草业学报 ›› 2023, Vol. 32 ›› Issue (4): 101-111.DOI: 10.11686/cyxb2022167
• 研究论文 • 上一篇
李艳鹏(), 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献()
收稿日期:
2022-04-12
修回日期:
2022-06-01
出版日期:
2023-04-20
发布日期:
2023-01-29
通讯作者:
刘文献
作者简介:
E-mail: liuwx@lzu.edu.cn基金资助:
Yan-peng LI(), Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU()
Received:
2022-04-12
Revised:
2022-06-01
Online:
2023-04-20
Published:
2023-01-29
Contact:
Wen-xian LIU
摘要:
草木樨是我国北方地区重要的饲料与绿肥豆科作物,在我国草牧业发展和生态经济建设中具有重要作用。干旱胁迫是影响草木樨分布和产量的重要因素,筛选和鉴定调控草木樨响应干旱胁迫的基因对解析草木樨抗旱生物学研究具有重要意义。TCP(teosinte branches1/cycloidea/pro-liferating cell factory)是一类植物特有的转录因子,在调控植物响应干旱胁迫过程中具有重要作用,但目前该基因家族在草木樨中的分布以及响应干旱胁迫的生物学功能未见报道。本研究以白花草木樨为对象,利用生物信息学方法在全基因组水平对TCP基因家族进行系统鉴定,并对其基因结构、系统进化、染色体定位以及干旱胁迫下表达模式进行了分析。结果表明,白花草木樨含有18个MaTCP基因,不均匀地分布在6条染色体上。系统进化表明,18个MaTCP基因可以分为TCP-P和TCP-C两大亚家族,其中TCP-P仅包含PCF分支,而TCP-C包含CYC/TB1与CIN两个分支。这些基因都含有高度保守的bHLH结构域,同亚家族中的成员具有相似的保守基序与基因结构,但在bHLH结构域中TCP-P亚家族相较于TCP-C亚家族少4个氨基酸。通过分析白花草木樨响应干旱胁迫的转录组数据,共鉴定出2个可能与干旱胁迫有关的MaTCP基因(MaTCP2和MaTCP15)。qRT-PCR结果进一步表明,PEG模拟干旱胁迫处理后,在白花草木樨根部,MaTCP2基因表达量显著上升;在叶片部分,两基因的表达量在第3 h时均出现峰值,进一步确定了两基因在白花草木樨中具有响应干旱胁迫的表达模式。该研究可为后期深入解析草木樨响应干旱胁迫理论以及通过基因工程技术创制高抗旱草木樨新种质奠定基础。
李艳鹏, 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111.
Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress[J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111.
引物名称 Primer name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') |
---|---|---|
MaTCP2 MaTCP15 MaActin | TCATCAAAGGACCGTCACAC ATGAGCAAATGGAGTCCACCT CTTGGTACCGAGCTCGGATTC | CCACCGTATTGTTTCTCCGT ATGCGGTTGTTGTATGCCTC TACATGATGCGGCCCTCTAGA |
表1 引物信息及序列
Table 1 The information of the primer and sequences used in this study
引物名称 Primer name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') |
---|---|---|
MaTCP2 MaTCP15 MaActin | TCATCAAAGGACCGTCACAC ATGAGCAAATGGAGTCCACCT CTTGGTACCGAGCTCGGATTC | CCACCGTATTGTTTCTCCGT ATGCGGTTGTTGTATGCCTC TACATGATGCGGCCCTCTAGA |
基因名 Gene name | 基因ID Gene ID | 蛋白长度 Protein length (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point (pI) | 亚组 Subgroup | 蛋白亲水性 Protein GRAVY | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
MaTCP1 | Malbus0100163.1 | 259 | 27773.93 | 9.51 | PCF | -0.568 | 细胞核Nucleus |
MaTCP2 | Malbus0101979.1 | 337 | 35361.22 | 5.04 | PCF | -0.377 | 细胞核Nucleus |
MaTCP3 | Malbus0103072.1 | 196 | 20910.49 | 8.99 | PCF | -0.389 | 细胞核Nucleus |
MaTCP4 | Malbus0104508.1 | 225 | 24395.98 | 7.20 | PCF | -0.718 | 细胞核Nucleus |
MaTCP5 | Malbus0204320.1 | 285 | 30934.94 | 8.70 | PCF | -0.833 | 细胞核Nucleus |
MaTCP6 | Malbus0204470.1 | 290 | 32989.63 | 8.55 | CIN | -0.773 | 细胞核Nucleus |
MaTCP7 | Malbus0300375.1 | 356 | 40128.29 | 8.91 | CIN | -0.894 | 细胞核Nucleus |
MaTCP8 | Malbus0300515.1 | 368 | 42150.42 | 8.19 | CYC/TB1 | -1.121 | 细胞核Nucleus |
MaTCP9 | Malbus0401066.1 | 331 | 36615.86 | 6.11 | CIN | -0.788 | 细胞核Nucleus |
MaTCP10 | Malbus0405049.1 | 452 | 47900.15 | 6.70 | PCF | -0.746 | 细胞核Nucleus |
MaTCP11 | Malbus0501562.1 | 316 | 34367.73 | 9.01 | PCF | -0.512 | 细胞核Nucleus |
MaTCP12 | Malbus0502316.1 | 404 | 43944.94 | 6.48 | CIN | -0.767 | 细胞核Nucleus |
MaTCP13 | Malbus0504240.1 | 434 | 47177.72 | 7.48 | PCF | -0.867 | 细胞核Nucleus |
MaTCP14 | Malbus0504339.1 | 319 | 35997.23 | 8.54 | CIN | -0.710 | 细胞核Nucleus |
MaTCP15 | Malbus0504421.1 | 372 | 42944.01 | 9.47 | CYC/TB1 | -0.973 | 细胞核Nucleus |
MaTCP16 | Malbus0602440.1 | 418 | 44160.61 | 6.50 | PCF | -0.588 | 细胞核Nucleus |
MaTCP17 | Malbus0604361.1 | 412 | 46707.68 | 9.20 | CYC/TB1 | -0.988 | 细胞核Nucleus |
MaTCP18 | Malbus0604532.1 | 324 | 36598.94 | 6.25 | CIN | -0.671 | 细胞核Nucleus |
表2 白花草木樨TCP家族成员基本信息
Table 2 Basic information of TCP family members in M. albus
基因名 Gene name | 基因ID Gene ID | 蛋白长度 Protein length (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point (pI) | 亚组 Subgroup | 蛋白亲水性 Protein GRAVY | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
MaTCP1 | Malbus0100163.1 | 259 | 27773.93 | 9.51 | PCF | -0.568 | 细胞核Nucleus |
MaTCP2 | Malbus0101979.1 | 337 | 35361.22 | 5.04 | PCF | -0.377 | 细胞核Nucleus |
MaTCP3 | Malbus0103072.1 | 196 | 20910.49 | 8.99 | PCF | -0.389 | 细胞核Nucleus |
MaTCP4 | Malbus0104508.1 | 225 | 24395.98 | 7.20 | PCF | -0.718 | 细胞核Nucleus |
MaTCP5 | Malbus0204320.1 | 285 | 30934.94 | 8.70 | PCF | -0.833 | 细胞核Nucleus |
MaTCP6 | Malbus0204470.1 | 290 | 32989.63 | 8.55 | CIN | -0.773 | 细胞核Nucleus |
MaTCP7 | Malbus0300375.1 | 356 | 40128.29 | 8.91 | CIN | -0.894 | 细胞核Nucleus |
MaTCP8 | Malbus0300515.1 | 368 | 42150.42 | 8.19 | CYC/TB1 | -1.121 | 细胞核Nucleus |
MaTCP9 | Malbus0401066.1 | 331 | 36615.86 | 6.11 | CIN | -0.788 | 细胞核Nucleus |
MaTCP10 | Malbus0405049.1 | 452 | 47900.15 | 6.70 | PCF | -0.746 | 细胞核Nucleus |
MaTCP11 | Malbus0501562.1 | 316 | 34367.73 | 9.01 | PCF | -0.512 | 细胞核Nucleus |
MaTCP12 | Malbus0502316.1 | 404 | 43944.94 | 6.48 | CIN | -0.767 | 细胞核Nucleus |
MaTCP13 | Malbus0504240.1 | 434 | 47177.72 | 7.48 | PCF | -0.867 | 细胞核Nucleus |
MaTCP14 | Malbus0504339.1 | 319 | 35997.23 | 8.54 | CIN | -0.710 | 细胞核Nucleus |
MaTCP15 | Malbus0504421.1 | 372 | 42944.01 | 9.47 | CYC/TB1 | -0.973 | 细胞核Nucleus |
MaTCP16 | Malbus0602440.1 | 418 | 44160.61 | 6.50 | PCF | -0.588 | 细胞核Nucleus |
MaTCP17 | Malbus0604361.1 | 412 | 46707.68 | 9.20 | CYC/TB1 | -0.988 | 细胞核Nucleus |
MaTCP18 | Malbus0604532.1 | 324 | 36598.94 | 6.25 | CIN | -0.671 | 细胞核Nucleus |
图6 MaTCP基因在干旱处理下的表达模式DSR:干旱胁迫下白花草木樨TCP基因在根部的表达量The expression of TCP gene in roots of M. albus under drought stress; DSS: 干旱胁迫下白花草木樨TCP基因在地上部(叶片)的表达量The expression of TCP gene in the shoot of M. albus under drought stress.
Fig. 6 The expression pattern of MaTCP genes under drought stress
图7 MaTCP基因响应干旱胁迫(20% PEG-6000)的表达模式数据是3个重复的平均值,小写字母表示在0.05水平存在显著性差异。The data is the average of three repetitions, the different lowercase letters indicate significant differences at the 0.05 level.
Fig.7 Expression pattern of MaTCP genes in response to drought stress
1 | Wang T, Zhao X D, Zhen P P, et al. Genome-wide identification and characteristic analyzation of the TCP transcription factors family in peanut. Crops, 2021(2): 35-44. |
王通, 赵孝东, 甄萍萍, 等.花生TCP转录因子的全基因组鉴定及组织表达特性分析.作物杂志, 2021(2): 35-44. | |
2 | Doebley J, Stec A. Teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141(1): 333-346. |
3 | Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum. Nature, 1996, 383(6603): 794-799. |
4 | An X Y, Lou P P, Hao J. Research progress on plant TCP transcription factors. Journal of Anhui Agricultural Sciences, 2020, 48(15): 20-23, 27. |
安新艳, 楼盼盼, 郝娟.植物TCP转录因子的研究进展.安徽农业科学, 2020, 48(15): 20-23, 27. | |
5 | Kan B L, Yang Y, Du P M, et al. Genome-wide identification of Musa acuminata TCP family and its response to low nitrogen stress. Molecular Plant Breeding, 2022, 20(1): 64-75. |
阚宝林, 杨勇, 杜鹏萌, 等.香蕉TCP家族的全基因组鉴定及对低氮胁迫的响应.分子植物育种, 2022, 20(1): 64-75. | |
6 | Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution, 2007, 65(1): 23-33. |
7 | Xu S L, Luo Y H, Cai Z G, et al. Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus. Journal of Integrative Plant Biology, 2013, 55(3): 221-231. |
8 | Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends in Plant Science, 2010, 15(1): 31-39. |
9 | Guo Z X, Shozo F, Elison B, et al. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell, 2010, 22(4): 1161-1173. |
10 | Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology, 2007, 49(6): 885-897. |
11 | Liu J, Huang R, Cheng Z C, et al. Genome-wide identification and the whole analysis of TCP gene family in moso bamboo (Phyllostachys edulis). Genomics and Applied Biology, 2018, 37(12): 5388-5397. |
刘俊, 黄容, 程占超, 等.毛竹TCP基因家族全基因组鉴定与分析.基因组学与应用生物学, 2018, 37(12): 5388-5397. | |
12 | Wei N, Li Y P, Ma Y T, et al. Genome-wide identification of alfalfa TCP gene family and analysis of expression patterns under drought stress. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
魏娜, 李艳鹏, 马艺桐, 等.全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析. 草业学报, 2022, 31(1): 118-130. | |
13 | Zhang T, Qiu Y X, Wang H B, et al. The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2017, 115: 239-248. |
14 | Kieffer M, Master V, Waites S R, et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant Journal, 2011, 68(1): 147-158. |
15 | Mukhopadhyay P, Tyagi A K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Scientific Reports, 2015, 5(1): 9998. |
16 | Wu F, Luo K, Yan Z Z, et al. Analysis of miRNAs and their target genes in five Melilotus albus NILs with different coumarin content. Scientific Reports, 2018, 8(1): 1-13. |
17 | Huo Y, Xiong W, Su K, et al. Genome-wide analysis of the TCP gene family in switchgrass (Panicum virgatum). International Journal of Genomics, 2019, 2019(1): 1-13. |
18 | Koichiro T, Glen S, Sudhir K. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
19 | Yuan J, Amend A, Borkowski J, et al. MULTICLUSTAL: a systematic method for surveying Clustal W alignment parameters. Bioinformatics, 1999, 15(10): 862-863. |
20 | Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleuseic Acids Research, 2009, 37(2): W202-W208. |
21 | Chen C, Chen H, Zhang Y, et al. TBtools-an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
22 | Min X, Liu Z, Wang Y, et al. Comparative transcriptomic analysis provides insights into the coordinated mechanisms of leaves and roots response to cold stress in common vetch. Industrial Crops and Products, 2020, 158: 112949. |
23 | Min X, Jin X, Zhang Z, et al. Genome-wide identification of NAC transcription factor family and functional analysis of the abiotic stress-responsive genes in Medicago sativa L.Journal of Plant Growth Regulation, 2020, 39(1): 324-337. |
24 | Lei Q D, Sun X D, Xu H N. Research progress in transcription factor TCP4 participating in plant growth, development and stress resistance regulation. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 210-214. |
雷其冬, 孙旭东, 徐慧妮.转录因子TCP4参与植物生长发育和抗逆调节研究进展.华北农学报, 2021, 36(S1): 210-214. | |
25 | Lian B Y, Wang Z, Han S L, et al. Sequence characteristics and expression patterns analysis of TCP gene family members in foxtail millet (Setaria italica). Molecular Plant Breeding, 2020, 18(3): 710-718. |
连卜颍, 王喆, 韩尚玲, 等.谷子TCP基因家族成员序列特征及表达模式分析.分子植物育种, 2020, 18(3): 710-718. | |
26 | Rui R, Feng J, Long J, et al. Genomewide analysis of TCP transcription factor gene family in Malus domestica. Journal of Genetics, 2014, 93(3): 733-746. |
27 | Parapunova V, Busscher M, Busscher-Lange J, et al. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 2014, 14(1): 1-17. |
28 | Li F, He X H, Zhang Y B, et al. Genome-wide identification and analysis of the TCP transcription factor family of Medicago truncatula. Molecular Plant Breeding, 2018, 16(20): 6639-6645. |
李菲, 何小红, 张宇斌, 等.蒺藜苜蓿TCP转录因子家族的全基因组鉴定和分析.分子植物育种, 2018, 16(20): 6639-6645. | |
29 | Wu F, Duan Z, Xu P, et al. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnology Journal, 2022, 20(3): 592-609. |
30 | Perez M, Guerringue Y, Ranty B, et al. Specific TCP transcription factors interact with and stabilize PRR2 within different nucleusear sub-domains. Plant Science, 2019, 287: 110197. |
31 | Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant Journal, 2010, 30(3): 337-348. |
32 | Vieira C P, Vieira J, Charlesworth D. Evolution of the cycloidea gene family in Antirrhinum and Misopates. Molecular Biology & Evolution, 1999, 16(11): 1474-1483. |
33 | Ma X, Ma J, Fan D, et al. Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Scientific Reports, 2016, 6: 32795. |
34 | Sharma R, Kapoor M, Tyagi A K, et al. Comparative transcript profiling of TCP family genes provide insight into gene functions and diversification in rice and Arabidopsis. Journal of Plant Molecular Biology & Biotechnology, 2010, 1(1): 24-38. |
35 | Ji Z R, Gu Y B, Dong Q L, et al. Genome-wide identification and analysis of TCP gene family in grape. Genomics and Applied Biology, 2015, 34(10): 2194-2199. |
冀志蕊, 谷彦冰, 董庆龙, 等.葡萄TCP基因家族全基因组鉴定和分析.基因组学与应用生物学, 2015, 34(10): 2194-2199. | |
36 | Liu C H, Liang N S, Yu L, et al. Cloning, analysing and homologous expression of TCP4 transcription factor under abiotic stress and hormone signal in Fraxinus mandschurica. Journal of Beijing Forestry University, 2017, 39(6): 22-31. |
刘春浩, 梁楠松, 于磊, 等.水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析.北京林业大学学报, 2017, 39(6): 22-31. | |
37 | Huo Y Z. Genome-wide analysis of TCP gene family in switchgrass (Panicum virgatum L.). Dalian: Dalian Polytechnic University, 2019. |
霍昱竹.柳枝稷TCP转录因子家族全基因组鉴定和分析.大连: 大连工业大学, 2019. | |
38 | Yao Y, Wang W, Sun Y Y, et al. Identification of HrTCP transcription factors in seabuckthorn (Hippophae rhamnoides) and its response to drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(4): 576-584. |
姚莹, 王伟, 孙永媛, 等.沙棘HrTCP转录因子家族鉴定及其干旱胁迫下的表达分析.西北植物学报, 2021, 41(4): 576-584. | |
39 | Danisman S, van der Wal F, Dhondt S, et al. Arabidopsis class I and class Ⅱ TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiology, 2012, 159(4): 1511-1523. |
[1] | 张一龙, 喻启坤, 李雯, 李培英, 孙宗玖. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J]. 草业学报, 2023, 32(3): 163-178. |
[2] | 刘福, 陈诚, 张凯旋, 周美亮, 张新全. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定[J]. 草业学报, 2023, 32(1): 178-191. |
[3] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[4] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[5] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[6] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
[7] | 刘亚男, 于人杰, 高燕丽, 康俊梅, 杨青川, 武志海, 王珍. 蒺藜苜蓿膜联蛋白MtANN2基因的表达模式及盐胁迫下的功能分析[J]. 草业学报, 2022, 31(5): 124-134. |
[8] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[9] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[10] | 吴雨涵, 刘文辉, 刘凯强, 张永超. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响[J]. 草业学报, 2022, 31(10): 75-86. |
[11] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[12] | 王朋磊, 剡转转, 高莉娟, 马倩, 宗西方, 王升升, 张吉宇. 白花草木樨第二次轮回选择半同胞家系农艺性状的遗传变异分析[J]. 草业学报, 2022, 31(1): 238-245. |
[13] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[14] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[15] | 罗巧玉, 王彦龙, 陈志, 马永贵, 任启梅, 马玉寿. 水分逆境对发草脯氨酸及其代谢途径的影响[J]. 草业学报, 2021, 30(5): 75-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||