龙, 喻启坤, 李雯, 李培英, 孙宗玖. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J]. 草业学报, 2023, 32(3): 163-178.
Yi-long ZHANG, Qi-kun YU, Wen LI, Pei-ying LI, Zong-jiu SUN. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress[J]. Acta Prataculturae Sinica, 2023, 32(3): 163-178.
编号Code | 采集地点Collection site | 抗旱类型Drought resistance type |
---|---|---|
C10 | 莎车县Shache County | 敏旱型Drought sensitive |
C32 | 托克逊县Tuokexun County | 敏旱型Drought sensitive |
C118 | 莎车县Shache County | 抗旱型Drought resistant |
C138 | 疏勒县Shule County | 抗旱型Drought resistant |
Tifway | 南京农业大学赠予Donated by Nanjing Agricultural University | 抗旱型Drought resistant |
表1 供试材料基因型及相关信息
Table 1 Genotype and related information of test materials
编号Code | 采集地点Collection site | 抗旱类型Drought resistance type |
---|---|---|
C10 | 莎车县Shache County | 敏旱型Drought sensitive |
C32 | 托克逊县Tuokexun County | 敏旱型Drought sensitive |
C118 | 莎车县Shache County | 抗旱型Drought resistant |
C138 | 疏勒县Shule County | 抗旱型Drought resistant |
Tifway | 南京农业大学赠予Donated by Nanjing Agricultural University | 抗旱型Drought resistant |
图1 干旱胁迫对狗牙根叶与根相对含水量的影响不同小写字母表示相同处理不同材料间差异显著(P<0.05),不同大写字母表示相同材料不同处理间差异显著(P<0.05)。CK: 正常灌溉; MD: 中度干旱胁迫; SD: 重度干旱胁迫。下同。 Different lowercase letters indicate significant differences among different materials under the same treatment (P<0.05), and different capital letters indicate significant differences among different treatments of the same material (P<0.05). CK: Normal irrigation; MD: Moderate drought stress; SD: Severe drought stress. The same below.
Fig.1 Effects of drought stress on relative water content between leaf and root of C. dactylon
根系指标 Root index | 处理 Treatment | 供试材料Test material | ||||
---|---|---|---|---|---|---|
C10 | C32 | C118 | C138 | Tifway | ||
总根长Total root length (cm) | CK | 9797.20±214.63Aa | 4244.08±401.26Bb | 9643.99±542.48Ba | 9797.20±526.84Ba | 11568.62±695.84Ba |
MD | 10460.93±607.69Ab | 8454.88±188.83Ac | 10474.40±428.00ABb | 11870.69±378.37Aa | 12837.27±528.35Aa | |
SD | 10873.72±966.95Ab | 9216.38±615.68Ac | 11175.76±668.37Ab | 12316.42±350.52Aab | 13741.82±361.89Aa | |
根表面积Root surface area (cm2) | CK | 1015.12±29.05Ab | 507.81±66.43Bc | 1037.02±151.35Ab | 1018.72±101.60Bb | 1298.00±116.13Ba |
MD | 1038.87±72.45Ac | 928.18±41.73Ad | 1069.35±19.36Ac | 1200.51±15.66Ab | 1381.93±73.58ABa | |
SD | 1095.98±38.00Ab | 1049.31±164.92Ab | 1139.33±64.45Ab | 1324.85±103.30Aab | 1498.63±249.29Aa | |
根体积Root volume (cm3) | CK | 12.38±3.02Bb | 7.54±1.17Bc | 14.65±1.53Aab | 14.05±1.72Bab | 17.16±2.29Ba |
MD | 13.54±3.86ABbc | 11.14±1.17ABc | 15.54±1.67Ab | 16.46±2.75ABb | 23.14±1.84Aa | |
SD | 15.94±2.71Ab | 12.45±2.76Ac | 16.37±2.76Ab | 19.12±2.85Aab | 23.43±4.17Aa | |
根平均直径Root mean diameter (mm) | CK | 0.36±0.01Aa | 0.32±0.01Aa | 0.37±0.05Aa | 0.35±0.01Aa | 0.38±0.03Aa |
MD | 0.33±0.02ABb | 0.30±0.01Bb | 0.36±0.04ABa | 0.34±0.01Aa | 0.35±0.00Aa | |
SD | 0.31±0.01Bb | 0.30±0.01Bc | 0.34±0.02Ba | 0.33±0.02Bab | 0.35±0.01Aa | |
最长根长Longest root length (cm) | CK | 55.33±3.13Ba | 42.57±3.17Bc | 57.30±2.45Ba | 57.87±2.12Ba | 49.77±2.15Bb |
MD | 66.07±2.86Aa | 53.27±2.40Ac | 61.27±3.14ABb | 67.47±7.52ABa | 60.53±6.90Ab | |
SD | 68.90±6.31Ab | 60.27±6.25Ac | 67.40±6.65Ab | 76.00±4.55Aa | 69.60±5.75Ab | |
根干重Root dry weight (g) | CK | 2.43±0.25Bc | 1.13±0.09Bd | 2.19±0.25Bc | 3.35±0.31Ba | 2.95±0.10Cb |
MD | 2.79±0.16Ab | 2.26±0.16Ac | 2.66±0.17ABb | 3.58±0.29ABa | 3.62±0.26Ba | |
SD | 2.89±0.46Ab | 2.51±0.25Ac | 2.91±0.34Ab | 4.41±0.64Aa | 4.08±0.23Aa | |
根系活力Root activity (μg·g-1·h-1) | CK | 229.00±28.28Bc | 198.12±19.55Bd | 279.29±25.37Bb | 308.71±24.54Ba | 321.65±17.89Ba |
MD | 385.76±26.20Ac | 322.24±27.04Ad | 480.76±18.30Ab | 462.24±21.21Ab | 510.18±22.46Aa | |
SD | 172.82±19.55Bd | 144.88±18.30Be | 203.12±18.30Cc | 361.35±16.64Bb | 313.12±28.28Ba |
表2 干旱胁迫对各狗牙根根系指标的影响
Table 2 Effects of drought stress on root indexes of C. dactylon
根系指标 Root index | 处理 Treatment | 供试材料Test material | ||||
---|---|---|---|---|---|---|
C10 | C32 | C118 | C138 | Tifway | ||
总根长Total root length (cm) | CK | 9797.20±214.63Aa | 4244.08±401.26Bb | 9643.99±542.48Ba | 9797.20±526.84Ba | 11568.62±695.84Ba |
MD | 10460.93±607.69Ab | 8454.88±188.83Ac | 10474.40±428.00ABb | 11870.69±378.37Aa | 12837.27±528.35Aa | |
SD | 10873.72±966.95Ab | 9216.38±615.68Ac | 11175.76±668.37Ab | 12316.42±350.52Aab | 13741.82±361.89Aa | |
根表面积Root surface area (cm2) | CK | 1015.12±29.05Ab | 507.81±66.43Bc | 1037.02±151.35Ab | 1018.72±101.60Bb | 1298.00±116.13Ba |
MD | 1038.87±72.45Ac | 928.18±41.73Ad | 1069.35±19.36Ac | 1200.51±15.66Ab | 1381.93±73.58ABa | |
SD | 1095.98±38.00Ab | 1049.31±164.92Ab | 1139.33±64.45Ab | 1324.85±103.30Aab | 1498.63±249.29Aa | |
根体积Root volume (cm3) | CK | 12.38±3.02Bb | 7.54±1.17Bc | 14.65±1.53Aab | 14.05±1.72Bab | 17.16±2.29Ba |
MD | 13.54±3.86ABbc | 11.14±1.17ABc | 15.54±1.67Ab | 16.46±2.75ABb | 23.14±1.84Aa | |
SD | 15.94±2.71Ab | 12.45±2.76Ac | 16.37±2.76Ab | 19.12±2.85Aab | 23.43±4.17Aa | |
根平均直径Root mean diameter (mm) | CK | 0.36±0.01Aa | 0.32±0.01Aa | 0.37±0.05Aa | 0.35±0.01Aa | 0.38±0.03Aa |
MD | 0.33±0.02ABb | 0.30±0.01Bb | 0.36±0.04ABa | 0.34±0.01Aa | 0.35±0.00Aa | |
SD | 0.31±0.01Bb | 0.30±0.01Bc | 0.34±0.02Ba | 0.33±0.02Bab | 0.35±0.01Aa | |
最长根长Longest root length (cm) | CK | 55.33±3.13Ba | 42.57±3.17Bc | 57.30±2.45Ba | 57.87±2.12Ba | 49.77±2.15Bb |
MD | 66.07±2.86Aa | 53.27±2.40Ac | 61.27±3.14ABb | 67.47±7.52ABa | 60.53±6.90Ab | |
SD | 68.90±6.31Ab | 60.27±6.25Ac | 67.40±6.65Ab | 76.00±4.55Aa | 69.60±5.75Ab | |
根干重Root dry weight (g) | CK | 2.43±0.25Bc | 1.13±0.09Bd | 2.19±0.25Bc | 3.35±0.31Ba | 2.95±0.10Cb |
MD | 2.79±0.16Ab | 2.26±0.16Ac | 2.66±0.17ABb | 3.58±0.29ABa | 3.62±0.26Ba | |
SD | 2.89±0.46Ab | 2.51±0.25Ac | 2.91±0.34Ab | 4.41±0.64Aa | 4.08±0.23Aa | |
根系活力Root activity (μg·g-1·h-1) | CK | 229.00±28.28Bc | 198.12±19.55Bd | 279.29±25.37Bb | 308.71±24.54Ba | 321.65±17.89Ba |
MD | 385.76±26.20Ac | 322.24±27.04Ad | 480.76±18.30Ab | 462.24±21.21Ab | 510.18±22.46Aa | |
SD | 172.82±19.55Bd | 144.88±18.30Be | 203.12±18.30Cc | 361.35±16.64Bb | 313.12±28.28Ba |
指标 Index | 部位 Organ | 处理 Treatment | 供试材料Test material | |
---|---|---|---|---|
C32 | C138 | |||
吲哚乙酸/脱落酸IAA/ABA | 叶Leaf | CK | 1.922±0.089Aa | 1.710±0.017Ab |
MD | 1.282±0.042Bb | 1.615±0.134ABa | ||
SD | 1.085±0.117Cb | 1.502±0.102Ba | ||
根Root | CK | 0.213±0.018Aa | 0.186±0.018Ab | |
MD | 0.146±0.009Bb | 0.163±0.007Aa | ||
SD | 0.153±0.015Bb | 0.172±0.005Aa | ||
赤霉素/脱落酸GA3/ABA | 叶Leaf | CK | 0.117±0.008Aa | 0.092±0.002Bb |
MD | 0.097±0.007Ba | 0.089±0.005Ba | ||
SD | 0.080±0.012Bb | 0.107±0.010Aa | ||
根Root | CK | 0.022±0.002Aa | 0.022±0.001Aa | |
MD | 0.018±0.002Bb | 0.019±0.001Ba | ||
SD | 0.012±0.001Cb | 0.018±0.001Ba | ||
玉米素核苷/脱落酸ZR/ABA | 叶Leaf | CK | 0.209±0.005Aa | 0.186±0.003Ab |
MD | 0.142±0.010Bb | 0.158±0.014Ba | ||
SD | 0.131±0.014Bb | 0.184±0.020Aa | ||
根Root | CK | 0.030±0.002Aa | 0.029±0.001Aa | |
MD | 0.025±0.001Bb | 0.030±0.003Aa | ||
SD | 0.016±0.002Cb | 0.019±0.002Ba | ||
油菜素内酯/脱落酸Br/ABA | 叶Leaf | CK | 0.124±0.010Aa | 0.082±0.002Ab |
MD | 0.085±0.006Ba | 0.075±0.009Ab | ||
SD | 0.066±0.010Cb | 0.077±0.004Aa | ||
根Root | CK | 0.021±0.001Aa | 0.019±0.002Ab | |
MD | 0.017±0.001Ba | 0.016±0.002ABa | ||
SD | 0.010±0.001Cb | 0.012±0.002Ba | ||
赤霉素/吲哚乙酸GA3/IAA | 叶Leaf | CK | 0.061±0.007Ba | 0.054±0.001Bb |
MD | 0.075±0.005Aa | 0.055±0.001Bb | ||
SD | 0.074±0.005Aa | 0.071±0.002Aa | ||
根Root | CK | 0.105±0.002Ba | 0.118±0.014Aa | |
MD | 0.123±0.006Aa | 0.117±0.004Aa | ||
SD | 0.080±0.008Cb | 0.106±0.004Aa | ||
玉米素核苷/吲哚乙酸ZR/IAA | 叶Leaf | CK | 0.109±0.006Aa | 0.109±0.001Ba |
MD | 0.111±0.008Aa | 0.098±0.003Ca | ||
SD | 0.120±0.004Aa | 0.122±0.006Aa | ||
根Root | CK | 0.142±0.006Bb | 0.157±0.013Ba | |
MD | 0.172±0.004Ab | 0.183±0.009Aa | ||
SD | 0.108±0.008Ca | 0.110±0.012Ca |
表3 干旱胁迫下不同抗旱性狗牙根叶与根中内源激素比例变化
Table 3 Changes of endogenous hormone ratio in leaf and root of C. dactylon with different drought resistance under drought stress
指标 Index | 部位 Organ | 处理 Treatment | 供试材料Test material | |
---|---|---|---|---|
C32 | C138 | |||
吲哚乙酸/脱落酸IAA/ABA | 叶Leaf | CK | 1.922±0.089Aa | 1.710±0.017Ab |
MD | 1.282±0.042Bb | 1.615±0.134ABa | ||
SD | 1.085±0.117Cb | 1.502±0.102Ba | ||
根Root | CK | 0.213±0.018Aa | 0.186±0.018Ab | |
MD | 0.146±0.009Bb | 0.163±0.007Aa | ||
SD | 0.153±0.015Bb | 0.172±0.005Aa | ||
赤霉素/脱落酸GA3/ABA | 叶Leaf | CK | 0.117±0.008Aa | 0.092±0.002Bb |
MD | 0.097±0.007Ba | 0.089±0.005Ba | ||
SD | 0.080±0.012Bb | 0.107±0.010Aa | ||
根Root | CK | 0.022±0.002Aa | 0.022±0.001Aa | |
MD | 0.018±0.002Bb | 0.019±0.001Ba | ||
SD | 0.012±0.001Cb | 0.018±0.001Ba | ||
玉米素核苷/脱落酸ZR/ABA | 叶Leaf | CK | 0.209±0.005Aa | 0.186±0.003Ab |
MD | 0.142±0.010Bb | 0.158±0.014Ba | ||
SD | 0.131±0.014Bb | 0.184±0.020Aa | ||
根Root | CK | 0.030±0.002Aa | 0.029±0.001Aa | |
MD | 0.025±0.001Bb | 0.030±0.003Aa | ||
SD | 0.016±0.002Cb | 0.019±0.002Ba | ||
油菜素内酯/脱落酸Br/ABA | 叶Leaf | CK | 0.124±0.010Aa | 0.082±0.002Ab |
MD | 0.085±0.006Ba | 0.075±0.009Ab | ||
SD | 0.066±0.010Cb | 0.077±0.004Aa | ||
根Root | CK | 0.021±0.001Aa | 0.019±0.002Ab | |
MD | 0.017±0.001Ba | 0.016±0.002ABa | ||
SD | 0.010±0.001Cb | 0.012±0.002Ba | ||
赤霉素/吲哚乙酸GA3/IAA | 叶Leaf | CK | 0.061±0.007Ba | 0.054±0.001Bb |
MD | 0.075±0.005Aa | 0.055±0.001Bb | ||
SD | 0.074±0.005Aa | 0.071±0.002Aa | ||
根Root | CK | 0.105±0.002Ba | 0.118±0.014Aa | |
MD | 0.123±0.006Aa | 0.117±0.004Aa | ||
SD | 0.080±0.008Cb | 0.106±0.004Aa | ||
玉米素核苷/吲哚乙酸ZR/IAA | 叶Leaf | CK | 0.109±0.006Aa | 0.109±0.001Ba |
MD | 0.111±0.008Aa | 0.098±0.003Ca | ||
SD | 0.120±0.004Aa | 0.122±0.006Aa | ||
根Root | CK | 0.142±0.006Bb | 0.157±0.013Ba | |
MD | 0.172±0.004Ab | 0.183±0.009Aa | ||
SD | 0.108±0.008Ca | 0.110±0.012Ca |
指标 Index | 叶长 Leaf length | 叶宽 Leaf width | 叶面积 Leaf area | 总根长 Total root length | 根表面积 Root surface area | 根体积 Root volume | 根平均直径Root mean diameter | 最长根长Longest root length | 根干重Root dry weight | 根系活力Root activity |
---|---|---|---|---|---|---|---|---|---|---|
吲哚乙酸IAA | 0.873** | -0.296 | 0.810** | 0.247 | 0.294 | 0.329 | -0.099 | 0.442 | 0.398 | -0.286 |
脱落酸ABA | -0.427 | -0.115 | -0.327 | 0.539* | 0.611** | 0.426 | -0.466 | 0.649** | 0.459 | -0.162 |
赤霉素GA3 | -0.400 | -0.151 | -0.497* | 0.430 | 0.393 | 0.537* | 0.600** | 0.480* | 0.619** | 0.501* |
玉米素核苷ZR | 0.329 | -0.326 | 0.269 | 0.217 | 0.107 | 0.227 | 0.640** | 0.005 | 0.209 | 0.701** |
油菜素内酯Br | -0.452 | 0.524* | -0.474* | -0.237 | -0.334 | -0.137 | 0.573* | -0.333 | -0.053 | 0.358 |
吲哚乙酸/脱落酸IAA/ABA | 0.573* | 0.061 | 0.502* | -0.532* | -0.562* | -0.284 | 0.455 | -0.457 | -0.279 | -0.191 |
赤霉素/脱落酸GA3/ABA | 0.055 | 0.116 | -0.100 | -0.301 | -0.372 | -0.120 | 0.740** | -0.354 | -0.117 | 0.315 |
玉米素核苷/脱落酸ZR/ABA | 0.452 | 0.018 | 0.361 | -0.336 | -0.424 | -0.235 | 0.605** | -0.484* | -0.272 | 0.340 |
油菜素内酯/脱落酸Br/ABA | -0.030 | 0.420 | -0.079 | -0.524* | -0.595** | -0.387 | 0.520* | -0.614** | -0.384 | 0.143 |
赤霉素/吲哚乙酸GA3/IAA | -0.748** | 0.052 | -0.778** | 0.121 | 0.047 | 0.110 | 0.532* | -0.035 | 0.115 | 0.653** |
玉米素核苷/吲哚乙酸ZR/IAA | -0.416 | -0.103 | -0.423 | -0.004 | -0.093 | -0.070 | 0.363 | -0.232 | -0.108 | 0.562* |
表4 干旱胁迫下狗牙根叶及根形态指标与内源激素及其比例间的相关关系
Table 4 Correlation between morphological indexes of C. dactylon leaf and root and endogenous hormones and their proportion under drought stress
指标 Index | 叶长 Leaf length | 叶宽 Leaf width | 叶面积 Leaf area | 总根长 Total root length | 根表面积 Root surface area | 根体积 Root volume | 根平均直径Root mean diameter | 最长根长Longest root length | 根干重Root dry weight | 根系活力Root activity |
---|---|---|---|---|---|---|---|---|---|---|
吲哚乙酸IAA | 0.873** | -0.296 | 0.810** | 0.247 | 0.294 | 0.329 | -0.099 | 0.442 | 0.398 | -0.286 |
脱落酸ABA | -0.427 | -0.115 | -0.327 | 0.539* | 0.611** | 0.426 | -0.466 | 0.649** | 0.459 | -0.162 |
赤霉素GA3 | -0.400 | -0.151 | -0.497* | 0.430 | 0.393 | 0.537* | 0.600** | 0.480* | 0.619** | 0.501* |
玉米素核苷ZR | 0.329 | -0.326 | 0.269 | 0.217 | 0.107 | 0.227 | 0.640** | 0.005 | 0.209 | 0.701** |
油菜素内酯Br | -0.452 | 0.524* | -0.474* | -0.237 | -0.334 | -0.137 | 0.573* | -0.333 | -0.053 | 0.358 |
吲哚乙酸/脱落酸IAA/ABA | 0.573* | 0.061 | 0.502* | -0.532* | -0.562* | -0.284 | 0.455 | -0.457 | -0.279 | -0.191 |
赤霉素/脱落酸GA3/ABA | 0.055 | 0.116 | -0.100 | -0.301 | -0.372 | -0.120 | 0.740** | -0.354 | -0.117 | 0.315 |
玉米素核苷/脱落酸ZR/ABA | 0.452 | 0.018 | 0.361 | -0.336 | -0.424 | -0.235 | 0.605** | -0.484* | -0.272 | 0.340 |
油菜素内酯/脱落酸Br/ABA | -0.030 | 0.420 | -0.079 | -0.524* | -0.595** | -0.387 | 0.520* | -0.614** | -0.384 | 0.143 |
赤霉素/吲哚乙酸GA3/IAA | -0.748** | 0.052 | -0.778** | 0.121 | 0.047 | 0.110 | 0.532* | -0.035 | 0.115 | 0.653** |
玉米素核苷/吲哚乙酸ZR/IAA | -0.416 | -0.103 | -0.423 | -0.004 | -0.093 | -0.070 | 0.363 | -0.232 | -0.108 | 0.562* |
1 | Zhang R Q, Ma X D, Wang M H, et al. Effects of salinity and water stress on the physiological and ecological processes and plasticity of Tamarix ramosissima seedlings. Acta Ecologica Sinica, 2016, 36(6): 433-441. |
2 | Durigon A, Evers J, Metselaar K, et al. Water stress permanently alters shoot architecture incommon bean plants. Agronomy, 2019, 9(3): 160. |
3 | Woodruff D R, Meinzer F C. Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell & Environment, 2011, 34(11): 1920-1930. |
4 | Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689. |
5 | Katuwal K B, Schwartz B, Jespersen D. Desiccation avoidance and drought tolerance strategies in bermudagrasses. Environmental and Experimental Botany, 2019, 171(1): 103947. |
6 | Mohammadi M H S, Etemadi N, Arab M M, et al. Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapacethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology & Biochemistry, 2017, 111(4): 129-143. |
7 | Chen X N, Li Q H, Duan N, et al. Effects of nitrogen addition on root morphology endogenous hormones of Nitraria tangutorum under drought stress. Southwest China Journal of Agricultural Sciences, 2020, 33(2): 279-283. |
陈晓娜, 李清河, 段娜, 等. 干旱胁迫下氮添加对白刺根系形态和内源激素的影响. 西南农业学报, 2020, 33(2): 279-283. | |
8 | Zhang H Y, Duan W X, Xie B T, et al. Effects of drought treatments at different growth stages on storage root yield and endogenous hormones in sweetpotato. Acta Agronomica Sinica, 2018, 44(1): 126-136. |
张海燕, 段文学, 解备涛, 等. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018, 44(1): 126-136. | |
9 | Wang J Q, Li H, Liu Q, et al. Effects of drought stress on root development and physiological characteristics of sweet potato at seedling stage. Chinese Journal of Applied Ecology, 2019, 30(9): 3155-3163. |
王金强, 李欢, 刘庆, 等. 干旱胁迫对甘薯苗期根系分化和生理特性的影响. 应用生态学报, 2019, 30(9): 3155-3163. | |
10 | Xu W, Jia L, Shi W, et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist, 2013, 197(1): 139-150. |
11 | Visentin I, Vitali M, Ferrero M, et al. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 2016, 212(4): 954-963. |
12 | Wang H B, Zhang Y K, Zhang D C. Morphology and biomass allocation of Carex moorcroftii along soil moisture gradient. Acta Agrestia Sinica, 2021, 29(3): 522-530. |
王洪斌, 张煜坤, 张大才. 青藏苔草形态特征及生物量分配沿水分梯度的变化. 草地学报, 2021, 29(3): 522-530. | |
13 | Hu X J, Yang C X, Tan S C, et al. Effects of drought stress on proline and endogenous hormones content in Pinus massoniana seedlings from different provenances. South China Forestry Science, 2020, 48(6): 24-28, 53. |
胡晓健, 杨春霞, 谭世才, 等. 干旱胁迫对不同种源马尾松幼苗中脯氨酸及内源激素含量的影响. 南方林业科学, 2020, 48(6): 24-28, 53. | |
14 | Zeng L S, Li P Y, Sun X F, et al. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang Province. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
曾令霜, 李培英, 孙晓梵, 等. 新疆不同生境狗牙根种质抗旱性综合评价. 草业学报, 2020, 29(8): 155-169. | |
15 | Huang C Y. Soil science. Beijing: China Agriculture Press, 2000. |
黄昌勇. 土壤学. 北京: 中国农业出版社, 2000. | |
16 | Zou Q. Experimental guidance of plant physiology. Beijing: China Agriculture Press, 2007. |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007. | |
17 | Baxendale C, Orwin K H, Poly F, et al. Are plant-soil feedback responses explained by plant traits? The New Phytologist, 2014, 204(3): 408-423. |
18 | Zhu Y H, Zhang D C, Li S Z. Variations of stomatal characters for three species of genus Kobresia along an elevational gradient in the Dongda mountains of Tibet. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(4): 728-736. |
朱玉怀, 张大才, 李双智. 西藏东达山3种嵩草属植物气孔特征沿海拔的变化. 西北植物学报, 2017, 37(4): 728-736. | |
19 | Boer H J D, Price C A, Friederike W C, et al. Optimal allocation of leaf epidermal area for gas exchange. New Phytologist, 2016, 210(4): 1219-1228. |
20 | Cao L Q, Zhong Q P, Luo S, et al. Variation in leaf structure of Camellia oleifera under drought stress. Forest Research, 2018, 31(3): 136-143. |
曹林青, 钟秋平, 罗帅, 等. 干旱胁迫下油茶叶片结构特征的变化. 林业科学研究, 2018, 31(3): 136-143. | |
21 | Li Y H, Lu Q, Wu B, et al. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 2012, 36(1): 88-98. |
李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 2012, 36(1): 88-98. | |
22 | Becklin K M, Anderson J T, Gerhart L M, et al. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 2016, 172(2): 635-649. |
23 | Zhang H S, Dai L L, Qiao G H, et al. Study on the correlation between leaf area and drought resistance in different alfalfa varieties. Journal of Anhui Agricultural Sciences, 2011, 39(17): 10510-10512. |
张怀山, 代立兰, 乔国华, 等. 不同苜蓿品种叶面积与抗旱性的关联性研究. 安徽农业科学, 2011, 39(17): 10510-10512. | |
24 | Zheng M, Guo Y, Wang L M. Effect of drought stress on root morphology and physiological characteristics of Malus micromalus cv.‘Ruby’. Journal of Agricultural Science and Technology, 2020, 22(3): 24-30. |
郑淼, 郭毅, 王丽敏. 干旱胁迫对红宝石海棠根系形态及生理特性的影响. 中国农业科技导报, 2020, 22(3): 24-30. | |
25 | Huang H X, Yang Q Q, Cui P, et al. Changes in morphological and physiological characteristics of Gymnocarpos przewalskii roots in response to water stress. Acta Prataculturae Sinica, 2021, 30(1): 197-207. |
黄海霞, 杨琦琦, 崔鹏, 等. 裸果木幼苗根系形态和生理特征对水分胁迫的响应. 草业学报, 2021, 30(1): 197-207. | |
26 | Jongrungklang N, Toomsan B, Vorasoot N, et al. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crops Research, 2011, 120(2): 262-270. |
27 | Zhang X D, Wang Z W, Han Q F, et al. Effects of water stress on the root structure and physiological characteristics of early-stage maize. Acta Ecologica Sinica, 2016, 36(10): 2969-2977. |
张旭东, 王智威, 韩清芳, 等. 玉米早期根系构型及其生理特性对土壤水分的响应. 生态学报, 2016, 36(10): 2969-2977. | |
28 | Wang Z W, Mou S W, Yan L L, et al. Effects of physiological and biochemical characteristics and growth under water stress in seedling of spring maize. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(2): 343-351. |
王智威, 牟思维, 闫丽丽, 等. 水分胁迫对春播玉米苗期生长及其生理生化特性的影响. 西北植物学报, 2013, 33(2): 343-351. | |
29 | Li W R, Zhang S Q, Ding S Y, et al. Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. |
李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150. | |
30 | Zhang C M, Shi S L, Wu F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties. Scientia Agricultura Sinica, 2018, 51(5): 868-882. |
张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51(5): 868-882. | |
31 | Ding S J, Zhong Q P, Yuan T T, et al. Effects of endogenous hormones on Camellia oleifera leaves and fruit growth under drought stress. Forest Research, 2016, 29(6): 933-939. |
丁少净, 钟秋平, 袁婷婷, 等. 干旱胁迫对油茶叶片内源激素及果实生长的影响. 林业科学研究, 2016, 29(6): 933-939. | |
32 | Yu L, Ma H L. Dynamic changes of endogenous hormones in Gansu indigenous bluegrass under drought stress. Grassland and Turf, 2014, 34(2): 18-22. |
俞玲, 马晖玲. 干旱胁迫下甘肃野生草地早熟禾内源激素水平的动态变化. 草原与草坪, 2014, 34(2): 18-22. | |
33 | Li D X, Li C D, Sun C F, et al. The Effects of drought on endogenous hormone contents and balance in main stem leaves of cotton. Cotton Science, 2010, 22(3): 231-235. |
李东晓, 李存东, 孙传范, 等. 干旱对棉花主茎叶片内源激素含量与平衡的影响. 棉花学报, 2010, 22(3): 231-235. | |
34 | Man D, Bao Y X, Han L B, et al. Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience: A publication of the American Society for Horticultural Science, 2011, 46(7): 1027-1032. |
35 | Ao H, Wang Y. Response of endogenous hormones and stomatal regulation of spruce to drought stress. Non-wood Forest Research, 2011, 29(3): 28-34. |
敖红, 王炎. 干旱胁迫下云杉内源激素的响应及其气孔调节. 经济林研究, 2011, 29(3): 28-34. | |
36 | Christine Z, Busov V B, Zhang J. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in populus trees. PLoS One, 2014, 9(1): e86217-e86217. |
37 | Man D, Wan T, Cai P, et al. Effects of drought stress on content of endogenous phytohormones of Artemisia halodendron at seedling stage. Chinese Journal of Grassland, 2017, 39(3): 44-48, 120. |
满达, 宛涛, 蔡萍, 等. 干旱胁迫对差巴嘎蒿苗期内源激素含量的影响. 中国草地学报, 2017, 39(3): 44-48, 120. | |
38 | Song J X, Li J H, Liu M R, et al. Effects of brassinosteroid application on osmotic adjustment and antioxidant enzymes in Leymus chinensis under drought stress. Acta Prataculturae Sinica, 2015, 24(8): 93-102. |
宋吉轩, 李金还, 刘美茹, 等. 油菜素内酯对干旱胁迫下羊草渗透调节及抗氧化酶的影响研究. 草业学报, 2015, 24(8): 93-102. | |
39 | Zhang L. Physiological effects and development prospects of brassinosteroids. Northern Horticulture, 2011(20): 188-191. |
张琳. 油菜素内酯的生理效应及发展前景. 北方园艺, 2011(20): 188-191. | |
40 | Lenoble M E, Spollen W G, Sharp R E. Maintenance of shoot growth by endogenous ABA: Genetic assessment of the involvement of ethylene suppression. Journal of Experimental Botany, 2004, 55(395): 237-245. |
41 | Zhang S Y, Liu Y C, Li Y T, et al. Effects of drought stress on endogenous hormones in potted seedlings of Ulmus pumila‘Jinye’. Journal of West China Forestry Science, 2021, 50(6): 40-45. |
张世英, 刘易超, 李泳潭, 等. 干旱胁迫对中华金叶榆盆栽苗内源激素的影响. 西部林业科学, 2021, 50(6): 40-45. | |
42 | Song J X, Lv J, Zong X F, et al. Effects of ALA application on plant growth, hormone levels, and transcriptome in Leymus chinensis under drought stress. Acta Prataculturae Sinica, 2018, 27(7): 73-83. |
宋吉轩, 吕俊, 宗学凤, 等. 干旱胁迫下ALA对羊草生长、内源激素及转录组的影响. 草业学报, 2018, 27(7): 73-83. | |
43 | Yuan Y J, Bai X M, Zhu Y N, et al. Correlation between the rhizome expansion ability and endogenous hormones contents of wild Poa pratensis in Gansu Province. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1359-1369. |
袁娅娟, 白小明, 朱雅楠, 等. 甘肃野生草地早熟禾根茎扩展能力与内源激素含量的相关性研究. 中国生态农业学报, 2021, 29(8): 1359-1369. | |
44 | Li H S. Modern plant physiology. Beijing: Higher Education Press, 2002: 262-263. |
李合生. 现代植物生理学. 北京: 高等教育出版社, 2002: 262-263. | |
45 | Luo J L, Li F, Li J H, et al. Effects of subculture times on rooting ability, leaf morphology and hormone level of Pyrus betulaefolia. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(2): 304-310. |
罗嘉亮, 李凡, 李俊豪, 等. 继代培养次数对杜梨生根能力和叶形态及其激素水平的影响. 西北植物学报, 2020, 40(2): 304-310. | |
46 | Gao H, Zhang H F, Yuan S A, et al. Response of plant endogenous hormone to drought threat stress. Journal of Green Science and Technology, 2013(11): 5-7. |
高辉, 张红芳, 袁思安, 等. 植物内源激素对干旱胁迫的响应研究. 绿色科技, 2013(11): 5-7. |
[1] | 刘福, 陈诚, 张凯旋, 周美亮, 张新全. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定[J]. 草业学报, 2023, 32(1): 178-191. |
[2] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[3] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[4] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[5] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
[6] | 卫宏健, 丁杰, 张巨明, 杨文, 王咏琪, 刘天增. 践踏胁迫下狗牙根草坪土壤真菌群落结构的变化特征[J]. 草业学报, 2022, 31(4): 102-112. |
[7] | 任雪锋, 邓亚博, 臧国长, 郑轶琦. 基于SSR标记的河南省狗牙根遗传多样性及群体遗传结构分析[J]. 草业学报, 2022, 31(3): 60-70. |
[8] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[9] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[10] | 赵宁, 马晖玲, 张然, 张金青, 史毅. 丁二醇对热胁迫下匍匐翦股颖内源激素及其相关基因表达水平的调控[J]. 草业学报, 2022, 31(12): 118-132. |
[11] | 吴雨涵, 刘文辉, 刘凯强, 张永超. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响[J]. 草业学报, 2022, 31(10): 75-86. |
[12] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[13] | 赵欣桐, 陈晓东, 李子吉, 张巨明, 刘天增. 植物内生肠杆菌对狗牙根耐盐性的调控研究[J]. 草业学报, 2021, 30(9): 127-136. |
[14] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[15] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||