草业学报 ›› 2023, Vol. 32 ›› Issue (4): 30-41.DOI: 10.11686/cyxb2022274
王凯锋1,2(), 包刚1,2(), 元志辉1,2, 佟斯琴1,2, 叶志刚1,2, 黄晓君1,2, 包玉海1,2
收稿日期:
2022-06-27
修回日期:
2022-09-01
出版日期:
2023-04-20
发布日期:
2023-01-29
通讯作者:
包刚
作者简介:
E-mail: baogang@imnu.edu.cn基金资助:
Kai-feng WANG1,2(), Gang BAO1,2(), Zhi-hui YUAN1,2, Si-qin TONG1,2, Zhi-gang YE1,2, Xiao-jun HUANG1,2, Yu-hai BAO1,2
Received:
2022-06-27
Revised:
2022-09-01
Online:
2023-04-20
Published:
2023-01-29
Contact:
Gang BAO
摘要:
春季返青期和秋季枯黄期是植被生长过程中两个重要的物候指标,其变化对气候,尤其对温度敏感性的大小及其差异十分不清楚。利用2001-2019年MODIS NDVI和气象数据,在气象台站和像元尺度上分别计算内蒙古植被春季返青期和秋季枯黄期,并以生长度日(GDD)和冷却度日(CDD)为影响返青期和枯黄期的温度指标,研究两个物候指标对气候敏感性的空间格局及其大小。结果表明,2001-2019年内蒙古植被返青期主要集中在第110~135 d,整体呈提前趋势(2.6 d·10 a-1);枯黄期主要集中在第260~280 d,整体呈微弱的推迟趋势(0.7 d·10 a-1)。返青期对GDD和枯黄期对CDD的敏感性主要以负敏感性为主,分别占研究区总面积的68.1%和56%。从两个物候指标对降水的敏感性看,植被物候对降水敏感性主要以正敏感为主。气象台站尺度的研究结果总体与像元尺度的研究结果基本一致。在气象台站尺度上对比显示有65%的站点枯黄期对温度的敏感性大于返青期,94%的站点返青期对降水的敏感性大于枯黄期,在气候不断变化的条件下,敏感性的研究可促进生态系统可持续管理的能力,对物候模拟以及生态系统气候的评估具有重要参考价值。
王凯锋, 包刚, 元志辉, 佟斯琴, 叶志刚, 黄晓君, 包玉海. 内蒙古植被春季返青期和秋季枯黄期的气候敏感性研究[J]. 草业学报, 2023, 32(4): 30-41.
Kai-feng WANG, Gang BAO, Zhi-hui YUAN, Si-qin TONG, Zhi-gang YE, Xiao-jun HUANG, Yu-hai BAO. Climate sensitivity of the start of the growing season in spring and the end of the growing season in autumn for vegetation in Inner Mongolia[J]. Acta Prataculturae Sinica, 2023, 32(4): 30-41.
图2 内蒙古2001-2019年土地覆盖类型未发生变化和发生变化地区的分布情况
Fig.2 Spatial distribution of unchanged and changed area of land cover types in the Inner Mongolia from 2001 to 2019
图3 NDVI 数据平滑和累计NDVI的Logistic拟合曲线曲率极值法Ⅰ:累积NDVI的Logistic拟合曲线Logistic fitting curve of cumulative NDVI;Ⅱ:Logistic曲线曲率Logistic curve curvature;Ⅲ: 累积NDVI Cumulative NDVI.
Fig.3 Illustration of NDVI smoothing and the cumulative NDVI based Logistic curve model
图4 2001-2019年内蒙古多年平均返青期和枯黄期及返青期和枯黄期变化趋势空间分布左上角图及图例为站点尺度图,右下角图及图例为像元尺度图,下同。The upper left figure and legend are site-scale maps, and the lower right figure and legend are pixel-scale maps, the same below.
Fig.4 Spatial distribution of annual mean start of growing season (SOS) and end of growing season (EOS) and variation trend of SOS and EOS in Inner Mongolia during 2001 to 2019
图6 2001-2019年内蒙古返青期和枯黄期对气象因子的敏感性空间分布
Fig.6 Spatial distribution of sensitivity of meteorological factors during SOS and EOS in Inner Mongolia during 2001 to 2019
植被类型 Vegetation types | 返青期敏感性Sensitivity of SOS | 枯黄期敏感性Sensitivity of EOS | ||
---|---|---|---|---|
温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | 温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | |
林地Woodland | -0.042 | 0.204 | -0.007 | -0.032 |
灌丛Bushwood | 0.017 | 0.308 | 0.045 | 0.105 |
草地Grassland | -0.018 | 0.163 | -0.006 | 0.055 |
农田Cropland | -0.011 | 0.046 | -0.007 | 0.003 |
稀疏植被Sparse vegetation | 0.003 | 0.003 | 0.003 | 0.039 |
表1 2001-2019年内蒙古不同植被类型返青期和枯黄期对气象因子的敏感性
Table 1 Sensitivity of different vegetation types to meteorological factors during SOS and EOS in Inner Mongolia during 2001 to 2019
植被类型 Vegetation types | 返青期敏感性Sensitivity of SOS | 枯黄期敏感性Sensitivity of EOS | ||
---|---|---|---|---|
温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | 温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | |
林地Woodland | -0.042 | 0.204 | -0.007 | -0.032 |
灌丛Bushwood | 0.017 | 0.308 | 0.045 | 0.105 |
草地Grassland | -0.018 | 0.163 | -0.006 | 0.055 |
农田Cropland | -0.011 | 0.046 | -0.007 | 0.003 |
稀疏植被Sparse vegetation | 0.003 | 0.003 | 0.003 | 0.039 |
图7 2001-2019年内蒙古各气象站点返青期与枯黄期温度和降水敏感性对比
Fig.7 Comparison of temperature sensitivity and precipitation sensitivity during SOS and EOS of Inner Mongolia meteorological stations during 2001 to 2019
图8 2001-2019年内蒙古各气象站点返青期和枯黄期温度(a)和降水的敏感性(b)对比空间分布
Fig.8 Spatial distribution of temperature sensitivity (a) and precipitation sensitivity (b) during SOS and EOS in Inner Mongolia meteorological stations during 2001 to 2019
1 | Elmendorf S C, Jones K D, Cook B I, et al. The plant phenology monitoring design for the national ecological observatory network. Ecosphere, 2016, 7(4): e01303. |
2 | Shen M G, Tang Y H, Jin C, et al. Earlier-season vegetation has greater temperature sensitivity of spring phenology in northern hemisphere. PLoS One, 2014, 9(2): e88178. |
3 | Piao S L, Tan J G, Chen A P, et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015, 6911(6): 1-8. |
4 | Zhang G L, Zhang Y J, Dong J W, et al. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(11): 4309-4314. |
5 | Zhu K Z. A preliminary study on climate change in China during the last five thousand years. China Science, 1973, 12(2): 15-38. |
竺可桢. 中国近五千年来气候变迁的初步研究. 中国科学, 1973, 12(2): 15-38. | |
6 | Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 2006, 12(4): 672-685. |
7 | Zou X M. Agricultural phenology. Beijing: Agricultural Press, 1983. |
邹效孟. 农业物候学. 北京: 农业出版社, 1983. | |
8 | Fu Y S, Piao S L, Zhao H F, et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Global Change Biology, 2014, 20(12): 3743-3755. |
9 | Shen M G, Piao S L, Cong N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 2015, 21(10): 3647-3656. |
10 | Delpierre N, Dufrêne E, Soudani E, et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural & Forest Meteorology, 2009, 149(6/7): 938-948. |
11 | Dragoni D, Rahman A F. Trends in fall phenology across the deciduous forests of the Eastern USA. Agricultural and Forest Meteorology, 2012, DOI: 10.1016/j.agrformet.2012.01.019. |
12 | Richardson A D, Bailey A S, Denny E G, et al. Phenology of a northern hardwood forest canopy. Global Change Biology, 2010, 12(7): 1174-1188. |
13 | Cong N, Shen M G. Variation of satellite-based spring vegetation phenology and the relationship with climate in the Northern Hemisphere over 1982 to 2009. Chinese Journal of Applied Ecology, 2016, 27(9): 2737-2746. |
丛楠, 沈妙根. 1982-2009年基于卫星数据的北半球中高纬地区植被春季物候动态及其与气候的关系. 应用生态学报, 2016, 27(9): 2737-2746. | |
14 | Zhang X Y, Tarpley D, Jerry T S. Diverse responses of vegetation phenology to a warming climate. Geophysical Research Letters, 2007, 34(19): 19405 |
15 | Cong N, Shen M G, Piao S L. Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology, 2016, 10(5): 744-752. |
16 | Chuin I, Cambo G, Comtois P. Scaling phenology from the local to the regional level: Advances from species-specific phenological models. Global Change Biology, 2010, 6(8): 943-952. |
17 | Liu Q, Fu Y S, Zeng Z Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biology, 2016, 22(2): 644-655. |
18 | Güsewell S, Furrer R, Gehrig R, et al. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Global Change Biology, 2017, 23(12): 5189-5202. |
19 | Tao Z X, Ge Q S, Xu Y J, et al. Comparison of changes in flowering phenology of woody plants and temperature sensitivity between Xi’an and Baoji. Acta Ecologica Sinica, 2020, 40(11): 3666-3676. |
陶泽兴, 葛全胜, 徐韵佳, 等. 西安和宝鸡木本植物花期物候变化及温度敏感度对比. 生态学报, 2020, 40(11): 3666-3676. | |
20 | Thackeray S J, Henrys P A, Hemming D, et al. Phenological sensitivity to climate across taxa and trophic levels. Nature, 2016, 535: 241-245. |
21 | Zhu W Q, Zheng Z T, Jiang N, et al. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 248: 177-184. |
22 | Fu Y H, Piao S L, Vitasse Y, et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: Effects of chilling, precipitation and insolation. Global Change Biology, 2015, 21(7): 2687-2697. |
23 | Baskerville G L, Emin P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology, 1969, 50(3): 514-517. |
24 | Chuine I, Cour P, Rousseau D D. Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell & Environment, 2010, 21(5): 455-466. |
25 | Zhang X Y, Friedl M A, Schaaf C B, et al. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 2004, 10(7): 1133-1145. |
26 | Fu Y S, Piao S L, Delpierre N, et al. Larger temperature response of autumn leaf senescence than spring leaf‐out phenology. Global Change Biology, 2018, 24(5): 2159-2168. |
27 | Li Y B, Zhang Y D, Gu F X, et al. Changes of spring phenology and sensitivity analysis in temperate grassland and desert zones of China. Forest Research, 2019, 32(4): 1-10. |
李耀斌, 张远东, 顾峰雪, 等. 中国温带草原和荒漠区域春季物候的变化及其敏感性分析. 林业科学研究, 2019, 32(4): 1-10. | |
28 | Piao S L, Cui M D, Chen A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 2011, 151(12): 1599-1608. |
29 | Wang D, Jiang X G, Tang L L, et al. The application of time-series fourier analysis to reconstructing cloud-free NDVI images. |
Remote Sensing for Land & Resources, 2005, 17(2): 29-32. | |
王丹, 姜小光, 唐伶俐, 等. 利用时间序列傅立叶分析重构无云NDVI图像. 国土资源遥感, 2005, 17(2): 29-32. | |
30 | Bao G, Qin Z H, Bao Y H, et al. Spatial-temporal changes of vegetation cover in Mongolian Plateau during 1982-2006. Journal of Desert Research, 2013, 33(3): 918-927. |
包刚, 覃志豪, 包玉海, 等. 1982-2006年蒙古高原植被覆盖时空变化分析. 中国沙漠, 2013, 33(3): 918-927. | |
31 | Hou X H, Gao S, Niu Z, et al. Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data. International Journal of Remote Sensing, 2014, 35(9): 3316-3330. |
32 | Gregory S M, Wilhelm W W. Growing degree-days: One equation, two interpretations. Agricultural & Forest Meteorology, 1997, 87(4): 291-300. |
33 | Wang T, Ottle C, Peng S, et al. The influence of local spring temperature variance on temperature sensitivity of spring phenology. Global Change Biology, 2014, 20(5): 1473-1480. |
34 | Gong Z, Kawamura K, Ishikawa N, et al. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland. Solid Earth, 2015, 6(3): 1185-1194. |
35 | Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature, 2002, 416: 389-395. |
36 | Jeganathan C, Dash J, Atkinson P M. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 2014, DOI: 10.1016/j.rse.2013.11.020. |
37 | Fan D Q, Zhao X S, Zheng Z T. Phenology of leymus chinensis steppe in Inner Mongolia and its response to climate changes.Geography and Geo-Information Science, 2016, 32(6): 81-86. |
范德芹, 赵学胜, 郑周涛. 内蒙古羊草草原物候及其对气候变化的响应. 地理与地理信息科学, 2016, 32(6): 81-86. | |
38 | Dong X Y, Yao H R, Dai J H, et al. Phenological changes of desert steppe vegetation and its effect on net primary productivity in Inner Mongolia from 2000 to 2017. Progress in Geography, 2020, 39(1): 24-35. |
董晓宇, 姚华荣, 戴君虎, 等. 2000-2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响. 地理科学进展, 2020, 39(1): 24-35. | |
39 | Han F, Liu P T, Niu J M, et al. Spatial distribution and evolution of climatic aridity in desert steppe in Inner Mongolia in recent 50 years. Arid Zone Research, 2013, 30(3): 449-456. |
韩芳, 刘朋涛, 牛建明, 等. 50a来内蒙古荒漠草原气候干燥度的空间分布及其演变特征. 干旱区研究, 2013, 30(3): 449-456. | |
40 | Gallinat A S, Primack R B, Wagner D, et al. Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 2015, 30(3): 169-176. |
41 | Bao G, Jin H, Tong S Q, et al. Autumn phenology and its covariation with climate, spring phenology and annual peak growth on the mongolian plateau. Agricultural and Forest Meteorology, 2021, DOI: 10.1016/j.agrformet.2020.108312. |
42 | Yang Y T, Guan H D, Shen M G, et al. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Global Change Biology, 2015, 21(2): 652-665. |
43 | Yu H Y, Eike L, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2010, 107(51): 22151-22156. |
44 | Parmesan C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 2010, 13(9): 1860-1872. |
45 | Gao M D, Wang X H, Meng F D, et al. Three-dimensional change in temperature sensitivity of northern vegetation phenology. Global Change Biology, 2020, 26(9): 5189-5201. |
46 | Erez A, Samish R M, Lavee S. The role of light in leaf and flower bud break of the peach. Physiologia Plantarum, 2006, 19(3): 650-659. |
47 | Segura G, Balvanera P, Elvira D, et al. Tree community structure and stem mortality along a water availability gradient in a mexican tropical dry forest. Plant Ecology, 2003, 169(2): 259-271. |
48 | Huang W L, Zhang Q, Kong D D, et al. Response of vegetation phenology to drought in Inner Mongolia from 1982 to 2013.Acta Ecologica Sinica, 2019, 39(13): 4953-4965. |
黄文琳, 张强, 孔冬冬, 等. 1982-2013年内蒙古地区植被物候对干旱变化的响应. 生态学报, 2019, 39(13): 4953-4965. | |
49 | Delpierre N, Vitasse Y, Chuine I, et al. Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 2016, 73(1): 5-25. |
50 | Zhang G G, Kang Y M, Han G D, et al. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biology, 2010, 17(1): 377-389. |
[1] | 秦格霞, 吴静, 李纯斌, 沈帅杰, 李怀海, 杨道涵, 焦美榕, 祁琦. 不同草地类型WOFOST模型参数敏感性分析[J]. 草业学报, 2022, 31(5): 13-25. |
[2] | 尹作天, 王玉辉, 周广胜, 马全会, 刘晓迪, 贾丙瑞, 蒋延玲. 荒漠草原石生针茅光合特性对渐进式土壤干旱过程的响应及敏感性分析[J]. 草业学报, 2022, 31(1): 81-94. |
[3] | 张庆, 刘璐瑶, 徐雪, 韩鹏, 赵艳云, 牛建明, 丁勇. 内蒙古草原家庭牧场可持续发展研究[J]. 草业学报, 2021, 30(9): 168-181. |
[4] | 靳全锋, 鞠园华, 杨夏捷, 王文辉, 郭福涛. 2005-2014年内蒙古草地火灾排放污染物的时空格局[J]. 草业学报, 2017, 26(2): 21-29. |
[5] | 乔宇鑫, 朱华忠, 钟华平, 伍兆文, 孟雷, 周李磊. 内蒙古草地地下生物量空间格局分析[J]. 草业学报, 2016, 25(6): 1-12. |
[6] | 孙小龙, 武荣盛, 李平, 李丹. 内蒙古不同类型草原区Hargreaves计算参考作物蒸散量的适用性分析[J]. 草业学报, 2016, 25(5): 13-20. |
[7] | 周怀林, 王玉辉, 周广胜. 内蒙古草原火的时空动态特征研究[J]. 草业学报, 2016, 25(4): 16-25. |
[8] | 柴华,方江平,温丁,李杰,何念鹏. 内蒙古灌丛化草地取样位置对评估土壤碳氮贮量的影响[J]. 草业学报, 2014, 23(6): 28-35. |
[9] | 段晓凤,张磊,卫建国,朱永宁,杨洋,金飞. 宁夏盐池牧草返青期预测及生产潜力初步分析[J]. 草业学报, 2014, 23(2): 1-8. |
[10] | 熊莉,徐振锋,吴福忠,杨万勤,殷睿,李志萍,倪祥银,熊海涛. 踩踏对亚热带沟叶结缕草草坪冬季休眠期土壤呼吸的影响[J]. 草业学报, 2014, 23(2): 83-89. |
[11] | 高立杰,侯建华,安哲,高宝嘉. 内蒙古高原东南缘森林草原交错带土壤动物群落特征[J]. 草业学报, 2013, 22(4): 27-34. |
[12] | 穆少杰,李建龙,杨红飞,刚成诚,陈奕兆. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系[J]. 草业学报, 2013, 22(3): 6-. |
[13] | 李广,李玥,黄高宝,罗珠珠,王琦,刘强,燕振刚,赵有益. 不同耕作措施旱地小麦生产应对气候变化的效应分析[J]. 草业学报, 2012, 21(5): 160-168. |
[14] | 张庆,牛建明,BUYANTUYEV Alexander,丁勇,康萨如拉,王凤兰,张艳楠,杨艳,韩砚君. 内蒙古短花针茅群落数量分类及环境解释[J]. 草业学报, 2012, 21(1): 83-92. |
[15] | 胡健,蒋勤军,韩烈保,王丽. 草坪草病原菌的抗药性现状及研究进展[J]. 草业学报, 2009, 18(2): 194-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||