草业学报 ›› 2022, Vol. 31 ›› Issue (6): 112-126.DOI: 10.11686/cyxb2021154
• 研究论文 • 上一篇
收稿日期:
2021-04-21
修回日期:
2021-07-07
出版日期:
2022-06-20
发布日期:
2022-05-11
通讯作者:
刘文辉
作者简介:
E-mail: qhliuwenhui@163.com基金资助:
Yi-ting JIN(), Wen-hui LIU(), Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA
Received:
2021-04-21
Revised:
2021-07-07
Online:
2022-06-20
Published:
2022-05-11
Contact:
Wen-hui LIU
摘要:
干旱是限制燕麦生长的关键因素之一,为探究干旱胁迫对燕麦光合系统的影响,选用青海省推广品种‘青燕1号’为材料,设置4个水分梯度,即正常供水(CK,75%FWC)、轻度胁迫(60%FWC)、中度胁迫(45%FWC)和重度胁迫(30%FWC)。生育期干旱胁迫分为4类,即苗期-拔节期干旱(SJ)、苗期-抽穗期干旱(SH)、苗期-开花期干旱(SF)和苗期-乳熟期干旱(SM),并设置全生育期正常供水作为对照处理(CK)。探讨不同生育期燕麦叶绿素荧光参数对干旱胁迫的响应,以期为青藏高原燕麦抗旱育种和节水高产栽培提供理论指导。结果表明:1) 不同胁迫程度整体影响大小为:30%FWC>45%FWC>60%FWC;2) 不同生育时期胁迫整体影响大小为:SM>SF>SH>SJ;3) 胁迫程度与胁迫时期互作(Sd×Sp)对燕麦叶绿素参数影响最为显著。在30%FWC和SM时期时,叶绿素荧光参数受到的影响最大,此时光合作用的主要限制因素是非气孔限制,主要表现为PSⅡ反应中心失活,光合电子传递受阻;在60%FWC和SJ时,其受到的影响最小,此时影响光合作用的主要因素是气孔限制; 4) 在45%FWC、SH和SF时期,燕麦可通过叶片的气孔导度调节蒸腾作用和碳同化之间的关系,从而适应干旱胁迫;5) 叶绿素荧光参数的变化,间接反映了受到干旱胁迫时,燕麦光合作用能力的变化。Y(NO)、NPQ、Y(NPQ)和β与CK相比增加了85.52%、65.21%、33.76%和26.60%,Fv、Fm、ΦPSⅡ、ETR、Fm′、Fs、F0′、qP、F0、α和Fv/Fm分别降低了84.86%、75.41%、75.03%、75.00%、70.89%、61.38%、57.73%、57.06%、48.86%、45.61%和38.50%。
金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126.
Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period[J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126.
处理Treatments | 胁迫程度Stress degree | 胁迫时期Stress period |
---|---|---|
T1 | 75%FWC | 对照 Normal water supply throughout growth period, CK |
T2 | 60%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T3 | 45%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T4 | 30%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T5 | 60%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T6 | 45%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T7 | 30%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T8 | 60%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T9 | 45%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T10 | 30%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T11 | 60%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T12 | 45%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T13 | 30%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
表1 干旱胁迫试验处理代码
Table 1 Treatments code of drought stress
处理Treatments | 胁迫程度Stress degree | 胁迫时期Stress period |
---|---|---|
T1 | 75%FWC | 对照 Normal water supply throughout growth period, CK |
T2 | 60%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T3 | 45%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T4 | 30%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T5 | 60%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T6 | 45%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T7 | 30%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T8 | 60%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T9 | 45%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T10 | 30%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T11 | 60%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T12 | 45%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T13 | 30%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
因素 Factor | F0 | Fm | F0′ | Fm′ |
---|---|---|---|---|
胁迫程度Stress degree (Sd) | 9.590** | 6.032** | 16.739** | 16.402** |
胁迫时期Stress period (Sp) | 3.698* | 10.686** | 3.309* | 5.083** |
胁迫程度×胁迫时期Sd×Sp | 109.858** | 1427.625** | 82.080** | 101.082** |
表2 干旱胁迫对‘青燕1号’燕麦F0、Fm、F0′和Fm′影响的方差分析
Table 2 Variance analysis of the F0, Fm, F0′ and Fm′ of ‘Qingyan No.1’ oat under drought stress
因素 Factor | F0 | Fm | F0′ | Fm′ |
---|---|---|---|---|
胁迫程度Stress degree (Sd) | 9.590** | 6.032** | 16.739** | 16.402** |
胁迫时期Stress period (Sp) | 3.698* | 10.686** | 3.309* | 5.083** |
胁迫程度×胁迫时期Sd×Sp | 109.858** | 1427.625** | 82.080** | 101.082** |
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
F0 | CK1 | 300.78±5.84bA | 281.36±6.87aB | 253.03±3.49aC | 278.39±5.40a |
SJ | 317.96±9.68aA | 191.45±6.68cdC | 227.23±8.54bB | 245.55±8.30b | |
SH | 238.83±6.62cA | 183.45±5.34dB | 152.77±3.92dC | 191.68±5.29c | |
SF | 216.84±6.29dB | 270.14±9.55bA | 185.50±4.56cC | 224.16±6.80bc | |
SM | 217.48±4.22dA | 199.28±2.98cB | 157.83±2.51dC | 191.53±3.24c | |
平均Average | 258.38±6.53A | 222.79±6.26B | 192.87±4.65C | ||
Fm | CK1 | 1351.44±4.87aA | 1246.89±4.56aB | 1193.09±4.39aC | 1263.81±4.61a |
SJ | 1203.78±2.81bA | 926.16±12.78cC | 1103.96±2.02bB | 1077.97±5.87b | |
SH | 1059.93±10.08cA | 898.85±2.88dB | 775.83±8.26cC | 857.12±4.23c | |
SF | 895.11±4.25eB | 1049.90±4.85bA | 626.34±3.58dC | 911.54±7.07c | |
SM | 946.76±10.00dA | 470.52±3.00eB | 312.83±15.56eC | 576.70±9.52d | |
平均Average | 1091.40±6.42A | 918.46±5.61B | 802.41±6.76C | ||
F0′ | CK1 | 247.50±1.89aA | 206.58±1.23aB | 188.71±1.71aC | 214.26±1.61a |
SJ | 227.80±4.00bA | 147.27±3.23cC | 168.80±1.20bB | 181.29±2.81b | |
SH | 219.93±9.39bA | 143.00±0.40cB | 112.27±4.51dC | 155.86±5.26bc | |
SF | 162.20±3.86cB | 182.87±7.43bA | 122.50±4.50cC | 158.40±4.77bc | |
SM | 156.33±1.60cA | 130.27±7.91dB | 100.40±4.80eC | 129.00±4.77c | |
平均Average | 202.75±4.15A | 162.00±4.04B | 138.54±3.34C | ||
Fm′ | CK1 | 499.19±3.49aA | 410.82±3.17aB | 379.21±2.88aC | 429.74±3.18a |
SJ | 393.74±3.85cA | 289.92±7.30bC | 329.47±3.77bB | 337.71±4.97b | |
SH | 436.98±9.95bA | 256.47±3.12cB | 240.86±17.99cB | 311.44±10.36bc | |
SF | 296.22±3.45eA | 293.66±6.39bA | 202.31±2.02dB | 264.06±3.95cd | |
SM | 309.30±5.33dA | 214.06±11.08dB | 144.12±4.35eC | 222.49±6.92d | |
平均Average | 387.09±5.41A | 292.99±6.21B | 259.19±6.20C |
表 3 不同胁迫程度和胁迫时期对‘青燕1号’燕麦F0、Fm、F0′和Fm′的影响
Table 3 Effects of different stress degrees and stress periods on F0, Fm, F0′ and Fm′ of ‘Qingyan No.1’ oat
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
F0 | CK1 | 300.78±5.84bA | 281.36±6.87aB | 253.03±3.49aC | 278.39±5.40a |
SJ | 317.96±9.68aA | 191.45±6.68cdC | 227.23±8.54bB | 245.55±8.30b | |
SH | 238.83±6.62cA | 183.45±5.34dB | 152.77±3.92dC | 191.68±5.29c | |
SF | 216.84±6.29dB | 270.14±9.55bA | 185.50±4.56cC | 224.16±6.80bc | |
SM | 217.48±4.22dA | 199.28±2.98cB | 157.83±2.51dC | 191.53±3.24c | |
平均Average | 258.38±6.53A | 222.79±6.26B | 192.87±4.65C | ||
Fm | CK1 | 1351.44±4.87aA | 1246.89±4.56aB | 1193.09±4.39aC | 1263.81±4.61a |
SJ | 1203.78±2.81bA | 926.16±12.78cC | 1103.96±2.02bB | 1077.97±5.87b | |
SH | 1059.93±10.08cA | 898.85±2.88dB | 775.83±8.26cC | 857.12±4.23c | |
SF | 895.11±4.25eB | 1049.90±4.85bA | 626.34±3.58dC | 911.54±7.07c | |
SM | 946.76±10.00dA | 470.52±3.00eB | 312.83±15.56eC | 576.70±9.52d | |
平均Average | 1091.40±6.42A | 918.46±5.61B | 802.41±6.76C | ||
F0′ | CK1 | 247.50±1.89aA | 206.58±1.23aB | 188.71±1.71aC | 214.26±1.61a |
SJ | 227.80±4.00bA | 147.27±3.23cC | 168.80±1.20bB | 181.29±2.81b | |
SH | 219.93±9.39bA | 143.00±0.40cB | 112.27±4.51dC | 155.86±5.26bc | |
SF | 162.20±3.86cB | 182.87±7.43bA | 122.50±4.50cC | 158.40±4.77bc | |
SM | 156.33±1.60cA | 130.27±7.91dB | 100.40±4.80eC | 129.00±4.77c | |
平均Average | 202.75±4.15A | 162.00±4.04B | 138.54±3.34C | ||
Fm′ | CK1 | 499.19±3.49aA | 410.82±3.17aB | 379.21±2.88aC | 429.74±3.18a |
SJ | 393.74±3.85cA | 289.92±7.30bC | 329.47±3.77bB | 337.71±4.97b | |
SH | 436.98±9.95bA | 256.47±3.12cB | 240.86±17.99cB | 311.44±10.36bc | |
SF | 296.22±3.45eA | 293.66±6.39bA | 202.31±2.02dB | 264.06±3.95cd | |
SM | 309.30±5.33dA | 214.06±11.08dB | 144.12±4.35eC | 222.49±6.92d | |
平均Average | 387.09±5.41A | 292.99±6.21B | 259.19±6.20C |
图1 不同胁迫程度和胁迫时期对‘青燕1号’燕麦F0、Fm、F0′和Fm′相对值的影响不同小写字母表示同一胁迫程度下各胁迫时期相对值差异显著(P<0.05);不同大写字母表示同一胁迫时期下各胁迫程度相对值差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences in relative values of different stress period under the same stress degree at the 0.05 level. Different capital letters indicate significant differences in relative values of different stress degree under the same stress period at the 0.05 level. The same below.
Fig.1 Effects of different stress degrees and stress periods on F0, Fm, F0′ and Fm′ of ‘Qingyan No.1’ oat
因素 Factor | Fs | Fv | Fv/Fm | ΦPSⅡ | ETR |
---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 14.981** | 4.728* | 2.764 | 6.874** | 7.288** |
胁迫时期Stress period (Sp) | 3.813* | 12.264** | 14.473** | 8.727** | 9.736** |
胁迫程度×胁迫时期Sd×Sp | 234.897** | 597.722** | 96.198** | 11.405** | 56.692** |
表4 干旱胁迫对‘青燕1号’燕麦Fs、Fv、Fv/Fm、ΦPSⅡ和ETR影响的方差分析
Table 4 Variance analysis of the Fs, Fv, Fv/Fm, ΦPSⅡand ETR of ‘Qingyan No.1’oat under drought stress
因素 Factor | Fs | Fv | Fv/Fm | ΦPSⅡ | ETR |
---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 14.981** | 4.728* | 2.764 | 6.874** | 7.288** |
胁迫时期Stress period (Sp) | 3.813* | 12.264** | 14.473** | 8.727** | 9.736** |
胁迫程度×胁迫时期Sd×Sp | 234.897** | 597.722** | 96.198** | 11.405** | 56.692** |
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
Fs | CK1 | 355.79±1.87aA | 310.01±2.44aB | 289.67±1.17aC | 318.49±1.83a |
SJ | 297.99±0.37cA | 213.43±0.53cC | 257.55±2.31bB | 256.32±1.07b | |
SH | 330.45±5.77bA | 199.80±0.24dB | 189.53±7.33cC | 239.93±4.45b | |
SF | 228.55±1.63eB | 247.10±4.89bA | 167.86±1.34dC | 214.50±2.62bc | |
SM | 238.75±2.53dA | 179.94±8.88eB | 133.19±4.09eC | 183.96±0.99c | |
平均Average | 290.31±2.43A | 230.06±3.40B | 207.56±3.25C | ||
Fv | CK1 | 1109.55±7.59aA | 1007.19±5.07aB | 967.13±8.92aC | 1027.96±7.19a |
SJ | 885.16±4.89bA | 734.71±2.46cC | 868.06±3.42bB | 829.31±3.59b | |
SH | 821.09±16.14cA | 713.73±14.38dB | 623.07±10.36cC | 719.30±13.63bc | |
SF | 678.61±3.25eB | 779.76±14.26bA | 439.88±12.26dC | 632.75±9.92c | |
SM | 729.28±13.89dA | 271.24±0.02eB | 155.00±16.70eC | 385.17±10.20d | |
平均Average | 844.74±9.15A | 701.33±7.24B | 521.50±10.33C | ||
Fv/Fm | CK1 | 0.82±0.01aA | 0.80±0.00aAB | 0.80±0.01aB | 0.81±0.01a |
SJ | 0.79±0.00bA | 0.79±0.01aA | 0.79±0.00abA | 0.79±0.01ab | |
SH | 0.77±0.01cB | 0.79±0.01aA | 0.77±0.00bAB | 0.78±0.03ab | |
SF | 0.76±0.00dA | 0.74±0.01bA | 0.70±0.02cB | 0.73±0.01b | |
SM | 0.77±0.01cdA | 0.58±0.00cB | 0.49±0.03dC | 0.61±0.14c | |
平均Average | 0.78±0.01A | 0.74±0.01B | 0.71±0.01C | ||
ΦPSⅡ | CK1 | 0.34±0.01aA | 0.30±0.01aB | 0.26±0.00aC | 0.30±0.01a |
SJ | 0.26±0.00bA | 0.26±0.02bA | 0.22±0.02bB | 0.25±0.01b | |
SH | 0.24±0.03bA | 0.22±0.01cA | 0.21±0.03bA | 0.23±0.02b | |
SF | 0.23±0.01bA | 0.16±0.00dB | 0.17±0.00cB | 0.19±0.04c | |
SM | 0.23±0.02bA | 0.16±0.00dB | 0.08±0.00dC | 0.15±0.08c | |
平均Average | 0.26±0.01A | 0.22±0.01B | 0.19±0.01B | ||
ETR | CK1 | 157.21±1.59aA | 144.43±1.72aB | 129.87±0.53aC | 143.84±1.28a |
SJ | 125.01±1.56cAB | 133.27±10.12bA | 113.64±4.21bB | 123.97±5.29b | |
SH | 131.68±4.38bA | 114.33±2.63cB | 115.44±3.30bB | 120.48±3.44b | |
SF | 112.45±5.16dA | 80.18±0.87dB | 72.05±2.78cC | 88.23±2.94c | |
SM | 121.49±1.57cA | 80.57±1.68dB | 38.37±0.24dC | 80.14±1.16c | |
平均Average | 129.57±2.85A | 110.56±3.04B | 93.84±2.21C |
表5 不同胁迫程度和胁迫时期对‘青燕1号’燕麦Fs、Fv、Fv/Fm、ΦPSⅡ和ETR的影响
Table 5 Effects of different stress degrees and stress periods on Fs, Fv, Fv/Fm, ΦPSⅡand ETR of ‘Qingyan No.1’ oat
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
Fs | CK1 | 355.79±1.87aA | 310.01±2.44aB | 289.67±1.17aC | 318.49±1.83a |
SJ | 297.99±0.37cA | 213.43±0.53cC | 257.55±2.31bB | 256.32±1.07b | |
SH | 330.45±5.77bA | 199.80±0.24dB | 189.53±7.33cC | 239.93±4.45b | |
SF | 228.55±1.63eB | 247.10±4.89bA | 167.86±1.34dC | 214.50±2.62bc | |
SM | 238.75±2.53dA | 179.94±8.88eB | 133.19±4.09eC | 183.96±0.99c | |
平均Average | 290.31±2.43A | 230.06±3.40B | 207.56±3.25C | ||
Fv | CK1 | 1109.55±7.59aA | 1007.19±5.07aB | 967.13±8.92aC | 1027.96±7.19a |
SJ | 885.16±4.89bA | 734.71±2.46cC | 868.06±3.42bB | 829.31±3.59b | |
SH | 821.09±16.14cA | 713.73±14.38dB | 623.07±10.36cC | 719.30±13.63bc | |
SF | 678.61±3.25eB | 779.76±14.26bA | 439.88±12.26dC | 632.75±9.92c | |
SM | 729.28±13.89dA | 271.24±0.02eB | 155.00±16.70eC | 385.17±10.20d | |
平均Average | 844.74±9.15A | 701.33±7.24B | 521.50±10.33C | ||
Fv/Fm | CK1 | 0.82±0.01aA | 0.80±0.00aAB | 0.80±0.01aB | 0.81±0.01a |
SJ | 0.79±0.00bA | 0.79±0.01aA | 0.79±0.00abA | 0.79±0.01ab | |
SH | 0.77±0.01cB | 0.79±0.01aA | 0.77±0.00bAB | 0.78±0.03ab | |
SF | 0.76±0.00dA | 0.74±0.01bA | 0.70±0.02cB | 0.73±0.01b | |
SM | 0.77±0.01cdA | 0.58±0.00cB | 0.49±0.03dC | 0.61±0.14c | |
平均Average | 0.78±0.01A | 0.74±0.01B | 0.71±0.01C | ||
ΦPSⅡ | CK1 | 0.34±0.01aA | 0.30±0.01aB | 0.26±0.00aC | 0.30±0.01a |
SJ | 0.26±0.00bA | 0.26±0.02bA | 0.22±0.02bB | 0.25±0.01b | |
SH | 0.24±0.03bA | 0.22±0.01cA | 0.21±0.03bA | 0.23±0.02b | |
SF | 0.23±0.01bA | 0.16±0.00dB | 0.17±0.00cB | 0.19±0.04c | |
SM | 0.23±0.02bA | 0.16±0.00dB | 0.08±0.00dC | 0.15±0.08c | |
平均Average | 0.26±0.01A | 0.22±0.01B | 0.19±0.01B | ||
ETR | CK1 | 157.21±1.59aA | 144.43±1.72aB | 129.87±0.53aC | 143.84±1.28a |
SJ | 125.01±1.56cAB | 133.27±10.12bA | 113.64±4.21bB | 123.97±5.29b | |
SH | 131.68±4.38bA | 114.33±2.63cB | 115.44±3.30bB | 120.48±3.44b | |
SF | 112.45±5.16dA | 80.18±0.87dB | 72.05±2.78cC | 88.23±2.94c | |
SM | 121.49±1.57cA | 80.57±1.68dB | 38.37±0.24dC | 80.14±1.16c | |
平均Average | 129.57±2.85A | 110.56±3.04B | 93.84±2.21C |
图2 不同胁迫程度和胁迫时期对‘青燕1号’燕麦Fs、Fv/Fm、ΦPSⅡ和ETR的影响
Fig.2 Effects of different stress degrees and stress periods on Fs, Fv/Fm, ΦPSⅡ, and ETR of ‘Qingyan No.1’ oat
因素 Factor | qP | NPQ | Y(NO) | Y (NPQ) | α | β |
---|---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 10.881** | 0.729 | 1.134 | 1.381 | 10.554** | 10.554** |
胁迫时期Stress period (Sp) | 7.005** | 8.117** | 14.587** | 6.684** | 6.759** | 6.759** |
胁迫程度×胁迫时期Sd×Sp | 5.734** | 54.668** | 168.400** | 12.428** | 8.121** | 8.121** |
表6 不同胁迫程度和胁迫时期对‘青燕1号’燕麦qP、NPQ、Y(NO) 、Y(NPQ) 、α和β的影响
Table 6 Effects of different stress degrees and stress periods on qP, NPQ, Y(NO), Y(NPQ), α and β of ‘Qingyan No.1’ oat
因素 Factor | qP | NPQ | Y(NO) | Y (NPQ) | α | β |
---|---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 10.881** | 0.729 | 1.134 | 1.381 | 10.554** | 10.554** |
胁迫时期Stress period (Sp) | 7.005** | 8.117** | 14.587** | 6.684** | 6.759** | 6.759** |
胁迫程度×胁迫时期Sd×Sp | 5.734** | 54.668** | 168.400** | 12.428** | 8.121** | 8.121** |
指标Index | 处理代码Treatments code | 胁迫时期Stress period | 胁迫程度Stress degree | 最大增量? Increment (%) | 影响最大的相对值Relative value |
---|---|---|---|---|---|
Y(NO) | T9 | SF | 45%FWC | 85.52 | 0.82 |
NPQ | T12 | SM | 45%FWC | 65.21 | 0.75 |
Y(NPQ) | T9 | SF | 45%FWC | 33.76 | 1.01 |
β | T13 | SM | 30%FWC | 26.60 | 1.00 |
Fv | T13 | SM | 30%FWC | -84.86 | 0.15 |
Fm | T13 | SM | 30%FWC | -75.41 | 0.25 |
ΦPSⅡ | T13 | SM | 30%FWC | -75.03 | 0.25 |
ETR | T13 | SM | 30%FWC | -75.00 | 0.25 |
Fm′ | T13 | SM | 30%FWC | -70.89 | 0.29 |
Fs | T13 | SM | 30%FWC | -61.38 | 0.39 |
F0′ | T13 | SM | 30%FWC | -57.73 | 0.42 |
qP | T13 | SM | 30%FWC | -57.06 | 0.43 |
F0 | T7 | SH | 30%FWC | -48.86 | 0.51 |
α | T13 | SM | 30%FWC | -45.61 | 0.54 |
Fv/Fm | T13 | SM | 30%FWC | -38.50 | 0.62 |
表7 干旱胁迫对燕麦荧光参数的影响
Table 7 Effects of drought stress on fluorescence parameters of ‘Qingyan No. 1’ oat
指标Index | 处理代码Treatments code | 胁迫时期Stress period | 胁迫程度Stress degree | 最大增量? Increment (%) | 影响最大的相对值Relative value |
---|---|---|---|---|---|
Y(NO) | T9 | SF | 45%FWC | 85.52 | 0.82 |
NPQ | T12 | SM | 45%FWC | 65.21 | 0.75 |
Y(NPQ) | T9 | SF | 45%FWC | 33.76 | 1.01 |
β | T13 | SM | 30%FWC | 26.60 | 1.00 |
Fv | T13 | SM | 30%FWC | -84.86 | 0.15 |
Fm | T13 | SM | 30%FWC | -75.41 | 0.25 |
ΦPSⅡ | T13 | SM | 30%FWC | -75.03 | 0.25 |
ETR | T13 | SM | 30%FWC | -75.00 | 0.25 |
Fm′ | T13 | SM | 30%FWC | -70.89 | 0.29 |
Fs | T13 | SM | 30%FWC | -61.38 | 0.39 |
F0′ | T13 | SM | 30%FWC | -57.73 | 0.42 |
qP | T13 | SM | 30%FWC | -57.06 | 0.43 |
F0 | T7 | SH | 30%FWC | -48.86 | 0.51 |
α | T13 | SM | 30%FWC | -45.61 | 0.54 |
Fv/Fm | T13 | SM | 30%FWC | -38.50 | 0.62 |
1 | Nemani R R, Keeling C D, Hashimoto H, et al. Climate-Driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(5625): 1560-1563. |
2 | Cao Y. Simulation of maize and wheat yield influenced by potential drought in China during 1961-2010. Beijing: Chinese Academy of Agricultural Sciences, 2014. |
曹阳. 1961-2010年潜在干旱对中国玉米、小麦产量影响的模拟. 北京: 中国农业科学院, 2014. | |
3 | Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 2004, 102(1): 15-27. |
4 | Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 2004, 55(407): 2365-2384. |
5 | Yang F, Miao L F, Xu X, et al. Progress in research of plant responses to drought stress. Chinese Journal of Applied and Environmental Biology, 2007(4): 586-591. |
杨帆, 苗灵凤, 胥晓, 等. 植物对干旱胁迫的响应研究进展. 应用与环境生物学报, 2007(4): 586-591. | |
6 | Bréda N, Huc R, André G, et al. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 2006, 63(6): 625-644. |
7 | Cui X M, Liu X B, Li Z H, et al. Effects of salicylic acid on growth and photosynthetic characteristics of Melilotoides ruthenica in branching stage under different water stress. Acta Prataculturae Sinica, 2012, 21(6): 82-93. |
崔秀妹, 刘信宝, 李志华, 等. 不同水分胁迫下水杨酸对分枝期扁蓿豆生长及光合生理的影响. 草业学报, 2012, 21(6): 82-93. | |
8 | Wen C P, Li W, Qi Z P, et al. Effect of water stress on the growth of kinggrass. Acta Prataculturae Sinica, 2012, 21(4): 72-78. |
温翠平, 李威, 漆智平, 等. 水分胁迫对王草生长的影响. 草业学报, 2012, 21(4): 72-78. | |
9 | Dai Y J, Shen Z G, Liu Y, et al. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 2008, 65(2): 177-182. |
10 | Mohsenzadeh S, Malboobi M A, Razavi K, et al. Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environmental and Experimental Botany, 2005, 56(3): 314-322. |
11 | Baum M, Grando S, Ceccarelli S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 2006(10): 751-757. |
12 | Zheng S H, Yan C R. The ecophysiological and morphological characteristics of maize in seedling stage under water stress. Acta Ecologica Sinica, 2006(4): 1138-1143. |
郑盛华, 严昌荣.水分胁迫对玉米苗期生理和形态特性的影响.生态学报, 2006(4): 1138-1143. | |
13 | Yang W Q, Gu M Y, Kou J C, et al. Effects of drought and rewatering on the photosynthesis and chlorophyll fluorescence of Coronilla varia. Acta Agrestia Sinica, 2013, 21(6): 1130-1135. |
杨文权, 顾沐宇, 寇建村, 等. 干旱及复水对小冠花光合及叶绿素荧光参数的影响.草地学报, 2013, 21(6): 1130-1135. | |
14 | Chen Y E, Liu W J, Su Y Q, et al. Different response of photosystem Ⅱ to short and long-term drought stress in Arabidopsis thaliana. Physiologia Plantarum, 2016, 158(2): 225-235. |
15 | Wang Y C, Zhang Y L, Yan D L, et al. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings. Acta Prataculturae Sinica, 2020, 29(6): 191-203. |
王泳超, 张颖蕾, 闫东良, 等. 干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应. 草业学报, 2020, 29(6): 191-203. | |
16 | Cui X X, Hou F J, Chang S H, et al. Comparison of yield and nutritional quality of two oat (Avena sativa) varieties grown in the alpine pastoral region of China. Pratacultural Science, 2018, 35(6): 1489-1495. |
崔雄雄, 侯扶江, 常生华, 等.高寒牧区两个燕麦品种的产量与品质比较. 草业科学, 2018, 35(6): 1489-1495. | |
17 | Yang J, Liu W H, Liang G L, et al. Traits correlated with lodging resistance of oat strains in the alpine region. Acta Prataculturae Sinica, 2020, 29(12): 50-60. |
杨晶, 刘文辉, 梁国玲, 等. 高寒地区不同燕麦品系抗倒伏相关性状分析. 草业学报, 2020, 29(12): 50-60. | |
18 | Liang G L, Qin Y, Wei X X, et al. Evaluation on productivity and quality of oat strain I-D in the alpine regions of the Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2018, 26(4): 917-927. |
梁国玲, 秦燕, 魏小星, 等. 青藏高原高寒区I-D燕麦品系饲草生产性能及品质评价. 草地学报, 2018, 26(4): 917-927. | |
19 | Liu K Q, Liu W H, Jia Z F, et al. Effects of water stress on organ growth and water use efficiency of Avena sativa ‘Qingyan No.1’. Acta Agrestia Sinica, 2020, 28(6): 1552-1562. |
刘凯强, 刘文辉, 贾志锋, 等. 干旱胁迫对’青燕1号’燕麦器官生长及水分利用效率的影响. 草地学报, 2020, 28(6): 1552-1562. | |
20 | Liu K Q. Effects of water stress on growth and yield components of oat. Xining: Qinghai University, 2020. |
刘凯强. 水分胁迫对燕麦生长发育及产量构成的影响. 西宁: 青海大学, 2020. | |
21 | Liu W H. Effects of planting dates on the growth characteristics of three naked oats varieties. Acta Agrestia Sinica, 2016, 24(5): 1032-1040. |
刘文辉. 播期对三种裸燕麦品种生长特性的影响. 草地学报, 2016, 24(5): 1032-1040. | |
22 | Liu W H, Liu Y, Ma X, et al. Effect of fertilizer and xixture on the oat cultivation grassland plant carbon storage on alpine plateau. Acta Agrestia Sinica, 2018, 26(5): 1150-1158. |
刘文辉, 刘勇, 马祥, 等. 高寒区施肥和混播对燕麦人工草地生物碳储量影响的研究. 草地学报, 2018, 26(5): 1150-1158. | |
23 | Liu K Q, Liu W H, Jia Z F, et al. Effect of different sowing rates and row spacings on seed yield of Avena sativa cv. Qingyan No.1. Acta Agrestia Sinica, 2019, 27(4): 1060-1067. |
刘凯强, 刘文辉, 贾志锋, 等.不同播量、行距及播种方式对青燕1号燕麦饲草产量的影响. 草地学报, 2019, 27(4): 1060-1067. | |
24 | Jia Z F, Ma X, Ju Z L, et al. Effects of nitrogen application rate and sowing rate and sowing rate on photosynthetic characteristics, phytohormone content and grain yield of oat. Acta Agrestia Sinica, 2021, 29(2): 293-302. |
贾志锋, 马祥, 琚泽亮, 等.施氮量和播种量对燕麦光合特性、激素含量及种子产量的影响.草地学报, 2021, 29(2): 293-302. | |
25 | Zhang X. Mechanisms with leaf traits in alfalfa responding to drought stress. Lanzhou: Lanzhou University, 2015. |
张曦. 紫花苜蓿响应干旱胁迫的叶性状机制研究. 兰州: 兰州大学, 2015. | |
26 | Jia S J, Li H W, Jiang Y P, et al. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecologica Sinica, 2020, 40(3): 854-863. |
贾双杰, 李红伟, 江艳平, 等. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40(3): 854-863. | |
27 | Du W L, Gao J, Hu F L, et al. Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agronomica Sinica, 2013, 39(3): 530-536. |
杜伟莉, 高杰, 胡富亮, 等. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013, 39(3): 530-536. | |
28 | Guo Y Y, Liu J, Zhu Y L, et al. Responses of photosynthetic and antioxidant enzyme activities in maize leaves to drought stress. Plant Physiology Journal, 2018, 54(12): 1839-1846. |
郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应. 植物生理学报, 2018, 54(12): 1839-1846. | |
29 | Ding G H, Ma D R, Yang G, et al. Responses of the photosynthetic system of drought-tolerance weedy rice to drought stress at the seedling stage. Acta Ecologica Sinica, 2016, 36(1): 226-234. |
丁国华, 马殿荣, 杨光, 等. 耐旱杂草稻幼苗光合系统对干旱胁迫的响应. 生态学报, 2016, 36(1): 226-234. | |
30 | Zhang J Z, Zhang Q Y, Sun G F, et al. Effects of drought stress and re-watering on growth and photosynthesis of Hosta. Acta Prataculturae Sinica, 2014, 23(1): 167-176. |
张金政, 张起源, 孙国峰, 等. 干旱胁迫及复水对玉簪生长和光合作用的影响. 草业学报, 2014, 23(1): 167-176. | |
31 | Wang Z X, Chen L, Ai J, et al. Effects of different drought stress on photosynthesis and activity of photosystem Ⅱ in leaves of amur grape (Vitis amurensis). Plant Physiology Journal, 2014, 50(8): 1171-1176. |
王振兴, 陈丽, 艾军, 等. 不同干旱胁迫对山葡萄的光合作用和光系统Ⅱ活性的影响. 植物生理学报, 2014, 50(8): 1171-1176. | |
32 | Wei X D, Chen G X, Shi D W, et al. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba. Acta Ecologica Sinica, 2012, 32(23): 7492-7500. |
魏晓东, 陈国祥, 施大伟, 等. 干旱胁迫对银杏叶片光合系统Ⅱ 荧光特性的影响. 生态学报, 2012, 32(23): 7492-7500. | |
33 | Ji W Q, Yang Z, Wang H, et al. Response of oat to drought stress at different growth stages. Chinese Journal of Grassland, 2021, 43(1): 58-67. |
姬文琴, 杨智, 汪辉, 等. 不同生育阶段燕麦对干旱胁迫的响应.中国草地学报, 2021, 43(1): 58-67. | |
34 | Li J X, Ou X B, Wang J C. Effects of exogenous hydrogen peroxide on chlorophyll fluorescence parameters and photosynthetic carbon assimilation enzymes activities in naked oat seedlings under lanthanum stress. Acta Ecologica Sinica, 2019, 39(8): 2833-2841. |
刘建新, 欧晓彬, 王金成. 镧胁迫下外源H2O2对裸燕麦幼苗叶绿素荧光参数和光合碳同化酶活性的影响. 生态学报, 2019, 39(8): 2833-2841. | |
35 | Zhang R H, Zheng Y J, Ma G S, et al. Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding. Acta Ecologica Sinica, 2011, 31(5): 1303-1311. |
张仁和, 郑友军, 马国胜, 等. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 2011, 31(5): 1303-1311. | |
36 | Zhang X H, Gao J, Du W L, et al. Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage. Acta Agronomica Sinica, 2015, 41(1): 154-159. |
张兴华, 高杰, 杜伟莉, 等. 干旱胁迫对玉米品种苗期叶片光合特性的影响. 作物学报, 2015, 41(1): 154-159. | |
37 | Zhao B P, Ren P, Xu Z S, et al. Effects of water stress on photosynthetic characteristics and yield formation in oats (Avena sativa L.) with different drought resistance. Journal of Triticeae Crops, 2020(11): 1-9. |
赵宝平, 任鹏, 徐忠山, 等. 水分胁迫对不同抗旱性燕麦品种光合及产量形成的影响. 麦类作物学报, 2020(11): 1-9. | |
38 | Demmig-Adams B, Adams Ⅲ W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 1996, 98(2): 253-264. |
39 | Wu Q. Effect of drought stress and nitrogen on root morphology, physiological characteristics and yield formation of sorghum. Shenyang: Shenyang Agricultural University, 2017. |
吴奇. 干旱胁迫及氮素对高粱根系形态、生理特性及产量形成的影响. 沈阳: 沈阳农业大学, 2017. | |
40 | Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 2004, 82(1): 73-81. |
41 | Havaux M, Tardy F. Temperature-dependent adjustment of the thermal stability of photosystem Ⅱ in vivo: Possible involvement of xanthophyll-cycle pigments. Planta, 1996, 198(3): 324-333. |
42 | Weis E, Berry J A. Plants and high temperature stress. Symposia of the Society for Experimental Biology, 1988, 42: 329-346. |
43 | Zhang G S, Hao L, Yan Z J, et al. The responses of chlorophyll fluorescence kinetics parameters of six tree species to soil moisture changes. Chinese Journal of Ecology, 2017, 36(11): 3079-3085. |
张国盛, 郝蕾, 闫子娟, 等.6种树种叶片叶绿素荧光动力学参数对土壤水分变化的响应.生态学杂志, 2017, 36(11): 3079-3085. | |
44 | Song H, Jiang Y L, Xu Z Z, et al. Response of photosynthetic physiological parameters of maize to drought during the whole growth period and after the jointing stage. Acta Ecologica Sinica, 2019, 39(7): 2405-2415. |
宋贺, 蒋延玲, 许振柱, 等.玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应.生态学报, 2019, 39(7): 2405-2415. | |
45 | Baker N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59: 89-113. |
46 | Yuan X K, Yang Z Q, Li Y X, et al. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 2016, 54(1): 28-39. |
47 | Jean-David R. Regulation and dynamics of the light-harvesting system. Annual Review of Plant Biology, 2014, 65: 287-309. |
48 | Cui Z H, Wang Y P, Zhang A, et al. Regulation of reversible dissociation of LHCII from PSII by phosphorylation in plants. American Journal of Plant Sciences, 2014, 5(2): 241-249. |
[1] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[2] | 李满有, 杨彦军, 王斌, 沈笑天, 曹立娟, 李小云, 倪旺, 兰剑. 宁夏干旱区滴灌条件下燕麦与光叶紫花苕不同混播模式的生产性能、品质及综合评价研究[J]. 草业学报, 2022, 31(4): 62-71. |
[3] | 吴海艳, 曲尼, 曲珍, 同桑措姆, 达娃卓嘎, 德央, 尼玛卓嘎, 刘昭明, 马玉寿. 6个燕麦品种在昂仁县的生产性能及饲草品质比较[J]. 草业学报, 2022, 31(4): 72-80. |
[4] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
[5] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[6] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[7] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[8] | 吴路遥, 张建国, 常闻谦, 张少磊, 常青. 三种荒漠植物叶绿素荧光参数日变化特征[J]. 草业学报, 2021, 30(9): 203-213. |
[9] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[10] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[11] | 袁英良, 唐丹, 鲁英, 冉桂霞, 郭艳芹. 吉林地区麦后复种饲用油菜与燕麦混播效应研究[J]. 草业学报, 2021, 30(7): 167-178. |
[12] | 李进, 陈仕勇, 赵旭, 田浩琦, 陈智华, 周青平. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析[J]. 草业学报, 2021, 30(7): 72-81. |
[13] | 聂秀美, 慕平, 赵桂琴, 何海鹏, 吴文斌, 蔺豆豆, 苏伟娟, 张丽睿. 贮藏年限对裸燕麦种带真菌和真菌毒素的影响[J]. 草业学报, 2021, 30(6): 106-120. |
[14] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[15] | 高鹏, 魏江铭, 李瑶, 张丽红, 赵祥, 杜利霞, 韩伟. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报, 2021, 30(6): 82-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||