草业学报 ›› 2023, Vol. 32 ›› Issue (9): 39-49.DOI: 10.11686/cyxb2022381
赵敏1,2(), 赵坤1, 王赟博1, 殷国梅2, 刘思博2, 闫宝龙1,3, 孟卫军4, 吕世杰1, 韩国栋1()
收稿日期:
2022-09-22
修回日期:
2023-01-04
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
韩国栋
作者简介:
E-mail: nmghanguodong@163.com基金资助:
Min ZHAO1,2(), Kun ZHAO1, Yun-bo WANG1, Guo-mei YIN2, Si-bo LIU2, Bao-long YAN1,3, Wei-jun MENG4, Shi-jie LYU1, Guo-dong HAN1()
Received:
2022-09-22
Revised:
2023-01-04
Online:
2023-09-20
Published:
2023-07-12
Contact:
Guo-dong HAN
摘要:
植物多样性提高是退化草地恢复的表现形式之一。过度放牧是草地退化的主要原因,禁牧和放牧对于草地植物多样性恢复的争议依旧存在。本研究以短花针茅荒漠草原为对象,2017年8月植物生长高峰期对围封13年(2004-2017年)不同放牧强度(禁牧、轻度放牧、中度放牧和重度放牧)处理的植物物种、密度、频度和盖度进行观测,并对植物物种、功能群的相对优势度以及植物多样性指数进行分析。结果显示:随着放牧强度的增加,Patrick丰富度指数、Shannon-Wiener多样性指数、Simpson优势度指数呈下降的变化趋势,并且禁牧显著高于重度放牧(P<0.05),Pielou均匀度指数在中度放牧下最高,并且显著高于重度放牧(P<0.05)。Shannon-Wiener多样性指数和Simpson优势度指数与短花针茅重要值呈极显著负相关,而与冷蒿重要值呈极显著正相关(P<0.01),优势植物的相对优势度决定了植物多样性的高低。通过探讨不同强度放牧长期干扰对植物多样性的影响及机制,初步认为在短花针茅荒漠草原,禁牧是恢复退化草地植物物种多样性的理想途径之一,轻度放牧不会改变群落的稳定性。
赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49.
Min ZHAO, Kun ZHAO, Yun-bo WANG, Guo-mei YIN, Si-bo LIU, Bao-long YAN, Wei-jun MENG, Shi-jie LYU, Guo-dong HAN. Long-term grazing disturbance reduced plant diversity in Stipa breviflora desert steppe[J]. Acta Prataculturae Sinica, 2023, 32(9): 39-49.
物种 Species | 对照CK | 轻度放牧LG | 中度放牧MG | 重度放牧HG | 物种 Species | 对照CK | 轻度放牧LG | 中度放牧MG | 重度放牧HG |
---|---|---|---|---|---|---|---|---|---|
短花针茅S. breviflora | 0.13b | 0.24b | 0.65a | 0.78a | 小叶锦鸡儿Caragana microphylla | 0.00a | 0.01a | 0.01a | 0.00a |
克氏针茅Stipa krylovii | 0.04a | 0.04a | 0.00a | 0.01a | 狭叶锦鸡儿Caragana stenophylla | 0.02a | 0.02a | 0.01a | 0.00a |
无芒隐子草C. songorica | 0.10b | 0.13ab | 0.23a | 0.14ab | 驼绒藜Krascheninnikovia ceratoides | 0.01a | 0.00a | 0.00a | 0.00a |
羊草Leymus chinensis | 0.01a | 0.01a | 0.00a | 0.00a | 细叶鸢尾Iris tenuifolia | 0.01a | 0.00a | 0.00a | 0.00a |
冰草Agropyron cristatum | 0.01a | 0.01a | 0.00a | 0.00a | 草芸香Haplophyllum dauricum | 0.01a | 0.00b | 0.00b | 0.00b |
冷蒿A. frigida | 0.13a | 0.07ab | 0.02bc | 0.00c | 冬青叶兔唇花Lagochilus ilicifolius | 0.02a | 0.01ab | 0.01ab | 0.00b |
栉叶蒿Neopallasia pectinata | 0.08a | 0.13a | 0.00b | 0.00b | 细叶葱Allium tenuissimum | 0.04a | 0.01b | 0.03ab | 0.02b |
猪毛蒿Artemisia scoparia | 0.01a | 0.00b | 0.00b | 0.00b | 蒙古葱Allium mongolicum | 0.01a | 0.00b | 0.00b | 0.00b |
木地肤Kochia prostrata | 0.03a | 0.02a | 0.01b | 0.01b | 猪毛菜Salola collina | 0.23a | 0.16a | 0.01b | 0.01b |
阿尔泰狗娃花Heteropappus altaicus | 0.01a | 0.01a | 0.00b | 0.00b | 银灰旋花Convolvulus ammannii | 0.11a | 0.14a | 0.03a | 0.04a |
乳白花黄芪Astragalus galactites | 0.01a | 0.00a | 0.00a | 0.00a |
表1 植物物种重要值在不同放牧强度下的差异
Table 1 Differences in important values of plant species under different grazing intensities
物种 Species | 对照CK | 轻度放牧LG | 中度放牧MG | 重度放牧HG | 物种 Species | 对照CK | 轻度放牧LG | 中度放牧MG | 重度放牧HG |
---|---|---|---|---|---|---|---|---|---|
短花针茅S. breviflora | 0.13b | 0.24b | 0.65a | 0.78a | 小叶锦鸡儿Caragana microphylla | 0.00a | 0.01a | 0.01a | 0.00a |
克氏针茅Stipa krylovii | 0.04a | 0.04a | 0.00a | 0.01a | 狭叶锦鸡儿Caragana stenophylla | 0.02a | 0.02a | 0.01a | 0.00a |
无芒隐子草C. songorica | 0.10b | 0.13ab | 0.23a | 0.14ab | 驼绒藜Krascheninnikovia ceratoides | 0.01a | 0.00a | 0.00a | 0.00a |
羊草Leymus chinensis | 0.01a | 0.01a | 0.00a | 0.00a | 细叶鸢尾Iris tenuifolia | 0.01a | 0.00a | 0.00a | 0.00a |
冰草Agropyron cristatum | 0.01a | 0.01a | 0.00a | 0.00a | 草芸香Haplophyllum dauricum | 0.01a | 0.00b | 0.00b | 0.00b |
冷蒿A. frigida | 0.13a | 0.07ab | 0.02bc | 0.00c | 冬青叶兔唇花Lagochilus ilicifolius | 0.02a | 0.01ab | 0.01ab | 0.00b |
栉叶蒿Neopallasia pectinata | 0.08a | 0.13a | 0.00b | 0.00b | 细叶葱Allium tenuissimum | 0.04a | 0.01b | 0.03ab | 0.02b |
猪毛蒿Artemisia scoparia | 0.01a | 0.00b | 0.00b | 0.00b | 蒙古葱Allium mongolicum | 0.01a | 0.00b | 0.00b | 0.00b |
木地肤Kochia prostrata | 0.03a | 0.02a | 0.01b | 0.01b | 猪毛菜Salola collina | 0.23a | 0.16a | 0.01b | 0.01b |
阿尔泰狗娃花Heteropappus altaicus | 0.01a | 0.01a | 0.00b | 0.00b | 银灰旋花Convolvulus ammannii | 0.11a | 0.14a | 0.03a | 0.04a |
乳白花黄芪Astragalus galactites | 0.01a | 0.00a | 0.00a | 0.00a |
图2 不同放牧强度下优势和非优势植物种的重要值不同小写字母代表处理间存在显著差异(P<0.05),DS表示优势物种,NS表示非优势物种,下同。Different lowercase letters represent significant differences among treatments (P<0.05), DS represents dominant species, NS represents non-dominant species, the same below.
Fig.2 Important value of dominant and non-dominant plant species in different grazing intensities
图3 不同放牧强度下植物功能群重要值PG: 多年生禾草Perennial grasses, PF: 多年生杂类草Perennial forbs, SS: 灌木、半灌木Shrubs and semi-shrubs, AB: 一、二年生植物Annual-biennial plants.
Fig.3 Important value of plant functional groups in different grazing intensities
因子 Factors | 短花针茅 S. breviflora | 无芒隐子草 C. songorica | 冷蒿 A. frigida | 银灰旋花 C. ammannii | 优势植物 Dominant species | Patrick丰富度指数 Patrick richness index | Shannon-Wiener多样性指数Shannon-Wiener diversity index | Pielou均匀度指数Pielou evenness index |
---|---|---|---|---|---|---|---|---|
无芒隐子草C. songorica | 0.183 | |||||||
冷蒿A. frigida | -0.606** | -0.394** | ||||||
银灰旋花C. ammannii | -0.499** | -0.346** | -0.448** | |||||
优势植物Dominant species | 0.824** | 0.391** | -0.333** | -0.116 | ||||
Patrick丰富度指数Patrick richness index | -0.802** | -0.359** | 0.549** | 0.442** | -0.730** | |||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | -0.729** | -0.151 | 0.473** | 0.261* | -0.648** | 0.793** | ||
Pielou均匀度指数Pielou evenness index | -0.177 | 0.199 | 0.059 | -0.087 | -0.137 | 0.012 | 0.561** | |
Simpson优势度指数Simpson dominance index | -0.640** | 0.067 | 0.365** | 0.180 | -0.514** | 0.595** | 0.924** | 0.707** |
表2 优势植物重要值与植物物种α多样性的相关关系
Table 2 Correlation between important values of dominant plants and α diversity of plant species
因子 Factors | 短花针茅 S. breviflora | 无芒隐子草 C. songorica | 冷蒿 A. frigida | 银灰旋花 C. ammannii | 优势植物 Dominant species | Patrick丰富度指数 Patrick richness index | Shannon-Wiener多样性指数Shannon-Wiener diversity index | Pielou均匀度指数Pielou evenness index |
---|---|---|---|---|---|---|---|---|
无芒隐子草C. songorica | 0.183 | |||||||
冷蒿A. frigida | -0.606** | -0.394** | ||||||
银灰旋花C. ammannii | -0.499** | -0.346** | -0.448** | |||||
优势植物Dominant species | 0.824** | 0.391** | -0.333** | -0.116 | ||||
Patrick丰富度指数Patrick richness index | -0.802** | -0.359** | 0.549** | 0.442** | -0.730** | |||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | -0.729** | -0.151 | 0.473** | 0.261* | -0.648** | 0.793** | ||
Pielou均匀度指数Pielou evenness index | -0.177 | 0.199 | 0.059 | -0.087 | -0.137 | 0.012 | 0.561** | |
Simpson优势度指数Simpson dominance index | -0.640** | 0.067 | 0.365** | 0.180 | -0.514** | 0.595** | 0.924** | 0.707** |
因子Factors | 多年生 禾草 Perennial grasses | 多年生杂类草Perennial forbs | 灌木、半灌木Shrubs and semi-shrubs | 一、二年生植物 Annual-biennial plants | Patrick丰富度指数 Patrick richness index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Pielou均匀度指数Pielou evenness index |
---|---|---|---|---|---|---|---|
多年生杂类草Perennial forbs | -0.771** | ||||||
灌木、半灌木Shrubs and semi-shrubs | -0.329** | 0.008 | |||||
一、二年生植物Annial-biennial plants | -0.678** | 0.118 | 0.163 | ||||
Patrick丰富度指数Patrick richness index | -0.780** | 0.663** | 0.261* | 0.446** | |||
Shannon-Wiener多样性指数Shannon-Wiener diversity index | -0.591** | 0.513** | 0.306** | 0.274* | 0.793** | ||
Pielou均匀度指数Pielou evenness index | 0.016 | 0.163 | -0.120 | -0.012 | 0.012 | 0.561** | |
Simpson优势度指数Simpson dominance index | -0.449** | 0.382** | 0.260* | 0.203 | 0.595** | 0.924** | 0.707** |
表3 植物功能群重要值与物种多样性的相关关系
Table 3 Correlation between important values of plant functional groups and species diversity
因子Factors | 多年生 禾草 Perennial grasses | 多年生杂类草Perennial forbs | 灌木、半灌木Shrubs and semi-shrubs | 一、二年生植物 Annual-biennial plants | Patrick丰富度指数 Patrick richness index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Pielou均匀度指数Pielou evenness index |
---|---|---|---|---|---|---|---|
多年生杂类草Perennial forbs | -0.771** | ||||||
灌木、半灌木Shrubs and semi-shrubs | -0.329** | 0.008 | |||||
一、二年生植物Annial-biennial plants | -0.678** | 0.118 | 0.163 | ||||
Patrick丰富度指数Patrick richness index | -0.780** | 0.663** | 0.261* | 0.446** | |||
Shannon-Wiener多样性指数Shannon-Wiener diversity index | -0.591** | 0.513** | 0.306** | 0.274* | 0.793** | ||
Pielou均匀度指数Pielou evenness index | 0.016 | 0.163 | -0.120 | -0.012 | 0.012 | 0.561** | |
Simpson优势度指数Simpson dominance index | -0.449** | 0.382** | 0.260* | 0.203 | 0.595** | 0.924** | 0.707** |
1 | Soussana J, Lüscher A. Temperate grasslands and global atmospheric change: a review. Grass and Forage Science, 2007, 62(2): 127-134. |
2 | Ebrahimi M, Khosravi H, Rigi M. Short-term grazing exclusion from heavy livestock rangelands affects vegetation cover and soil properties in natural ecosystems of southeastern Iran. Ecological Engineering, 2016, 95: 10-18. |
3 | Reinhart B L, Kidd K A, Curry R A, et al. Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary. Journal of Environmental Sciences,2018, 68: 41-54. |
4 | Vecchio A L, Lannutti E, Lenzano M G, et al. MODIS Image-derived ice surface temperature assessment in the Southern Patagonian Icefield. Progress in Physical Geography,2019, 43(6): 754-776. |
5 | Amiri R, Weng Q H, Alimohammadi A, et al. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 2009, 113(12): 2606-2617. |
6 | Coop G, Witonsky D, Rienzo A D, et al. Using environmental correlations to identify loci underlying local adaptation. Genetics, 2010, 185(4): 1411-1423. |
7 | Liu S, Ji K, Chen J, et al. Panorama phylogenetic diversity and distribution of type a influenza virus. PLoS One, 2009, 4(3): 1-20. |
8 | Chave J. The problem of pattern and scale in ecology. EcologyLetters, 2013, 16(1): 4-16. |
9 | Wu Y, Chen D, Delgado-Baquerizo M, et al. Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers. Soil Biology and Biochemistry, 2022, 168(12): 1128-1141. |
10 | Lozano V, Vacca G, Camarda I, et al. Plant diversity in sardinian mountain rangelands: analysis of its relationships with grazing, land management, and pastoral value. Ecologies, 2021, 2: 164-174. |
11 | Zainelabdeen Y. Impact of grazing intensity on plant functional groups richness, biomass and diversity in Hulunbuir Meadow Steppe, China. Ecological Monographs, 2021, 7(5): 238-254. |
12 | Song Z F, Sun Z J, An S Z, et al. Response of plant diversity to grazing disturbance in Seriphidium transiliense desert grassland. Journal of Xinjiang Agricultural University, 2017, 40(4): 272-277. |
宋智芳, 孙宗玖, 安沙舟, 等. 伊犁绢蒿荒漠草地植物多样性对放牧干扰的响应. 新疆农业大学学报, 2017, 40(4): 272-277. | |
13 | Yang L M, Han M, Li J D. Plant diversity change in grassland communities along a grazing disturbance gradient in the northeast China transect. Acta Phytoeologica Sinica, 2001, 25(1): 110-114. |
杨利民, 韩梅, 李建东. 中国东北样带草地群落放牧干扰植物多样性的变化. 植物生态学报, 2001, 25(1): 110-114. | |
14 | Connell J H. Diversity in tropical rain forests and coral reef. Science, 1978, 199(4335): 1302-1310. |
15 | Milchunas D G, Lauenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 1993, 63(4): 327-366. |
16 | Fan J, Shi M, Huang J Z, et al. Regulation of photosynthetic performance and antioxidant capacity by Co-60 γ-irradiation in Zizania latifolia plants. Journal of Environmental Radioactivity, 2014, 129: 33-42. |
17 | Yang Y, Zhang F S, Li H F, et al. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. Journal of Environmental Management, 2009, 90(2): 1117-1122. |
18 | Todd B D, Winne C T. Ontogenetic and interspecific variation in timing of movement and responses to climatic factors during migrations by pond-breeding amphibians. Canadian Journal of Zoology, 2006, 84(5): 715-722. |
19 | Hanke W, Böhner J, Dreber N, et al. The impact of livestock grazing on plant diversity: an analysis across dryland ecosystems and scales in southern Africa. Ecological Applications, 2014, 24(5): 1188-1203. |
20 | Tang C, Yang M, Fang Y, et al. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants, 2016, 2(6): 16073. |
21 | Polley H W, Wilsey B J, Tischler C R. Species abundances influence the net biodiversity effect in mixtures of two plant species. Basic & Applied Ecology, 2007, 8(3): 209-218. |
22 | Collins S L, Calabrese L B. Effects of fire, grazing and topographic variation on vegetation structure in tallgrass prairie. Journal of Vegetation Science, 2012, 23(3): 563-575. |
23 | Hou F J, Yang Z Y. Effects of grazing of livestock on grassland. Acta Ecologica Sinica, 2006, 26(1): 244-264. |
侯扶江, 杨中艺. 放牧对草地的作用. 生态学报, 2006, 26(1): 244-264. | |
24 | Wang Z W. Effects of stocking rate on ecosystem stability of Stipa breviflora desert steppe. Hohhot: Inner Mongolia Agricultural University, 2009. |
王忠武. 载畜率对短花针茅荒漠草原生态系统稳定性的影响. 呼和浩特: 内蒙古农业大学, 2009. | |
25 | Wei Z J. Research on desert steppe ecosystem in China. Beijing: Science Press, 2013. |
卫智军. 中国荒漠草原生态系统研究. 北京: 科学出版社, 2013. | |
26 | Huston M. A general hypothesis of species diversity. The American Naturalist, 1979, 113(1): 81-101. |
27 | Li H H, Inoue M, Nishimura H, et al. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. Journal of Chemical Ecology, 1993, 19(8): 1775-1787. |
28 | Yang Z H, Yoder A D. Estimation of the transition/transversion rate bias and species sampling. Journal of Molecular Evolution, 1999, 48(3): 274-283. |
29 | Briske D D, Richards J H. Physiology of plants recovering from defoliation. Proceedings of the ⅩⅦ International Grassland Congress, 1993, 1(1): 85-94. |
30 | Ganjurjav H, Duan M J, Wan Y F, et al. Effects of grazing by large herbivores on plant diversity and productivity of semi-arid alpine steppe on the Qinghai-Tibetan Plateau. The Rangeland Journal, 2015, 37(4): 389-397. |
31 | Oba G, Nordal I, Stenseth N C. Growth performance of exotic and indigenous tree species in saline soils in Turkana, Kenya. Journal of Arid Environments, 2001, 47(4): 499-511. |
32 | Briske D D, Richards J H. Physiological responses of individual plants to grazing: current status and ecological significance. Ecological Implications of Livestock Herbivory in the West, 1994, 1(1): 147-176. |
33 | Yan R R, Xin X P, Yan Y, et al. Impacts of differing grazing rates on canopy structure and species composition in Hulunber meadow steppe. Rangeland Ecology & Management, 2015, 68(1): 54-64. |
34 | Han G D, Bi-ge L T, Gao A S. Comparison study on selective intake behavior of sheep at different stocking rates in Stipa breviflora desert steppe. Pratacultural Science, 2004, 21(12): 95-98. |
韩国栋, 毕力格图, 高安社. 不同载畜率条件下绵羊选择性采食的研究. 草业科学, 2004, 21(12): 95-98. | |
35 | Zhao G, Cui Z R. Selective grazing of animals and the response of plants. Grassland of China, 1999, 15(1): 62-67. |
赵钢, 崔泽仁. 家畜的选择性采食对草地植物的反应. 中国草地, 1999, 15(1): 62-67. | |
36 | Zhang R Y, Wang Z W, Han G D, et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China. Agriculture, Ecosystems and Environment, 2018, 265: 73-83. |
37 | Qiao L Q, Tian D S, Wan H W, et al. Growth and reproductive strategies of Thalictrum petaloideum under different stocking rates. Chinese Journal of Plant Ecology, 2014, 38(8): 878-887. |
乔丽青, 田大栓, 万宏伟, 等. 不同载畜率下瓣蕊唐松草的生长和繁殖对策. 植物生态学报, 2014, 38(8): 878-887. | |
38 | Meng R, Hu Q F, Wei Z J, et al. Study on sexual reproduction of Stipa grandis under different grazing system. Grassland of China, 2004, 26(4): 11-16. |
蒙荣, 胡秋芳, 卫智军, 等. 不同放牧制度大针茅草原植物种群有性繁殖能力研究. 中国草地, 2004, 26(4): 11-16. | |
39 | Wang R Z. Effect of grazing on reproduction in Leymus chinensis population. Chinese Journal of Applied Ecology, 2000, 11(3): 399-402. |
王仁忠. 放牧影响下羊草种群生殖生态学的研究. 应用生态学报, 2000, 11(3): 399-402. | |
40 | Du L X, Li Q F, Dong K H. Effects of grazing intensity on reproductive characteristics of Artemisia frigida Willd. in Stipa breviflora Griseb. steppe. Acta Agrestia Sinica, 2007, 15(4): 367-370. |
杜利霞, 李青丰, 董宽虎. 放牧强度对短花针茅草原冷蒿繁殖特性的影响. 草地学报, 2007, 15(4): 367-370. | |
41 | Gu C, Zhao T Q, Wang Y T, et al. The response of growth and reproduction for Stipa breviflora to different stocking rates. Ecology and Environmental Sciences, 2017, 26(1): 36-42. |
古琛, 赵天启, 王亚婷, 等. 短花针茅生长和繁殖策略对载畜率的响应. 生态环境学报, 2017, 26(1): 36-42. | |
42 | Bai Y F, Li D X, Xu Z X, et al. Growth and reproduction of Stipa krylovii population on a grazinggradient. Acta Ecologica Sinica, 1999, 19(4): 479-485. |
白永飞, 李德新, 许志信, 等. 牧压梯度对克氏针茅生长和繁殖的影响. 生态学报, 1999, 19(4): 479-485. | |
43 | Wang Y T. Effect of stocking rate on carbon isotope in the main species of Stipa breviflora steppe. Hohhot: Inner Mongolia Agricultural University, 2018. |
王亚婷. 载畜率对短花针茅草原主要植物稳定性碳同位素的影响. 呼和浩特: 内蒙古农业大学, 2018. | |
44 | Han M Q. Response of species diversity and productivity to different stocking rates in the Stipa breviflora desert steppe. Hohhot: Inner Mongolia Agricultural University, 2018. |
韩梦琪. 短花针茅荒漠草原物种多样性及生产力对不同载畜率的响应. 呼和浩特: 内蒙古农业大学, 2018. | |
45 | Bai Y F, Li L H, Huang J H, et al. The influence of plant diversity and functional composition on ecosystem stability of four Stipa communities in the Inner Mongolia Plateau. Acta Botanica Sinica, 2001, 43(3): 280-287. |
白永飞, 李凌浩, 黄建辉, 等. 内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响. 植物学报, 2001, 43(3): 280-287. | |
46 | Bi-li G T. The influence of stocking rate on plant community and sheep in the grazing system of Stipa breviflora desert steppe. Hohhot: Inner Mongolia Agricultural University, 2003. |
毕力格图. 载畜率对短花针茅草原放牧系统植物群落和绵羊影响的研究. 呼和浩特: 内蒙古农业大学, 2003. | |
47 | Jiao S Y. The response of Stipa breviflora grassland ecosystem to sheep stocking rates. Hohhot: Inner Mongolia Agricultural University, 2006. |
焦树英. 短花针茅草原生态系统对不同载畜率水平绵羊放牧的响应. 呼和浩特: 内蒙古农业大学, 2006. | |
48 | Milchunas D G, Lauenroth O. A generalized model of the effects of grazing by large herbivores on grassland community structure. American Naturalist, 1988, 132(1): 87-106. |
49 | Hou F J, Chang S H, Yu Y W, et al. A review on trampling by grazed livestock. Acta Ecologica Sinica, 2004, 24(4): 784-789. |
侯扶江, 常生华, 于应文, 等. 放牧家畜的践踏作用研究评述. 生态学报, 2004, 24(4): 784-789. |
[1] | 凤紫棋, 孙文义, 穆兴民, 高鹏, 赵广举, 陈帅. 南方山区杉木人工林林下草本植物多样性的影响因素[J]. 草业学报, 2023, 32(9): 17-26. |
[2] | 刘增辉, 卢素锦, 王雨欣, 张春辉, 尹鑫. 三江源地区人工克隆植物群落生物多样性对初级生产力的影响及机制[J]. 草业学报, 2023, 32(9): 27-38. |
[3] | 刘继亮, 赵文智, 王永珍, 冯怡琳, 祁进贤, 李永元. 禁牧和放牧对祁连山高寒草原秋季大型和中型土壤节肢动物多样性的影响[J]. 草业学报, 2023, 32(8): 214-221. |
[4] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[5] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[6] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[7] | 江奥, 敬路淮, 泽让东科, 田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报, 2023, 32(4): 208-220. |
[8] | 雷石龙, 廖李容, 王杰, 张路, 叶振城, 刘国彬, 张超. 高寒草地植物多样性与Godron群落稳定性关系及其环境驱动因素[J]. 草业学报, 2023, 32(3): 1-12. |
[9] | 彭超, 李自健, 王虎成, 冯强, 沈禹颖. 黄土高原丘陵沟壑区放牧补饲和舍饲肉羊的屠宰与肉质性能比较研究[J]. 草业学报, 2023, 32(2): 140-147. |
[10] | 李紫晶, 高翠萍, 王忠武, 韩国栋. 中国草地固碳减排研究现状及其建议[J]. 草业学报, 2023, 32(2): 191-200. |
[11] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[12] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[13] | 周泽东, 马晖玲, 韩煦, 李元恒, 李西良, 李坤娜. 温性典型草原羊草光合特性对模拟放牧因素分解的响应[J]. 草业学报, 2022, 31(8): 81-89. |
[14] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[15] | 戴东文, 庞凯悦, 王迅, 杨英魁, 柴沙驼, 王书祥. 精料补饲水平对暖季放牧牦牛瘤胃发酵和菌群结构的影响[J]. 草业学报, 2022, 31(5): 169-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||