草业学报 ›› 2023, Vol. 32 ›› Issue (9): 116-129.DOI: 10.11686/cyxb2022414
• 研究论文 • 上一篇
收稿日期:
2022-10-18
修回日期:
2022-12-12
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
梁国玲
作者简介:
E-mail: qhliangguoling@163.com基金资助:
Chun-yan REN(), Guo-ling LIANG(), Wen-hui LIU, Kai-qiang LIU, Jia-lei DUAN
Received:
2022-10-18
Revised:
2022-12-12
Online:
2023-09-20
Published:
2023-07-12
Contact:
Guo-ling LIANG
摘要:
为选育适应青藏高原高海拔地区高产优质的早熟燕麦品种,对西宁地区种植的595份燕麦资源进行熟性划分,筛选出22份产量优异的早熟燕麦资源,在海北和湟中2个试验点进行适应性评价,选择生产性能良好的早熟燕麦资源进行籽粒性状比较,为选育适宜青藏高原高寒地区种植推广的早熟燕麦提供了理论依据。结果表明:1)早熟燕麦主要是缩短了拔节期-孕穗期和开花期-完熟期的时间,从而缩短了整个生育期。中熟和晚熟燕麦资源干草产量表现较高,平均为4744.8和4999.9 kg·hm-2;而中熟燕麦资源平均种子产量表现最高,为3186.9 kg·hm-2。2)筛选的22份早熟燕麦资源中,平均饲草产量以海北试验点表现较高,为10209.5 kg·hm-2,平均种子产量以湟中试验点表现较高,为2640.6 kg·hm-2;海拔3100 m的海北试验点燕麦平均生育期较海拔2700 m的湟中试验点推迟15.3 d,生育期超过116 d不能在海北地区进行种子生产。3)湟中试验点燕麦种子萌发性能远高于海北试验点,其中青永久782、青永久797在2个试验点萌发性能均较好。综合评价燕麦生产性能和籽粒性状,青永久782、青永久797适宜在青海省环湖地区海拔3100 m左右的地区种植并能完成生育期,且饲草产量和种子产量明显优于现推广品种,可作为该区域的推荐品系。
任春燕, 梁国玲, 刘文辉, 刘凯强, 段嘉蕾. 青藏高原高寒地区早熟燕麦资源筛选和适应性评价[J]. 草业学报, 2023, 32(9): 116-129.
Chun-yan REN, Guo-ling LIANG, Wen-hui LIU, Kai-qiang LIU, Jia-lei DUAN. Screening and adaptability evaluation of early maturing oats in alpine regions of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2023, 32(9): 116-129.
来源Origin | 份数Amount | 来源Origin | 份数Amount | 来源Origin | 份数Amount |
---|---|---|---|---|---|
中国China | 88 | 德国Germany | 3 | 瑞典Sweden | 12 |
澳大利亚Australia | 6 | 法国France | 3 | 瑞士Switzerland | 3 |
保加利亚Bulgaria | 4 | 荷兰Netherland | 4 | 苏联Soviet Union | 19 |
丹麦Denmark | 345 | 加拿大Canada | 79 | 匈牙利Hungary | 19 |
日本Japan | 4 | 罗马尼亚Romania | 5 | 挪威Norway | 1 |
表1 供试材料的来源及数量
Table 1 The origin and amount of oats germplasm resources
来源Origin | 份数Amount | 来源Origin | 份数Amount | 来源Origin | 份数Amount |
---|---|---|---|---|---|
中国China | 88 | 德国Germany | 3 | 瑞典Sweden | 12 |
澳大利亚Australia | 6 | 法国France | 3 | 瑞士Switzerland | 3 |
保加利亚Bulgaria | 4 | 荷兰Netherland | 4 | 苏联Soviet Union | 19 |
丹麦Denmark | 345 | 加拿大Canada | 79 | 匈牙利Hungary | 19 |
日本Japan | 4 | 罗马尼亚Romania | 5 | 挪威Norway | 1 |
燕麦熟性 Oat maturity | 划分标准 Classification standard (d) | 资源份数 Amount | 平均值 Average (d) | 标准差 Standard deviation | 最大值 Maximum (d) | 最小值 Minimum (d) | 极差 Range (d) | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|---|
特晚熟Extra-late maturing | D>124 | 25 | 129.2 | 5.5 | 149 | 125 | 24 | 4.3 |
晚熟Late-maturing | 114<D≤124 | 51 | 119.0 | 2.8 | 124 | 115 | 9 | 2.4 |
中熟Mid-maturing | 93<D≤114 | 410 | 103.7 | 4.5 | 114 | 94 | 20 | 4.3 |
早熟Early-maturing | 83<D≤93 | 94 | 89.7 | 1.9 | 93 | 85 | 6 | 2.1 |
特早熟Earliest-maturing | D≤83 | 15 | 79.2 | 2.7 | 82 | 72 | 8 | 3.4 |
表2 595份燕麦种质资源熟性划分
Table 2 Classification of 595 oat germplasm resources for maturity
燕麦熟性 Oat maturity | 划分标准 Classification standard (d) | 资源份数 Amount | 平均值 Average (d) | 标准差 Standard deviation | 最大值 Maximum (d) | 最小值 Minimum (d) | 极差 Range (d) | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|---|
特晚熟Extra-late maturing | D>124 | 25 | 129.2 | 5.5 | 149 | 125 | 24 | 4.3 |
晚熟Late-maturing | 114<D≤124 | 51 | 119.0 | 2.8 | 124 | 115 | 9 | 2.4 |
中熟Mid-maturing | 93<D≤114 | 410 | 103.7 | 4.5 | 114 | 94 | 20 | 4.3 |
早熟Early-maturing | 83<D≤93 | 94 | 89.7 | 1.9 | 93 | 85 | 6 | 2.1 |
特早熟Earliest-maturing | D≤83 | 15 | 79.2 | 2.7 | 82 | 72 | 8 | 3.4 |
图2 不同熟性燕麦种质资源生育期比较不同小写字母表示不同熟性燕麦间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences among oats of different maturity (P<0.05). The same below.
Fig.2 Comparison of growth stage of different mature oat germplasm resources
品种名称 Varieties | 出苗-拔节 Seedling-jointing (d) | 拔节-孕穗 Jointing-booting (d) | 孕穗-开花 Booting-flowering (d) | 开花-完熟 Flowering-ripe (d) | 生育天数 Growth duration (d) | |||||
---|---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | |
巴燕3号BY No.3 | 27 | 24 | 13 | 11 | 23 | 12 | 52 | 40 | 115 | 87 |
巴燕5号BY No.5 | 20 | 24 | 13 | 10 | 28 | 13 | 51 | 34 | 112 | 81 |
青海444 QH 444 | 26 | 28 | 12 | 19 | 24 | 14 | 50 | 37 | 112 | 98 |
青燕1号 QY No.1 | 19 | 18 | 11 | 8 | 31 | 15 | 48 | 40 | 109 | 81 |
青引2号 QY No.2 | 24 | 19 | 16 | 17 | 31 | 17 | 44 | 36 | 115 | 89 |
青永久016 QYJ 016 | 23 | 22 | 16 | 11 | 35 | 20 | - | 40 | - | 93 |
青永久065 QYJ 065 | 30 | 19 | 12 | 13 | 18 | 15 | 45 | 33 | 105 | 80 |
青永久088 QYJ 088 | 25 | 20 | 13 | 6 | 21 | 21 | 50 | 44 | 109 | 91 |
青永久109 QYJ 109 | 26 | 20 | 7 | 6 | 29 | 21 | 48 | 37 | 110 | 84 |
青永久120 QYJ 120 | 20 | 19 | 6 | 7 | 31 | 21 | 40 | 45 | 97 | 92 |
青永久144 QYJ 144 | 24 | 18 | 12 | 7 | 22 | 15 | 45 | 51 | 103 | 91 |
青永久233 QYJ 233 | 30 | 24 | 15 | 15 | 33 | 20 | - | 38 | - | 97 |
青永久271 QYJ271 | 33 | 21 | 11 | 15 | 22 | 17 | 46 | 47 | 112 | 100 |
青永久390 QYJ 390 | 26 | 35 | 19 | 10 | 33 | 19 | - | 42 | - | 106 |
青永久400 QYJ 400 | 20 | 35 | 7 | 7 | 38 | 22 | - | 47 | - | 111 |
青永久469 QYJ 469 | 26 | 35 | 11 | 16 | 37 | 19 | - | 38 | - | 108 |
青永久470 QYJ 470 | 21 | 26 | 15 | 17 | 25 | 18 | 55 | 26 | 116 | 87 |
青永久714 QYJ 714 | 28 | 14 | 9 | 7 | 23 | 14 | 56 | 54 | 116 | 89 |
青永久719 QYJ 719 | 27 | 18 | 5 | 9 | 22 | 21 | 58 | 44 | 112 | 92 |
青永久762 QYJ 762 | 29 | 24 | 7 | 7 | 22 | 15 | 36 | 34 | 94 | 80 |
青永久770 QYJ 770 | 27 | 21 | 9 | 5 | 20 | 12 | 38 | 42 | 94 | 80 |
青永久773 QYJ 773 | 22 | 21 | 9 | 7 | 19 | 15 | 45 | 50 | 95 | 93 |
青永久775 QYJ 775 | 23 | 25 | 9 | 8 | 14 | 17 | 44 | 35 | 90 | 85 |
青永久782 QYJ 782 | 17 | 21 | 15 | 11 | 32 | 15 | 33 | 44 | 97 | 91 |
青永久797 QYJ 797 | 29 | 32 | 10 | 10 | 21 | 20 | 45 | 29 | 105 | 91 |
青永久799 QYJ 799 | 32 | 21 | 10 | 14 | 20 | 21 | 41 | 33 | 103 | 89 |
青永久882 QYJ 882 | 30 | 19 | 7 | 6 | 24 | 22 | 48 | 34 | 109 | 81 |
平均值Average | 25.3 | 23.1 | 11.1 | 10.3 | 25.9 | 17.4 | 46.3 | 39.8 | 105.9 | 90.6 |
标准差Standard deviation | 4.2 | 5.6 | 3.5 | 4.1 | 6.3 | 3.2 | 6.3 | 6.8 | 8.2 | 8.5 |
最大Maximum | 33.0 | 35.0 | 19.0 | 19.0 | 38.0 | 22.0 | 58.0 | 54.0 | 116.0 | 111.0 |
最小Minimum | 17.0 | 14.0 | 5.0 | 5.0 | 14.0 | 12.0 | 33.0 | 26.0 | 90.0 | 80.0 |
极差Range | 21.2 | 17.5 | 7.6 | 6.3 | 19.5 | 14.2 | 40.0 | 33.0 | 97.8 | 82.1 |
变异系数Coefficient of variation (%) | 16.5 | 24.3 | 31.7 | 39.2 | 24.4 | 18.4 | 13.6 | 17.0 | 7.7 | 9.4 |
表3 不同生态区域早熟燕麦品种生育期差异
Table 3 The comparison of growth stage of early-maturing oat varieties in different ecoregions
品种名称 Varieties | 出苗-拔节 Seedling-jointing (d) | 拔节-孕穗 Jointing-booting (d) | 孕穗-开花 Booting-flowering (d) | 开花-完熟 Flowering-ripe (d) | 生育天数 Growth duration (d) | |||||
---|---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | |
巴燕3号BY No.3 | 27 | 24 | 13 | 11 | 23 | 12 | 52 | 40 | 115 | 87 |
巴燕5号BY No.5 | 20 | 24 | 13 | 10 | 28 | 13 | 51 | 34 | 112 | 81 |
青海444 QH 444 | 26 | 28 | 12 | 19 | 24 | 14 | 50 | 37 | 112 | 98 |
青燕1号 QY No.1 | 19 | 18 | 11 | 8 | 31 | 15 | 48 | 40 | 109 | 81 |
青引2号 QY No.2 | 24 | 19 | 16 | 17 | 31 | 17 | 44 | 36 | 115 | 89 |
青永久016 QYJ 016 | 23 | 22 | 16 | 11 | 35 | 20 | - | 40 | - | 93 |
青永久065 QYJ 065 | 30 | 19 | 12 | 13 | 18 | 15 | 45 | 33 | 105 | 80 |
青永久088 QYJ 088 | 25 | 20 | 13 | 6 | 21 | 21 | 50 | 44 | 109 | 91 |
青永久109 QYJ 109 | 26 | 20 | 7 | 6 | 29 | 21 | 48 | 37 | 110 | 84 |
青永久120 QYJ 120 | 20 | 19 | 6 | 7 | 31 | 21 | 40 | 45 | 97 | 92 |
青永久144 QYJ 144 | 24 | 18 | 12 | 7 | 22 | 15 | 45 | 51 | 103 | 91 |
青永久233 QYJ 233 | 30 | 24 | 15 | 15 | 33 | 20 | - | 38 | - | 97 |
青永久271 QYJ271 | 33 | 21 | 11 | 15 | 22 | 17 | 46 | 47 | 112 | 100 |
青永久390 QYJ 390 | 26 | 35 | 19 | 10 | 33 | 19 | - | 42 | - | 106 |
青永久400 QYJ 400 | 20 | 35 | 7 | 7 | 38 | 22 | - | 47 | - | 111 |
青永久469 QYJ 469 | 26 | 35 | 11 | 16 | 37 | 19 | - | 38 | - | 108 |
青永久470 QYJ 470 | 21 | 26 | 15 | 17 | 25 | 18 | 55 | 26 | 116 | 87 |
青永久714 QYJ 714 | 28 | 14 | 9 | 7 | 23 | 14 | 56 | 54 | 116 | 89 |
青永久719 QYJ 719 | 27 | 18 | 5 | 9 | 22 | 21 | 58 | 44 | 112 | 92 |
青永久762 QYJ 762 | 29 | 24 | 7 | 7 | 22 | 15 | 36 | 34 | 94 | 80 |
青永久770 QYJ 770 | 27 | 21 | 9 | 5 | 20 | 12 | 38 | 42 | 94 | 80 |
青永久773 QYJ 773 | 22 | 21 | 9 | 7 | 19 | 15 | 45 | 50 | 95 | 93 |
青永久775 QYJ 775 | 23 | 25 | 9 | 8 | 14 | 17 | 44 | 35 | 90 | 85 |
青永久782 QYJ 782 | 17 | 21 | 15 | 11 | 32 | 15 | 33 | 44 | 97 | 91 |
青永久797 QYJ 797 | 29 | 32 | 10 | 10 | 21 | 20 | 45 | 29 | 105 | 91 |
青永久799 QYJ 799 | 32 | 21 | 10 | 14 | 20 | 21 | 41 | 33 | 103 | 89 |
青永久882 QYJ 882 | 30 | 19 | 7 | 6 | 24 | 22 | 48 | 34 | 109 | 81 |
平均值Average | 25.3 | 23.1 | 11.1 | 10.3 | 25.9 | 17.4 | 46.3 | 39.8 | 105.9 | 90.6 |
标准差Standard deviation | 4.2 | 5.6 | 3.5 | 4.1 | 6.3 | 3.2 | 6.3 | 6.8 | 8.2 | 8.5 |
最大Maximum | 33.0 | 35.0 | 19.0 | 19.0 | 38.0 | 22.0 | 58.0 | 54.0 | 116.0 | 111.0 |
最小Minimum | 17.0 | 14.0 | 5.0 | 5.0 | 14.0 | 12.0 | 33.0 | 26.0 | 90.0 | 80.0 |
极差Range | 21.2 | 17.5 | 7.6 | 6.3 | 19.5 | 14.2 | 40.0 | 33.0 | 97.8 | 82.1 |
变异系数Coefficient of variation (%) | 16.5 | 24.3 | 31.7 | 39.2 | 24.4 | 18.4 | 13.6 | 17.0 | 7.7 | 9.4 |
品种名称 Varieties | 干草产量Hay yield (kg·hm-2) | F | 种子产量Seed yield (kg·hm-2) | F | ||
---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | |||
巴燕3号BY No.3 | 9529.0±222.7ghi | 6533.4±289.2j | 202.051** | 2496.1±144.6fg | 2772.6±202.9efg | 3.693ns |
巴燕5号BY No.5 | 9394.0±250.0hi | 7111.4±124.6i | 200.364** | 3200.2±150.6bc | 3748.8±171.6a | 17.319* |
青海444 QH 444 | 13067.9±328.0bc | 11537.5±327.6c | 32.698* | 3438.0±121.0ab | 3955.8±304.6a | 7.485ns |
青燕1号 QY No.1 | 9725.1±560.6ghi | 8257.2±286.7gh | 16.301* | 3621.3±219.7a | 3861.8±160.9a | 2.341ns |
青引2号 QY No.2 | 12702.2±352.8bcd | 8628.8±143.5gh | 343.182** | 2904.1±112.0cde | 3237.5±183.7b | 7.200ns |
青永久016 QYJ 016 | 10547.1±250.9fg | 8189.5±253.2h | 131.216** | - | 1540.6±75.1k | / |
青永久065 QYJ 065 | 10816.0±786.5f | 8775.8±154.4g | 85.627** | 2149.8±135.6hi | 2476.9±88.9gh | 12.200* |
青永久088 QYJ 088 | 6499.6±139.5j | 3826.3±39.1n | 1021.252** | 1554.8±97.6kl | 1957.5±85.4j | 28.917** |
青永久109 QYJ 109 | 9566.4±558.3ghi | 6617.3±570.0j | 40.981** | 2436.1±190.5fgh | 2867.8±238.8def | 5.991ns |
青永久120 QYJ 120 | 5154.4±354.8k | 3737.7±168.7n | 38.999** | 2048.3±184.3ij | 2496.1±108.2gh | 13.169* |
青永久144 QYJ 144 | 9428.7±844.5hi | 7367.2±147.7i | 17.348* | 2159.0±139.8hi | 2758.3±194.1efg | 18.827* |
青永久233 QYJ 233 | 15311.5±238.1a | 12085.0±364.7b | 164.636** | - | 1649.2±118.5k | / |
青永久271 QYJ 271 | 9574.9±1066.2ghi | 7562.6±344.8i | 9.675* | 1349.4±130.5l | 1762.5±131.0jk | 14.979* |
青永久390 QYJ 390 | 11000.2±268.4ef | 9955.4±479.9e | 10.833* | - | 1567.2±78.6k | / |
青永久400 QYJ 400 | 12289.0±454.2cd | 9290.2±279.2f | 94.910* | - | 1493.1±148.3k | / |
青永久469 QYJ 469 | 13645.0±126.1b | 11063.1±310.6cd | 177.933** | - | 1547.5±80.1k | / |
青永久470 QYJ 470 | 6757.8±12.8j | 4481.1±124.9m | 986.729** | 2855.3±118.4de | 3181.3±177.0bc | 7.028ns |
青永久714 QYJ 714 | 7315.0±264.4j | 5724.4±128.6k | 87.809** | 2142.0±147.6hi | 2584.0±196.8fg | 9.682* |
青永久719 QYJ 719 | 10423.2±334.9fgh | 8412.6±153.4gh | 89.362** | 2415.1±265.5gh | 2915.1±140.5cde | 8.311* |
青永久762 QYJ 762 | 11849.0±368.5de | 8381.3±382.8gh | 127.778** | 2962.3±171.6cde | 3350.6±191.0b | 6.860ns |
青永久770 QYJ 770 | 6539.7±298.8j | 4109.5±142.6mn | 161.632** | 2069.0±61.2ij | 2475.9±243.0gh | 7.911* |
青永久773 QYJ 773 | 7303.1±574.1j | 5214.3±190.6l | 35.768** | 2844.6±297.8de | 3132.5±176.8bcd | 2.073ns |
青永久775 QYJ 775 | 9304.4±235.7i | 7217.8±397.0i | 61.274** | 2640.2±103.3efg | 3184.5±119.2bc | 35.718** |
青永久782 QYJ 782 | 12479.3±452.7cd | 10975.0±350.7d | 20.700** | 3005.4±125.6cd | 3272.8±102.6b | 8.156* |
青永久797 QYJ 797 | 9243.3±415.7i | 6331.6±156.0j | 128.998** | 2740.3±278.6def | 3186.0±100.8bc | 6.788ns |
青永久799 QYJ 799 | 10496.5±715.6fg | 8238.4±459.5gh | 21.149** | 1817.8±233.3jk | 2284.4±168.2hi | 7.895* |
青永久882 QYJ 882 | 15695.0±144.3a | 12776.3±369.1a | 162.683** | 1667.7±173.2k | 2037.5±162.8ij | 7.256ns |
平均值Average | 10209.5±433.8 | 7866.7±264.4 | 33.807** | 2019.1±133.4 | 2640.6±153.7 | 4.004ns |
F | 65.724** | 215.009** | / | 36.163** | 63.215** | / |
表4 不同生态区域早熟燕麦品种干草产量及种子产量的比较
Table 4 The comparison of hay yield and seed yield of early-maturing oat varieties in different ecoregions
品种名称 Varieties | 干草产量Hay yield (kg·hm-2) | F | 种子产量Seed yield (kg·hm-2) | F | ||
---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | |||
巴燕3号BY No.3 | 9529.0±222.7ghi | 6533.4±289.2j | 202.051** | 2496.1±144.6fg | 2772.6±202.9efg | 3.693ns |
巴燕5号BY No.5 | 9394.0±250.0hi | 7111.4±124.6i | 200.364** | 3200.2±150.6bc | 3748.8±171.6a | 17.319* |
青海444 QH 444 | 13067.9±328.0bc | 11537.5±327.6c | 32.698* | 3438.0±121.0ab | 3955.8±304.6a | 7.485ns |
青燕1号 QY No.1 | 9725.1±560.6ghi | 8257.2±286.7gh | 16.301* | 3621.3±219.7a | 3861.8±160.9a | 2.341ns |
青引2号 QY No.2 | 12702.2±352.8bcd | 8628.8±143.5gh | 343.182** | 2904.1±112.0cde | 3237.5±183.7b | 7.200ns |
青永久016 QYJ 016 | 10547.1±250.9fg | 8189.5±253.2h | 131.216** | - | 1540.6±75.1k | / |
青永久065 QYJ 065 | 10816.0±786.5f | 8775.8±154.4g | 85.627** | 2149.8±135.6hi | 2476.9±88.9gh | 12.200* |
青永久088 QYJ 088 | 6499.6±139.5j | 3826.3±39.1n | 1021.252** | 1554.8±97.6kl | 1957.5±85.4j | 28.917** |
青永久109 QYJ 109 | 9566.4±558.3ghi | 6617.3±570.0j | 40.981** | 2436.1±190.5fgh | 2867.8±238.8def | 5.991ns |
青永久120 QYJ 120 | 5154.4±354.8k | 3737.7±168.7n | 38.999** | 2048.3±184.3ij | 2496.1±108.2gh | 13.169* |
青永久144 QYJ 144 | 9428.7±844.5hi | 7367.2±147.7i | 17.348* | 2159.0±139.8hi | 2758.3±194.1efg | 18.827* |
青永久233 QYJ 233 | 15311.5±238.1a | 12085.0±364.7b | 164.636** | - | 1649.2±118.5k | / |
青永久271 QYJ 271 | 9574.9±1066.2ghi | 7562.6±344.8i | 9.675* | 1349.4±130.5l | 1762.5±131.0jk | 14.979* |
青永久390 QYJ 390 | 11000.2±268.4ef | 9955.4±479.9e | 10.833* | - | 1567.2±78.6k | / |
青永久400 QYJ 400 | 12289.0±454.2cd | 9290.2±279.2f | 94.910* | - | 1493.1±148.3k | / |
青永久469 QYJ 469 | 13645.0±126.1b | 11063.1±310.6cd | 177.933** | - | 1547.5±80.1k | / |
青永久470 QYJ 470 | 6757.8±12.8j | 4481.1±124.9m | 986.729** | 2855.3±118.4de | 3181.3±177.0bc | 7.028ns |
青永久714 QYJ 714 | 7315.0±264.4j | 5724.4±128.6k | 87.809** | 2142.0±147.6hi | 2584.0±196.8fg | 9.682* |
青永久719 QYJ 719 | 10423.2±334.9fgh | 8412.6±153.4gh | 89.362** | 2415.1±265.5gh | 2915.1±140.5cde | 8.311* |
青永久762 QYJ 762 | 11849.0±368.5de | 8381.3±382.8gh | 127.778** | 2962.3±171.6cde | 3350.6±191.0b | 6.860ns |
青永久770 QYJ 770 | 6539.7±298.8j | 4109.5±142.6mn | 161.632** | 2069.0±61.2ij | 2475.9±243.0gh | 7.911* |
青永久773 QYJ 773 | 7303.1±574.1j | 5214.3±190.6l | 35.768** | 2844.6±297.8de | 3132.5±176.8bcd | 2.073ns |
青永久775 QYJ 775 | 9304.4±235.7i | 7217.8±397.0i | 61.274** | 2640.2±103.3efg | 3184.5±119.2bc | 35.718** |
青永久782 QYJ 782 | 12479.3±452.7cd | 10975.0±350.7d | 20.700** | 3005.4±125.6cd | 3272.8±102.6b | 8.156* |
青永久797 QYJ 797 | 9243.3±415.7i | 6331.6±156.0j | 128.998** | 2740.3±278.6def | 3186.0±100.8bc | 6.788ns |
青永久799 QYJ 799 | 10496.5±715.6fg | 8238.4±459.5gh | 21.149** | 1817.8±233.3jk | 2284.4±168.2hi | 7.895* |
青永久882 QYJ 882 | 15695.0±144.3a | 12776.3±369.1a | 162.683** | 1667.7±173.2k | 2037.5±162.8ij | 7.256ns |
平均值Average | 10209.5±433.8 | 7866.7±264.4 | 33.807** | 2019.1±133.4 | 2640.6±153.7 | 4.004ns |
F | 65.724** | 215.009** | / | 36.163** | 63.215** | / |
品种名称 Varieties | 千粒重Thousand kernel weight (g) | F | 粒长 Grain length (mm) | F | 粒宽 Grain width (mm) | F | |||
---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | ||||
巴燕3号BY No.3 | 26.6±0.6f | 24.9±2.0d | 1.819ns | 17.1±0.9ab | 17.1±1.2a | 0.000ns | 2.6±0.0cd | 2.6±0.2cd | 0.007ns |
巴燕5号BY No.5 | 30.6±0.7c | 28.6±0.7b | 11.878** | 17.4±0.5a | 16.8±1.0ab | 1.313ns | 2.8±0.1bc | 2.6±0.2cd | 5.298ns |
青海444 QH 444 | 28.5±1.2de | 27.2±0.4bc | 3.094ns | 13.8±0.8d | 15.4±0.8c | 8.955* | 2.8±0.1bc | 2.8±0.2ab | 0.669ns |
青燕1号 QY No.1 | 29.7±0.6cd | 28.3±0.4b | 10.068* | 14.8±0.5c | 14.1±0.3d | 9.284* | 3.0±0.2a | 2.9±0.1a | 0.098ns |
青引2号 QY No.2 | 33.6±0.6a | 31.2±0.9a | 15.138* | 16.9±0.9ab | 17.1±1.1a | 0.066ns | 2.7±0.2bc | 2.7±0.1bc | 0.032ns |
青永久065 QYJ 065 | 29.0±0.3de | 26.2±0.9cd | 23.956** | 13.6±0.9d | 13.9±1.1d | 0.190ns | 2.8±0.2b | 2.9±0.1ab | 1.801ns |
青永久271 QYJ 271 | 21.4±1.0g | 20.0±0.6e | 4.081ns | 16.1±0.6b | 15.7±0.6bc | 0.956ns | 2.5±0.1d | 2.5±0.2d | 0.270ns |
青永久782 QYJ 782 | 27.8±0.9ef | 25.0±0.6d | 21.241** | 16.3±0.9b | 16.0±0.9abc | 0.174ns | 2.7±0.1bcd | 2.4±0.1d | 10.417* |
青永久797 QYJ 797 | 32.1±0.8b | 30.9±0.8a | 3.332ns | 16.9±0.5ab | 17.2±0.9a | 0.562ns | 2.8±0.2b | 2.6±0.2cd | 3.703ns |
平均值Average | 28.8±3.5 | 26.9±3.5 | 4.061* | 15.9±1.4 | 15.9±1.3 | 0.044ns | 2.7±0.2 | 2.7±0.2 | 1.673ns |
F | 58.886** | 40.838** | / | 17.675** | 9.583** | / | 5.718** | 8.968** | / |
表5 不同生态区域早熟燕麦品种粒长、粒宽及千粒重的比较
Table 5 The comparison of grain length, grain width and thousand kernel weight of early-maturing oat varieties in different ecoregions
品种名称 Varieties | 千粒重Thousand kernel weight (g) | F | 粒长 Grain length (mm) | F | 粒宽 Grain width (mm) | F | |||
---|---|---|---|---|---|---|---|---|---|
海北HB | 湟中HZ | 海北HB | 湟中HZ | 海北HB | 湟中HZ | ||||
巴燕3号BY No.3 | 26.6±0.6f | 24.9±2.0d | 1.819ns | 17.1±0.9ab | 17.1±1.2a | 0.000ns | 2.6±0.0cd | 2.6±0.2cd | 0.007ns |
巴燕5号BY No.5 | 30.6±0.7c | 28.6±0.7b | 11.878** | 17.4±0.5a | 16.8±1.0ab | 1.313ns | 2.8±0.1bc | 2.6±0.2cd | 5.298ns |
青海444 QH 444 | 28.5±1.2de | 27.2±0.4bc | 3.094ns | 13.8±0.8d | 15.4±0.8c | 8.955* | 2.8±0.1bc | 2.8±0.2ab | 0.669ns |
青燕1号 QY No.1 | 29.7±0.6cd | 28.3±0.4b | 10.068* | 14.8±0.5c | 14.1±0.3d | 9.284* | 3.0±0.2a | 2.9±0.1a | 0.098ns |
青引2号 QY No.2 | 33.6±0.6a | 31.2±0.9a | 15.138* | 16.9±0.9ab | 17.1±1.1a | 0.066ns | 2.7±0.2bc | 2.7±0.1bc | 0.032ns |
青永久065 QYJ 065 | 29.0±0.3de | 26.2±0.9cd | 23.956** | 13.6±0.9d | 13.9±1.1d | 0.190ns | 2.8±0.2b | 2.9±0.1ab | 1.801ns |
青永久271 QYJ 271 | 21.4±1.0g | 20.0±0.6e | 4.081ns | 16.1±0.6b | 15.7±0.6bc | 0.956ns | 2.5±0.1d | 2.5±0.2d | 0.270ns |
青永久782 QYJ 782 | 27.8±0.9ef | 25.0±0.6d | 21.241** | 16.3±0.9b | 16.0±0.9abc | 0.174ns | 2.7±0.1bcd | 2.4±0.1d | 10.417* |
青永久797 QYJ 797 | 32.1±0.8b | 30.9±0.8a | 3.332ns | 16.9±0.5ab | 17.2±0.9a | 0.562ns | 2.8±0.2b | 2.6±0.2cd | 3.703ns |
平均值Average | 28.8±3.5 | 26.9±3.5 | 4.061* | 15.9±1.4 | 15.9±1.3 | 0.044ns | 2.7±0.2 | 2.7±0.2 | 1.673ns |
F | 58.886** | 40.838** | / | 17.675** | 9.583** | / | 5.718** | 8.968** | / |
图5 不同生态区域早熟燕麦资源发芽情况不同小写字母表示相同地区不同品种间差异显著;不同大写字母表示相同品种不同地区间差异显著。下同。Different lowercase letter indicate significant differences among varieties in the same region, and different capital letters indicate significant differences between regions of the same variety. The same below.
Fig.5 Germination of early maturing oat resources in different ecological regions
1 | Xu C L. A study on growth characteristics of different cultivars of oat (Avena sativa) in alpine region. Acta Prataculturae Sinica, 2012, 21(2): 280-285. |
徐长林. 高寒牧区不同燕麦品种生长特性比较研究. 草业学报, 2012, 21(2): 280-285. | |
2 | Bao G S, Zhou Q P, Han Z L. Effects of nitrogen and potassium fertilizer on yield and quality of oat. Pratacultural Science, 2008(10): 48-53. |
鲍根生, 周青平, 韩志林. 氮、钾不同配比施肥对燕麦产量和品质的影响. 草业科学, 2008(10): 48-53. | |
3 | Liu Z H, Wu G L, Ren Q C, et al. Sustainable development of animal husbandry based on oat in alpine grassland area. Pratacultural Science, 2007(9): 67-69. |
刘振恒, 武高林, 仁青草, 等. 发展以燕麦为支柱产业的可持续高寒草地畜牧业. 草业科学, 2007(9): 67-69. | |
4 | Xiao X J, Zhou Q P, Chen Y J, et al. Effect of seedling rate on production performance and photosynthetic characteristics of Avena sativa cv. LENA in alpine pastoral regions. Pratacultural Science, 2017, 34(4): 761-771. |
肖雪君, 周青平, 陈有军, 等. 播种量对高寒牧区林纳燕麦生产性能及光合特性的影响. 草业科学, 2017, 34(4): 761-771. | |
5 | Rammig A, Jonas T, Zimmermann N E, et al. Changes in alpine plant growth under future climate conditions. Biogeosciences, 2010, 7(6): 2013-2024. |
6 | Zhao G Q, Shi S L. The current situation of oat research and production, problems and strategy in Tibetan Plateau. Pratacultural Science, 2004(11): 17-21. |
赵桂琴, 师尚礼. 青藏高原饲用燕麦研究与生产现状、存在问题与对策. 草业科学, 2004(11): 17-21. | |
7 | Gang Y H, Zhang H B. The position ang function of oats in the sustainable development of grassland animal husbandry in Qinghai Alpine Region. Grassland and Prataculture, 2019, 31(3): 12-15. |
刚永和, 张海博. 燕麦在青海高寒地区草原畜牧业可持续发展中的地位和作用. 草原与草业, 2019, 31(3): 12-15. | |
8 | Liu W H, Zhang Y C, Liang G L, et al. Effects of different agronomy treatments on the oat cultivation grassland soil carbon and nitrogen stock and the carbon/nitrogen ratio. Acta Agrestia Sinica, 2019, 27(3): 675-686. |
刘文辉, 张永超, 梁国玲, 等. 高寒区不同农艺措施对燕麦人工草地各生育期土壤碳氮储量与碳氮比的影响. 草地学报, 2019, 27(3): 675-686. | |
9 | Yuan X J, Zhang B L, Guo J, et al. Remote sensing analysis on spatial difference in phenology and mature characters of spring maize. Science Technology and Engineering, 2022, 22(1): 93-102. |
元雪娇, 张宝林, 郭佳, 等. 春玉米物候期及熟性空间分异的遥感分析. 科学技术与工程, 2022, 22(1): 93-102. | |
10 | Xiao D P, Qi Y Q, Wang R D, et al. Changes in phenology and climatic conditions of wheat and maize in Xinjiang during 1981-2009. Agricultural Research in the Arid Areas, 2015, 33(6): 189-194, 202. |
肖登攀, 齐永青, 王仁德, 等. 1981-2009年新疆小麦和玉米物候期与气候条件变化研究. 干旱地区农业研究, 2015, 33(6): 189-194, 202. | |
11 | Yu S X, Wang H T, Wei H L, et al. Research progress and application of early maturity in upland cotton. Cotton Science, 2017, 29(S1): 1-10. |
喻树迅, 王寒涛, 魏恒玲, 等. 棉花早熟性研究进展及其应用. 棉花学报, 2017, 29(S1): 1-10. | |
12 | Fu M, Feng W H, Wu J, et al. Regional adaptability identification and quality evaluation of early-maturing potato varieties in Guizhou wintergrowing area. Seed, 2021, 40(2): 121-128, 142, 149. |
付梅, 冯文豪, 吴军, 等. 贵州冬作区早熟马铃薯新品种区域适应性鉴定及品质评价. 种子, 2021, 40(2): 121-128, 142, 149. | |
13 | Sun B, Chen H J, Li J L, et al. Adaptability identification of 24 earliest maturing maize varieties in the alpine zone of northern Heilongjiang Province. China Seed Industry, 2015(4): 29-32. |
孙波, 陈海军, 李金良, 等. 24个极早熟玉米品种在黑龙江省北部高寒区适应性鉴定. 中国种业, 2015(4): 29-32. | |
14 | Yan Y H, Hu Y M. Study on sustainable development of grassland animal husbandry in alpine region. Journal of Animal Science and Veterinary Medicine, 2018, 37(1): 28-31, 33. |
闫颖慧, 虎艳梅. 高寒地区草原畜牧业的可持续发展研究. 畜牧兽医杂志, 2018, 37(1): 28-31, 33. | |
15 | Liang G L, Qin Y, Wei X X, et al. Evaluation on productivity and quality of oat strain I-D in the alpine regions of the Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2018, 26(4): 917-927. |
梁国玲, 秦燕, 魏小星, 等. 青藏高原高寒区I-D燕麦品系饲草生产性能及品质评价. 草地学报, 2018, 26(4): 917-927. | |
16 | Geng X L, Han T H, Zhang S P, et al. Adaptability evaluation of 30 oat germplasm in Tianzhu. Acta Agrestia Sinica, 2019, 27(6): 1743-1750. |
耿小丽, 韩天虎, 张少平, 等. 30个燕麦品种(品系)在甘肃天祝地区的适应性评价. 草地学报, 2019, 27(6): 1743-1750. | |
17 | Ma J H, Zhou W X, Sa R L, et al. Comprehensive evaluation of stress resistance of 8 naked oat varieties during germination stage. Journal of Inner Mongolia Minzu University (Natural Sciences), 2022, 37(6): 477-483. |
马金慧, 周文喜, 萨如拉, 等. 8个裸燕麦品种萌发期抗逆性综合评价. 内蒙古民族大学学报(自然科学版), 2022, 37(6): 477-483. | |
18 | Ma X, Liu Y, Zhang Y C, et al. Effects of different harvest time on seed germination and seedling growth of oats. Chinese Agricultural Science Bulletin, 2019, 35(24): 7-14. |
马祥, 刘勇, 张永超, 等. 不同收获时间对燕麦种子萌发和幼苗生长的影响. 中国农学通报, 2019, 35(24): 7-14. | |
19 | Fu L H, Yu S, Yu L H, et al. Analysis of saline-alkaline tolerance and screening of identification indexes of different oat genotypes at the germination stage. Crops, 2018(6): 27-35, 174. |
付鸾鸿, 于崧, 于立河, 等.不同基因型燕麦萌发期耐盐碱性分析及其鉴定指标的筛选. 作物杂志, 2018(6): 27-35, 174. | |
20 | Wang L Y. On character difference of 632 oats varieties in Xining region, Qinghai province. Pratacultural Science, 1998(3): 20-23. |
王柳英. 燕麦品种性状变异的研究. 草业科学, 1998(3): 20-23. | |
21 | Li M, Wang L Y, Yan H B, et al. Study on the trait variation of 98 oat varieties. Journal of Anhui Agricultural Sciences, 2010, 38(26): 14289-14290, 14304. |
黎明, 王柳英, 颜红波, 等. 98份燕麦品种性状变异的研究. 安徽农业科学, 2010, 38(26): 14289-14290, 14304. | |
22 | Peng X Q, Zhou Q P, Liu W H, et al. A comparative analysis of growth characteristics of six oat cultivars in the north-western Sichuan alpine region. Pratacultural Science, 2018, 35(5): 1208-1217. |
彭先琴, 周青平, 刘文辉, 等. 川西北高寒地区6个燕麦品种生长特性的比较分析. 草业科学, 2018, 35(5): 1208-1217. | |
23 | Zhang C L, Han B, Zhao Y L, et al. Breeding of a new early-maturing forage variety, Mengsi No.5 oat. China Seed Industry, 2021(12): 102-104. |
张春林, 韩冰, 赵瑛琳, 等. 早熟饲草新品种蒙饲5号燕麦的选育. 中国种业, 2021(12): 102-104. | |
24 | Han D L, Ji W R. A report of the Regional test on the early maturing and high yielding new cultivars of Avena sativa. Chinese Qinghai Journal of Animal and Veterinary Sciences, 1996, 26(2): 1-4. |
韩德林, 冀旺荣. 早熟高产燕麦新品种区域试验报告. 青海畜牧兽医杂志, 1996, 26(2): 1-4. | |
25 | Zhou Q P, Yan H B, Liang G L, et al. Report on breeding program for a new oat variety of early maturity and high yield, Qingyan No.1. Journal of Southwest Minzu University (Natural Science Edition), 2014, 40(2): 161-167. |
周青平, 颜红波, 梁国玲, 等. 早熟高产燕麦新品种青燕1号选育报告. 西南民族大学学报(自然科学版), 2014, 40(2): 161-167. | |
26 | Yin D H. A correlation and path-coefficient analysis in oat. Journal of Qinghai Animal Husbandry and Veterinary Medicine College, 1990, 7(1): 914. |
尹大海. 燕麦生育期与其它性状的相关及通径分析. 青海畜牧兽医学院学报, 1990, 7(1): 9-14. | |
27 | Zhou Q P, Gou X L, Tian L H, et al. Performances of early and late maturing oat varieties in cold regions. Chinese Science Bulletin, 2018, 63(17): 1722-1730. |
周青平, 苟小林, 田莉华, 等. 寒冷区早晚熟燕麦品种的生产性能分析. 科学通报, 2018, 63(17): 1722-1730. | |
28 | Li Y M. A preliminary study on photosynthetic performance of wheat, barley, oats and rye at low temperature in winter. Journal of Hebei Agricultural University, 1997, 20(3): 33-37. |
李雁鸣. 冬季低温条件下麦类作物光合性能的初步研究. 河北农业大学学报, 1997, 20(3): 33-37. | |
29 | Chen X, Liang Q, Yang H F, et al. Production performance and nutrient analysis of early and late maturing oat in Fenhe plain area. Feed Research, 2020, 43(11): 92-96. |
陈雪, 梁琪, 杨海峰, 等. 汾河平原春播早熟燕麦和晚熟燕麦生产性能与养分分析. 饲料研究, 2020, 43(11): 92-96. | |
30 | Zheng X, Wei Z W, Wu Z N, et al. Adaptability evaluation of different Avena sativa varieties in Yangzhou area. Acta Agrestia Sinica, 2013, 21(2): 272-279. |
郑曦, 魏臻武, 武自念, 等. 不同燕麦品种(系)在扬州地区的适应性评价. 草地学报, 2013, 21(2): 272-279. | |
31 | Chai J K. Study on adaptability, productivity and quality of oats in different ecological regions of Gansu. Lanzhou: Gansu Agricultural University, 2009. |
柴继宽. 燕麦在甘肃不同生态区域的适应性、生产性能及品质研究. 兰州: 甘肃农业大学, 2009. | |
32 | Chai J K, Zhao G Q, Hu K J, et al. Effect of eco-environment in different planting areas on oat nutritive value and hay production. Acta Agrestia Sinica, 2010, 18(3): 421-425, 476. |
柴继宽, 赵桂琴, 胡凯军, 等. 不同种植区生态环境对燕麦营养价值及干草产量的影响. 草地学报, 2010, 18(3): 421-425, 476. | |
33 | Zhang L, Zhang C H, Lv J P, et al. Seed germination characteristics and their correlations with seed sizes of 31 common weeds in eastern Qinghai-Tibet Plateau. Chinses Journal of Ecology, 2011, 30(10): 2115-2121. |
张蕾, 张春辉, 吕俊平, 等. 青藏高原东缘31种常见杂草种子萌发特性及其与种子大小的关系. 生态学杂志, 2011, 30(10): 2115-2121. | |
34 | Yue J M, Li M L. Review of mobilization and change of seed storage materials during germination. Seed, 2021, 40(1): 56-62. |
岳佳铭, 李曼莉. 萌发过程中种子贮藏物质的动员和变化规律概述. 种子, 2021, 40(1): 56-62. | |
35 | Wei W, Zhou J J, Bai M G W, et al. Effects of different altitudes gradient on seed size and germination characteristics of 3 grasses species from Tibet Plateau. Seed, 2018, 37(2): 29-33. |
魏巍, 周娟娟, 白玛嘎翁, 等. 海拔梯度对西藏高原3种禾本科牧草种子大小和萌发特性的影响. 种子, 2018, 37(2): 29-33. |
[1] | 党浩千, 覃娟清, 郭宇康, 张富, 王迎港, 刘庆华. 不同添加剂发酵笋壳对湖羊生产性能及瘤胃发酵的影响[J]. 草业学报, 2023, 32(7): 135-148. |
[2] | 张振粉, 黄荣, 李向阳, 姚博, 赵桂琴. 基于Illumina MiSeq高通量测序的燕麦种带细菌多样性及功能分析[J]. 草业学报, 2023, 32(7): 96-108. |
[3] | 崔婷, 王勇, 马晖玲. 外源IAA作用下草地早熟禾中调控Cd长距离运输的关键基因表达及其代谢通路分析[J]. 草业学报, 2023, 32(6): 146-156. |
[4] | 叶婷, 吴晓娟, 芦奕晓, 刘生娟, 姜卓慧, 杨惠敏. 混播比例对两种苜蓿混播草地产量和种群密度稳定性的影响[J]. 草业学报, 2023, 32(5): 127-137. |
[5] | 王梓凡, 张晓庆, 钟志明, 权欣. 燕麦草捆和草块对彭波半细毛羊采食行为及生产性能的影响[J]. 草业学报, 2023, 32(5): 171-179. |
[6] | 刘爱瑜, 王超, 吴占军, 赵寿培, 赵俐辰, 李晓宇, 张伟涛, 王乐天, 高玉红. 热应激对断奶绵羔羊生长性能、抗氧化性能和瘤胃菌群的影响[J]. 草业学报, 2023, 32(4): 173-182. |
[7] | 严翊丹, 聂莹莹, 徐丽君, 高兴发, 饶彦章, 饶雄, 张洪志, 赵查书, 竺艳萍, 朱玉波. 西南山区冬闲田功能型燕麦品种潜力挖掘评价[J]. 草业学报, 2023, 32(4): 42-53. |
[8] | 哈雪, 张金青, 白方旭, 马祥荣, 王安琦, 马晖玲. 甘肃野生草地早熟禾种质种子产量相关性状分析及其对矿质元素利用效应评价[J]. 草业学报, 2023, 32(4): 54-67. |
[9] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[10] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[11] | 魏露萍, 周青平, 刘芳, 林积圳, 詹圆, 汪辉. 遮穗和去颖下燕麦穗部特征变化和穗部光合贡献率估算[J]. 草业学报, 2023, 32(2): 110-118. |
[12] | 刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J]. 草业学报, 2023, 32(2): 119-130. |
[13] | 叶雪玲, 甘圳, 万燕, 向达兵, 邬晓勇, 吴琪, 刘长英, 范昱, 邹亮. 饲用燕麦育种研究进展与展望[J]. 草业学报, 2023, 32(2): 160-177. |
[14] | 钱文武, 郭鹏, 朱慧森, 张士敏, 李德颖. 草地早熟禾叶片表皮特征、解剖结构及光合特性对不同施氮量的响应[J]. 草业学报, 2023, 32(1): 131-143. |
[15] | 田吉鹏, 刘蓓一, 顾洪如, 丁成龙, 程云辉, 玉柱. 乳酸菌及丙酸钙对全株玉米和燕麦青贮饲料发酵品质和霉菌毒素含量的影响[J]. 草业学报, 2022, 31(8): 157-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||