草业学报 ›› 2022, Vol. 31 ›› Issue (8): 81-89.DOI: 10.11686/cyxb2021267
周泽东1,2(), 马晖玲1(), 韩煦2, 李元恒2, 李西良2(), 李坤娜2
收稿日期:
2021-07-05
修回日期:
2021-09-23
出版日期:
2022-08-20
发布日期:
2022-07-01
通讯作者:
马晖玲,李西良
作者简介:
E-mail: lixiliang0824@126.com基金资助:
Ze-dong ZHOU1,2(), Hui-ling MA1(), Xu HAN2, Yuan-heng LI2, Xi-liang LI2(), Kun-na LI2
Received:
2021-07-05
Revised:
2021-09-23
Online:
2022-08-20
Published:
2022-07-01
Contact:
Hui-ling MA,Xi-liang LI
摘要:
放牧是一种复合胁迫,包括采食、践踏、粪尿返还等因素。为明晰放牧对草原影响的过程与机制,通过刈割、人工模拟踩踏、人工粪尿添加来模拟家畜放牧过程,以羊草为例,研究了株高、盖度、干重以及羊草叶片的光合特性对放牧分解因子的响应。结果表明,采食及包含采食因子的处理显著降低了羊草的盖度、高度及干重,但提升了羊草叶片的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci),降低了羊草叶片的水分利用效率(WUE)。羊草株高与羊草叶片净光合速率、气孔导度、胞间CO2浓度、蒸腾速率显著负相关,与水分利用效率显著正相关;土壤含水量与气孔导度、胞间CO2浓度、蒸腾速率显著正相关。相对而言,践踏和粪便以及它们的交互作用对羊草的影响比采食弱。综合可得,家畜的采食是放牧对温性典型草原羊草光合特性影响的主要因子。
周泽东, 马晖玲, 韩煦, 李元恒, 李西良, 李坤娜. 温性典型草原羊草光合特性对模拟放牧因素分解的响应[J]. 草业学报, 2022, 31(8): 81-89.
Ze-dong ZHOU, Hui-ling MA, Xu HAN, Yuan-heng LI, Xi-liang LI, Kun-na LI. Responses of photosynthetic characteristics of Leymus chinensis in temperate typical steppe to component factors of simulated grazing[J]. Acta Prataculturae Sinica, 2022, 31(8): 81-89.
图1 放牧分解因子对羊草生物量的影响不同小写字母表示差异显著(P<0.05),相同小写字母表示差异不显著(P>0.05)。下同。Different lowercase letters indicate significant differences at P<0.05, the same lowercase letter means that the difference is not significant (P>0.05). The same below.
Fig.1 The effect of grazing decomposition factors on the biomass of L. chinensis
处理 Treatment | df | 株高Plant height | 盖度Coverage | 干重Dry weight | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
MO | 1 | 97.432 | <0.001 | 16.809 | <0.001 | 25.280 | <0.001 |
TR | 1 | 3.404 | 0.072 | 2.670 | 0.110 | 0.680 | 0.410 |
DU | 1 | 0.603 | 0.442 | 0.628 | 0.433 | <0.001 | 0.960 |
MO×TR | 1 | 1.298 | 0.261 | 0.660 | 0.422 | 0.730 | 0.400 |
MO×DU | 1 | 0.484 | 0.491 | 0.012 | 0.915 | 1.170 | 0.290 |
TR×DU | 1 | 0.484 | 0.491 | 1.096 | 0.301 | 1.750 | 0.190 |
MO×TR×DU | 1 | 0.484 | 0.491 | 2.544 | 0.119 | 0.430 | 0.520 |
表1 放牧分解因子对羊草性状影响的多因素方差分析
Table 1 Multivariate analysis of variance for the influence of grazing decomposition factors on the traits of L. chinensis
处理 Treatment | df | 株高Plant height | 盖度Coverage | 干重Dry weight | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
MO | 1 | 97.432 | <0.001 | 16.809 | <0.001 | 25.280 | <0.001 |
TR | 1 | 3.404 | 0.072 | 2.670 | 0.110 | 0.680 | 0.410 |
DU | 1 | 0.603 | 0.442 | 0.628 | 0.433 | <0.001 | 0.960 |
MO×TR | 1 | 1.298 | 0.261 | 0.660 | 0.422 | 0.730 | 0.400 |
MO×DU | 1 | 0.484 | 0.491 | 0.012 | 0.915 | 1.170 | 0.290 |
TR×DU | 1 | 0.484 | 0.491 | 1.096 | 0.301 | 1.750 | 0.190 |
MO×TR×DU | 1 | 0.484 | 0.491 | 2.544 | 0.119 | 0.430 | 0.520 |
处理 Treatment | df | 净光合速率Pn | 气孔导度Gs | 胞间CO2浓度Ci | 蒸腾速率Tr | 水分利用效率WUE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | ||
MO | 1 | 73.118 | <0.001 | 164.890 | <0.001 | 106.606 | <0.001 | 149.025 | <0.001 | 71.929 | <0.001 |
TR | 1 | 0.009 | 0.926 | 1.228 | 0.272 | 0.240 | 0.625 | 0.347 | 0.558 | 0.771 | 0.383 |
DU | 1 | 0.189 | 0.665 | 0.000 | 0.989 | 0.463 | 0.499 | 0.006 | 0.938 | 1.329 | 0.253 |
MO×TR | 1 | 4.261 | 0.043 | 3.652 | 0.060 | 0.145 | 0.704 | 1.812 | 0.183 | 0.370 | 0.545 |
MO×DU | 1 | 1.878 | 0.175 | 1.228 | 0.272 | 0.037 | 0.849 | 1.016 | 0.317 | 0.009 | 0.926 |
TR×DU | 1 | 0.002 | 0.969 | 0.024 | 0.877 | 0.459 | 0.500 | 0.576 | 0.451 | 3.320 | 0.073 |
MO×TR×DU | 1 | 0.678 | 0.413 | 1.092 | 0.300 | 0.831 | 0.365 | 0.171 | 0.680 | 0.139 | 0.711 |
表2 放牧分解因子对羊草光合特性影响的多因素方差分析
Table 2 Multivariate analysis of variance for the influence of grazing decomposition factors on the photosynthetic characteristics of L. chinensis
处理 Treatment | df | 净光合速率Pn | 气孔导度Gs | 胞间CO2浓度Ci | 蒸腾速率Tr | 水分利用效率WUE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | ||
MO | 1 | 73.118 | <0.001 | 164.890 | <0.001 | 106.606 | <0.001 | 149.025 | <0.001 | 71.929 | <0.001 |
TR | 1 | 0.009 | 0.926 | 1.228 | 0.272 | 0.240 | 0.625 | 0.347 | 0.558 | 0.771 | 0.383 |
DU | 1 | 0.189 | 0.665 | 0.000 | 0.989 | 0.463 | 0.499 | 0.006 | 0.938 | 1.329 | 0.253 |
MO×TR | 1 | 4.261 | 0.043 | 3.652 | 0.060 | 0.145 | 0.704 | 1.812 | 0.183 | 0.370 | 0.545 |
MO×DU | 1 | 1.878 | 0.175 | 1.228 | 0.272 | 0.037 | 0.849 | 1.016 | 0.317 | 0.009 | 0.926 |
TR×DU | 1 | 0.002 | 0.969 | 0.024 | 0.877 | 0.459 | 0.500 | 0.576 | 0.451 | 3.320 | 0.073 |
MO×TR×DU | 1 | 0.678 | 0.413 | 1.092 | 0.300 | 0.831 | 0.365 | 0.171 | 0.680 | 0.139 | 0.711 |
1 | Jiang X, Ma J X. The impact of different factors on the outcomes of grassland ecological restoration to in China: A Meta-analysis. Acta Prataculturae Sinica, 2021, 30(2): 14-31. |
蒋翔, 马建霞. 我国草地生态恢复对不同因素响应的Meta分析. 草业学报, 2021, 30(2): 14-31. | |
2 | Qian L J. Research on the responsibility of the government in the ecological management of the Xilingol League. Hohhot: Inner Mongolia Normal University, 2020. |
钱丽娟. 锡林郭勒盟草原生态治理中政府责任的研究. 呼和浩特: 内蒙古师范大学, 2020. | |
3 | Guo Y, Jia Z B, Zhang Q, et al. Study on the spatiotemporal dynamics of forage-livestock balance in Hulunbuir grassland of Inner Mongolia based on remote sensing data. Chinese Journal of Grassland, 2021, 43(4): 30-37. |
郭阳, 贾志斌, 张琪, 等. 基于遥感数据的内蒙古呼伦贝尔草原草畜平衡时空动态研究. 中国草地学报, 2021, 43(4): 30-37. | |
4 | Jin M M, Xu Z R, Cheng S K. Response of vegetation and soil to different grazing intensities of alpine grassland in Northern Tibet. Acta Ecologica Sinica, 2020, 40(23): 8753-8762. |
靳茗茗, 徐增让, 成升魁. 藏北高寒草地植被和土壤对不同放牧强度的响应. 生态学报, 2020, 40(23): 8753-8762. | |
5 | Meng Z J, Chen Y J, Bao S Q. Characteristics of community patches under three grazing modes in Sunite desert-steppe. Acta Prataculturae Sinica, 2021, 30(4): 13-23. |
蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征. 草业学报, 2021, 30(4): 13-23. | |
6 | Ma Z L, Bork E W, Li J B, et al. Photosynthetic carbon allocation to live roots increases the year following high intensity defoliation across two ecosites in a temperate mixed grassland. Agriculture, Ecosystems and Environment, 2021, DOI: 10.1016/j.agee.2021.107450. |
7 | Wu X C, Xiao X M, Steiner J, et al. Spatiotemporal changes of winter wheat planted and harvested areas, photosynthesis and grain production in the contiguous United States from 2008-2018. Remote Sensing, 2021, DOI: 10.3390/rs13091735. |
8 | Li J, Hou F J, Ren J Z. Grazing intensity alters leaf and spike photosynthesis, transpiration, and related parameters of three grass species on an alpine steppe in the Qilian Mountains. Plants, 2021, DOI: 10.3390/plants10020294. |
9 | Lin H L, Ren J Z. Integrated influence of experimental trampling and simulated precipitation on fractal dimension of soil particle size distributions in the steppes of Huanxian County in Eastern Gansu Province, China. Acta Prataculturae Sinica, 2009, 18(4): 202-209. |
林慧龙, 任继周. 践踏和降水对环县典型草原土壤颗粒分维特征的影响. 草业学报, 2009, 18(4): 202-209. | |
10 | Liu Q, Xi Q H, Wurenqiqige. Effects of different utilization modes of plant community characteristics on Hulunbuir meadow grassland. Chinese Journal of Grassland, 2020, 42(6): 58-66. |
刘琼, 席青虎, 乌仁其其格. 不同利用方式对呼伦贝尔草甸草原植物群落特征的影响. 中国草地学报, 2020, 42(6): 58-66. | |
11 | Hu L, Zhang Y L, Cheng Y F, et al. Effects of grazing and mowing on morphological plasticity of Leymus chinensis. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2020, 48(5): 31-38. |
胡柳, 张宇乐, 程艺凡, 等. 放牧和刈割对羊草形态可塑性的影响. 河南科技学院学报(自然科学版), 2020, 48(5): 31-38. | |
12 | Gao Y, An Y, Qi B, et al. Grazing exclusion mediates the trade-off between plant diversity and productivity in Leymus chinensis meadows along a chronosequence on the Songnen Plain, China. Ecological Indicators, 2021, DOI: 10.1016/j.ecolind. 2021. 107655. |
13 | Li X L, Png G C, Kenny, et al. Leaf plasticity contributes to plant anti-herbivore defenses and indicates selective foraging: Implications for sustainable grazing. Ecological Indicators, 2021, DOI: 10.1016/j.ecolind.2020.107273. |
14 | Zhang Y, Ganjurjav H, Dong S K, et al. Excessive plant compensatory growth: A potential endogenous driver of meadow degradation on the Qinghai-Tibetan Plateau. Ecosystem Health and Sustainability, 2020, DOI: 10.1080/20964129.2020.1816500. |
15 | Wu Y S, Li X R, Eerdun H. Surface roughness response of biocrust-covered soil to mimicked sheep trampling in the Mu Us sandy land, northern China. Geoderma,2020, DOI: 10.1016/j.geoderma.2019.114146. |
16 | Wang W, Liang C Z, Liu Z L, et al. Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 2000, 24(3): 268-274. |
王炜, 梁存柱, 刘钟龄, 等. 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 2000, 24(3): 268-274. | |
17 | Dunne T, Western D, Dietrich W E. Effects of cattle trampling on vegetation, infiltration, and erosion in a tropical rangeland. Journal of Arid Environments, 2011, 75(1): 58-69. |
18 | Wei Y, Zhang Y, Wilson G, et al. Transformation of litter carbon to stable soil organic matter is facilitated by ungulate trampling. Geoderma,2021, DOI: 10.1016/j.geoderma.2020.114828. |
19 | Forte A, Fiorentino N, Fagnano M, et al. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil & Tillage Research, 2017, 166: 167-178. |
20 | Wang X, Ding H, Zhang Y, et al. Dynamic changes of CH4 and CO2 emission from grazing sheep urine and dung patches in typical steppe. Atmospheric Environment,2013, 79: 576-581. |
21 | Du Z Y, Cai Y J, Wang X D, et al. Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 2019, 39(13): 4627-4637. |
杜子银, 蔡延江, 王小丹, 等. 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 2019, 39(13): 4627-4637. | |
22 | Wang Y N. The decomposition of livestock dung and dominant plant litter in a typical steppe of Inner Mongolia. Hohhot: Inner Mongolia University, 2020. |
王桠楠. 内蒙古典型草原优势植物凋落物和主要家畜粪便分解过程研究. 呼和浩特: 内蒙古大学, 2020. | |
23 | Wal R V D, Bardgett R D, Harrison K A, et al. Vertebrate herbivores and ecosystem control: Cascading effects of faeces on tundra ecosystems. Ecography,2004, 27(2): 242-252. |
24 | Hik D S, Jefferies R L. Increases in the net above-ground primary production of a salt-marsh forage grass: A test of the predictions of the herbivore-optimization model. Journal of Ecology, 1990, 78(1): 180-195. |
25 | Starr L, Seefeldt S, Zhang M, et al. Sustainable livestock production in sub-arctic Alaska: Plant and soil responses to simulated intensively managed grazing-ScienceDirec. Agriculture, Ecosystems & Environment, 2018, 255: 12-19. |
26 | Mi X, Li X B, Wang H, et al. Photosynthetic ecophysiology characteristics of Leymus chinensis under different grazing intensities in Inner Mongolia steppe. Chinese Journal of Grassland, 2015, 37(3): 92-98. |
米雪, 李晓兵, 王宏, 等. 内蒙古典型草原不同放牧强度下羊草光合生理生态特性分析. 中国草地学报, 2015, 37(3): 92-98. | |
27 | Tracy L, Silvère V. Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist,2019, 221(1): 93-98. |
28 | Song L, Pan Y, Gong J, et al. Physiology of Leymus chinensis under seasonal grazing: Implications for the development of sustainable grazing in a temperate grassland of Inner Mongolia. Journal of Environmental Management, 2020, DOI: 10.1016/j.jenvman.2020.110984. |
29 | Ren W, Hu N, Hou X, et al. Long-term overgrazing-induced memory decreases photosynthesis of clonal offspring in a perennial grassland plant. Frontiers in Plant Science,2017, DOI: 10.3389/fpls.2017.00419. |
30 | Lu N. Clonal growth characteristics of Leymus chinensis under soil saline-alkali heterogeneity and mowing. Shenyang: Shenyang Agricultural University, 2020. |
卢楠. 土壤盐碱异质性和刈割条件下羊草克隆生长特征. 沈阳: 沈阳农业大学, 2020. |
[1] | 董梦宇, 王金鑫, 吴萌, 周子瑶, 程顺, 李彦慧. 两种香花芥属植物叶片结构及光合特性研究[J]. 草业学报, 2022, 31(7): 172-184. |
[2] | 赵成振, 李强, 钟荣珍. 不同物候期刈割对羊草再生和根形态及产量的影响[J]. 草业学报, 2022, 31(3): 92-100. |
[3] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[4] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[5] | 李倩, 李晓霞, 程丽琴, 陈双燕, 齐冬梅, 杨伟光, 高利军, 新巴音, 刘公社. 羊草LcCBF6基因的表达特性和功能研究[J]. 草业学报, 2021, 30(10): 105-115. |
[6] | 何海锋, 闫承宏, 吴娜, 刘吉利, 贾瑜琀. 不同施氮水平对柳枝稷光合特性及抗旱性的影响[J]. 草业学报, 2021, 30(1): 107-115. |
[7] | 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[8] | 单立文, 张强, 朱瑞芬, 孔晓蕾, 陈积山. 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响[J]. 草业学报, 2020, 29(8): 46-57. |
[9] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[10] | 李茹霞, 耿元波. 应用13C同位素标记法区分羊草草原生态系统呼吸[J]. 草业学报, 2020, 29(6): 56-70. |
[11] | 伏兵哲, 周燕飞, 李雪, 倪彪, 高雪芹. 宁夏引黄灌区羊草水肥耦合效应研究[J]. 草业学报, 2020, 29(5): 98-108. |
[12] | 康彩睿, 谢军红, 李玲玲, 王嘉男, 郭喜军, 彭正凯, 王进斌, Setor kwami Fudjoe, 王林林. 种植密度与施氮量对陇中旱农区玉米产量及光合特性的影响[J]. 草业学报, 2020, 29(5): 141-149. |
[13] | 赵小强, 陆晏天, 白明兴, 徐明霞, 彭云玲, 丁永福, 庄泽龙, 陈奋奇, 张大志. 不同株型玉米基因型对干旱胁迫的响应分析[J]. 草业学报, 2020, 29(2): 149-162. |
[14] | 白乌云, 侯向阳, 武自念, 田春育, 丁勇. 羊草不同地理种群表型变异及其对根茎克隆繁殖的影响[J]. 草业学报, 2020, 29(12): 86-94. |
[15] | 王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用[J]. 草业学报, 2020, 29(12): 95-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||