草业学报 ›› 2024, Vol. 33 ›› Issue (7): 182-191.DOI: 10.11686/cyxb2023314
• 研究论文 • 上一篇
邓茂桦(), 郑蓉(), 王蓓晨, 王超, 刘荣贵, 张瀚文, 王政和, 王剑峰()
收稿日期:
2023-09-01
修回日期:
2023-11-03
出版日期:
2024-07-20
发布日期:
2024-04-08
通讯作者:
王剑峰
作者简介:
E-mail: wangjf12@lzu.edu.cn基金资助:
Mao-hua DENG(), Rong ZHENG(), Bei-chen WANG, Chao WANG, Rong-gui LIU, Han-wen ZHANG, Zheng-he WANG, Jian-feng WANG()
Received:
2023-09-01
Revised:
2023-11-03
Online:
2024-07-20
Published:
2024-04-08
Contact:
Jian-feng WANG
摘要:
氮是植物生长发育阶段必不可少的大量元素之一,内生真菌可以通过与醉马草形成共生体进而影响宿主氮代谢。内生真菌对宿主氮代谢的影响与周围环境氮浓度密切相关。本研究以携带Epichlo? gansuensis内生真菌(E+)的醉马草和未携带E. gansuensis内生真菌(E-)的醉马草为材料,设置低氮(0.01 mmol·L-1 N)和正常氮浓度(7.5 mmol·L-1 N)两种生长条件,对醉马草进行为期6个月的处理,收获试验材料后测定了醉马草的叶片干重,过氧化氢(H2O2)含量,丙二醛(MDA)含量等指标并进行分析,主要研究结果如下:1) N营养贫瘠条件下,内生真菌的侵染显著增加了醉马草植株的株高、叶片干重、分蘖数、葡萄糖-6-磷酸脱氢酶(G6PDH)活性、还原性谷胱甘肽(GSH)含量和N含量,显著降低了醉马草植株的MDA和H2O2含量,而对醉马草植株叶片的C和P含量以及C∶N,C∶P,N∶P无显著影响;2) 正常N营养条件下,内生真菌的侵染仅显著增加了E+醉马草植株的株高,而对叶片干重、分蘖数、MDA、H2O2含量、GSH和G6PDH活性均无显著影响。综上所述,本研究初步探明了内生真菌的侵染可以通过增加醉马草G6PDH活性和GSH的含量,降低醉马草H2O2和MDA含量,促进氮的吸收,增加了叶片干重和分蘖数,以此改善了醉马草在低氮条件下的生长,而对正常氮营养条件下的植株影响有限。
邓茂桦, 郑蓉, 王蓓晨, 王超, 刘荣贵, 张瀚文, 王政和, 王剑峰. 缺氮条件下内生真菌对醉马草生理特性的影响[J]. 草业学报, 2024, 33(7): 182-191.
Mao-hua DENG, Rong ZHENG, Bei-chen WANG, Chao WANG, Rong-gui LIU, Han-wen ZHANG, Zheng-he WANG, Jian-feng WANG. Effects of the Epichloë gansuensis endophyte on the physiological status of Achnatherum inebrians under different nitrogen concentrations[J]. Acta Prataculturae Sinica, 2024, 33(7): 182-191.
处理 Treatments | df | 叶片干重 Dry weight of blades | 株高 Plant height | 分蘖数 Number of tillers | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 82.330 | <0.001 | 42.990 | <0.001 | 81.120 | <0.001 |
内生真菌Endophytic fungi | 1 | 0.140 | 0.712 | 33.750 | <0.001 | 14.820 | <0.001 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 1.187 | 0.289 | 1.743 | 0.202 | 5.400 | 0.022 |
表1 不同N营养浓度下内生真菌对醉马草叶片干重、株高和分蘖数的双因素方差分析
Table 1 Two-way ANOVA analysis of E. gansuensis on dry weight, plant height and tillering number of leaves of A. inebrians under different N nutrient concentrations
处理 Treatments | df | 叶片干重 Dry weight of blades | 株高 Plant height | 分蘖数 Number of tillers | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 82.330 | <0.001 | 42.990 | <0.001 | 81.120 | <0.001 |
内生真菌Endophytic fungi | 1 | 0.140 | 0.712 | 33.750 | <0.001 | 14.820 | <0.001 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 1.187 | 0.289 | 1.743 | 0.202 | 5.400 | 0.022 |
图1 7.5和0.01 mmol·L-1 N下E+和E-醉马草叶片干重、株高和分蘖数的变化E+代表携带E. gansuensis内生真菌的醉马草,E-代表未携带E. gansuensis内生真菌的醉马草;0.01 mmol·L-1 N为低氮浓度处理,7.5 mmol·L-1 N为正常氮浓度处理;*和**分别表示同一营养条件下E+和E-醉马草在P<0.05和P<0.01处有显著性差异,下同。E+ represents intoxicating A. inebrians carrying the endophytic fungus E. gansuensis, and E- represents intoxicating A. inebrians not carrying the endophytic fungus E.gansuensis; 0.01 mmol·L-1 N is the low nitrogen concentration treatment, and 7.5 mmol·L-1 N is the normal nitrogen concentration treatment; * and ** indicate significant differences at P<0.05 and P<0.01 for E+ and E- A. inebrians under the same nutrient condition, the same below.
Fig.1 The changes of the dry weight in leaves, plant height and tiller number in E+ and E- A. inebrians under 7.5 and 0.01 mmol·L-1 N
处理 Treatments | df | 过氧化氢 H2O2 | 丙二醛 MDA | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 35.253 | <0.001 | 246.253 | <0.001 |
内生真菌Endophytic fungi | 1 | 10.313 | 0.012 | 8.246 | 0.021 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 6.966 | 0.030 | 18.619 | 0.003 |
表2 不同N营养浓度下内生真菌对醉马草丙二醛和过氧化氢含量的双因素方差分析
Table 2 Two-way ANOVA analysis for the effects of E. gansuensis on malondialdehyde and hydrogen peroxide contents of A.inebrians under different nutrient concentrations
处理 Treatments | df | 过氧化氢 H2O2 | 丙二醛 MDA | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 35.253 | <0.001 | 246.253 | <0.001 |
内生真菌Endophytic fungi | 1 | 10.313 | 0.012 | 8.246 | 0.021 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 6.966 | 0.030 | 18.619 | 0.003 |
处理 Treatments | df | 还原性谷胱甘肽 GSH | 葡萄糖-6-磷酸脱氢酶 G6PDH | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 288.759 | <0.001 | 3.166 | 0.113 |
内生真菌Endophytic fungi | 1 | 29.737 | <0.001 | 6.080 | 0.039 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 33.597 | <0.001 | 9.358 | 0.016 |
表3 不同N营养浓度下内生真菌对醉马草还原性谷胱甘肽含量和葡萄糖-6-磷酸脱氢酶活性的双因素方差分析
Table 3 Two-way ANOVA analysis showing the influence of E. gansuensis on reduced glutathione content and glucose-6-phosphate dehydrogenase activity of A. inebrians under different nutrient concentrations
处理 Treatments | df | 还原性谷胱甘肽 GSH | 葡萄糖-6-磷酸脱氢酶 G6PDH | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 288.759 | <0.001 | 3.166 | 0.113 |
内生真菌Endophytic fungi | 1 | 29.737 | <0.001 | 6.080 | 0.039 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 33.597 | <0.001 | 9.358 | 0.016 |
图3 7.5和0.01 mmol·L-1 N下E+和E-醉马草谷胱甘肽含量和葡萄糖-6-磷酸脱氢酶活性的变化
Fig.3 The changes of the GSH content and G6PDH activity in E+ and E- A. inebrians under 7.5 and 0.01 mmol·L-1 N
处理 Treatments | df | 叶片碳含量Leaf C | 叶片氮含量Leaf N | 叶片磷含量Leaf P | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 0.593 | 0.463 | 269.887 | <0.001 | 20.274 | 0.002 |
内生真菌Endophytic fungi | 1 | 4.935 | 0.057 | 1.009 | 0.345 | 0.270 | 0.618 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 0.467 | 0.514 | 3.921 | 0.083 | 0.070 | 0.799 |
表4 不同N营养浓度下内生真菌对醉马草碳、氮和磷含量的双因素方差分析
Table 4 Two-way ANOVA analysis for the effect of E. gansuensis on carbon, nitrogen and phosphorus contents of A. inebrians under different N nutrient concentrations
处理 Treatments | df | 叶片碳含量Leaf C | 叶片氮含量Leaf N | 叶片磷含量Leaf P | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 0.593 | 0.463 | 269.887 | <0.001 | 20.274 | 0.002 |
内生真菌Endophytic fungi | 1 | 4.935 | 0.057 | 1.009 | 0.345 | 0.270 | 0.618 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 0.467 | 0.514 | 3.921 | 0.083 | 0.070 | 0.799 |
图4 7.5和0.01 mmol·L-1 N下E+和E-醉马草碳、氮、磷含量的变化
Fig.4 The changes of the carbon, nitrogen and phosphorus content in E+ and E- A. inebrians under 7.5 and 0.01 mmol·L-1 N
内生真菌侵染状况 Status of endophytic fungal infestation (mmol·L-1 N) | C∶N | C∶P |
---|---|---|
0.01 E- | 0.88±0.14 | 46.25±2.80 |
0.01 E+ | 0.97±0.07 | 51.25±6.32 |
7.50 E- | 1.54±0.16 | 28.53±7.11 |
7.50 E+ | 1.57±0.00 | 28.44±3.68 |
表5 7.5和0.01 mmol·L-1 N下E+和E-醉马草C∶N和C∶P的变化
Table 5 The changes of C∶N, C∶P in E+ and E- A. inebrians under 7.5 and 0.01 mmol·L-1 N
内生真菌侵染状况 Status of endophytic fungal infestation (mmol·L-1 N) | C∶N | C∶P |
---|---|---|
0.01 E- | 0.88±0.14 | 46.25±2.80 |
0.01 E+ | 0.97±0.07 | 51.25±6.32 |
7.50 E- | 1.54±0.16 | 28.53±7.11 |
7.50 E+ | 1.57±0.00 | 28.44±3.68 |
1 | Tian P, Zhang G M, Nan Z B. Advances in research on grass endophytes in agricultural systems and applications in forage breeding. Acta Prataculturae Sinica, 2016, 25(12): 206-220. |
田沛, 张光明, 南志标. 禾草内生真菌研究及应用进展. 草业学报, 2016, 25(12): 206-220. | |
2 | Kuldau G, Bacon C. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control, 2008, 46(1): 57-71. |
3 | Xia C, Christensen M J, Zhang X, et al. Effect of Epichloë gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant and Soil, 2018, 424(1): 555-571. |
4 | Li F. Effects of endophyte infection on drought resistance to drunken horse grass (Achnatherum inebrians). Lanzhou: Lanzhou University, 2007. |
李飞. 内生真菌对醉马草抗旱性影响的研究. 兰州: 兰州大学, 2007. | |
5 | Wang J F, Hou W P, Christensen M J, et al. The fungal endophyte Epichloë gansuensis increases NaCl-tolerance in Achnatherum inebrians through enhancing the activity of plasma membrane H+-ATPase and glucose-6-phosphate dehydrogenase. Science China Life Sciences, 2021, 64(3): 452-465. |
6 | Sabzalian M, Mirlohi A, Sharifnabi B. Reaction to powdery mildew fungus, Blumeria graminis in endophyte-infected and endophyte-free tall and meadow fescues. Australasian Plant Pathology, 2012, 41(5): 565-572. |
7 | Wang J F, Tian P, Christensen M J, et al. Effect of Epichloë gansuensis endophyte on the activity of enzymes of nitrogen metabolism, nitrogen use efficiency and photosynthetic ability of Achnatherum inebrians under various NaCl concentrations. Plant and Soil, 2019, 435(1): 57-68. |
8 | Wang C, Huang R, Wang J F, et al. Comprehensive analysis of transcriptome and metabolome elucidates the molecular regulatory mechanism of salt resistance in roots of Achnatherum inebrians mediated by Epichloë gansuensis. Journal of Fungi, 2022, 8(10): 1092. |
9 | Ren A Z, Gao Y B, Zhang L, et al. Effects of cadmium on growth parameters of endophyte-infected endophyte-free ryegrass. Journal of Plant Nutrition and Soil Science, 2006, 169(6): 857-860. |
10 | Guo Y E, Li Y D, Gao P, et al. Effects of Claroideoglomus etunicatum and grass endophyte on the growth of Lolium perenne under different phosphorus levels. Acta Agrestia Sinica, 2018, 26(6): 1458-1466. |
郭艳娥, 李应德, 高萍, 等. 不同磷水平下幼套球囊霉与禾草内生真菌对多年生黑麦草生长的影响. 草地学报, 2018, 26(6): 1458-1466. | |
11 | Chen N. Genetic diversity of drunken horse grass (Achnatherum inebrians) and effects of its endophyte infection in cold tolerance. Lanzhou: Lanzhou University, 2008. |
陈娜. 醉马草遗传多样性及内生真菌对其抗寒性影响. 兰州: 兰州大学, 2008. | |
12 | Barker G M, Patchett B J, Cameron N E. Epichloë uncinata infection and loline content protect Festulolium grasses from crickets (Orthoptera: Gryllidae). Journal of Economic Entomology, 2015, 108(2): 789-797. |
13 | Hou W P, Wang J F. Research progress on the function of Epichloë endophyte of grass and its potential in plant breeding. Molecular Plant Breeding, 2022, 20(1): 320-333. |
侯文鹏, 王剑峰. 禾草Epichloë内生真菌功能的研究进展及在植物育种中的潜力. 分子植物育种, 2022, 20(1): 320-333. | |
14 | Li C J, Yao X, Nan Z B. Advances in research of Achnatherum inebrians-Epichloë endophyte symbionts. Chinese Journal of Plant Ecology, 2018, 42(8): 793-805. |
李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展. 植物生态学报, 2018, 42(8): 793-805. | |
15 | Wang J F, Nan Z B, Christensen M J, et al. Glucose-6-phosphate dehydrogenase plays a vital role in Achnatherum inebrians plants host to Epichloë gansuensis by improving growth under nitrogen deficiency. Plant and Soil, 2018, 430(4): 1-12. |
16 | Li X, Zhou Y, Mace W, et al. Endophyte species influence the biomass production of the native grass Achnatherum sibiricum (L.) Keng under high nitrogen availability. Ecology and Evolution, 2016, 6(23): 8595-8606. |
17 | Wang J F, Nan Z B, Christensen M J, et al. Effect of Epichloë gansuensis endophyte on the nitrogen metabolism, nitrogen use efficiency, and stoichiometry of Achnatherum inebrians under nitrogen limitation. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4022-4031. |
18 | Chen Y K, Teng Z N, Yuan Y Q, et al. Excessive nitrogen in field-grown rice suppresses grain filling of inferior spikelets by reducing the accumulation of cytokinin and auxin. Field Crops Research, 2022, 283(5735): 108542. |
19 | Pan F, Wu W. Rapid detection methods of natural plant active components from endophytic fungi. Highlights of Sciencepaper Online, 2015, 8(19): 1984-1994. |
潘峰, 吴卫. 内生真菌植物活性成分快速检测方法. 中国科技论文在线精品论文, 2015, 8(19): 1984-1994. | |
20 | Hoagland D R, Arnon D. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 1950, 347(2): 1-32. |
21 | Liu Y Q, Wang H R, Jiang Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605. |
22 | Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 2000, 151(1): 59-66. |
23 | Anderson J V, Chevone B I, Hess J L. Seasonal variation in the antioxidant system of eastern white pine needles: Evidence for thermal dependence. Plant Physiology, 1992, 98(2): 501-508. |
24 | Song M L, Chai Q, Li X Z, et al. An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant and Soil, 2015, 387(1): 153-165. |
25 | Chandrajith R, Ranawana K, Priyantha A. Soil geochemical characteristics of Eucalyptus plantations and adjoining natural forest patches in central hilly districts of Sri Lanka. Journal of Geological Society of Sri Lanka, 2011, 14: 91-96. |
26 | Kekulandara D S, Sirisena D N, Bandaranayake P C G, et al. Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils. Plant and Soil, 2019, 434(1): 107-123. |
27 | Zhi J J. An effect of different irrigation times and nitrogen forms on the flag leave senescence and the properties of starch accumulation in two gluten types of wheat cultivars. Luoyang: Henan University of Science and Technology, 2010. |
郅娟娟. 水分和氮素形态耦合对两种筋型小麦花后旗叶衰老及淀粉积累的影响. 洛阳: 河南科技大学, 2010. | |
28 | Wang L Q, Zhang B J, Tang N. Effects of nitrogen deficiency on the photosynthetic characteristics of wheat. Hubei Agricultural Sciences, 2014, 53(8): 1758-1761. |
王履清, 张边江, 唐宁. 氮素匮乏对小麦光合特性的影响. 湖北农业科学, 2014, 53(8): 1758-1761. | |
29 | Takeshita K, Olea-Azar C A, Mizuno M, et al. Singlet oxygen-dependent hydroxyl radical formation during uroporphyrin-mediated photosensitization in the presence of NADPH. Antioxidants & Redox Signaling, 2000, 2(2): 355-362. |
30 | Saed-Moucheshi A, Shekoofa A, Pessarakli M. Reactive oxygen species (ROS) generation and detoxifying in plants. Journal of Plant Nutrition, Taylor & Francis, 2014, 37(10): 1573-1585. |
31 | Kováčik J, Klejdus B, Bačkor M, et al. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Science, 2007, 172(2): 393-399. |
32 | Kumagai E, Araki T, Ueno O. Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa L.) cultivars. Photosynthetica, 2009, 47(2): 241-246. |
33 | Noctor G, Mhamdi A, Chaouch S, et al. Glutathione in plants: An integrated overview: Glutathione status and functions. Plant, Cell & Environment, 2012, 35(2): 454-484. |
34 | Jin J, Wang J F, Li K K, et al. Integrated physiological, transcriptomic, and metabolomic analyses revealed molecular mechanism for salt resistance in soybean roots. International Journal of Molecular Sciences, 2021, 22(23): 12848. |
35 | Li J S. Studies on the mechanism of regulations of G6PDH, cGMP, H2O2 and Ca2+ in plant adapation to salt tolerance. Lanzhou: Lanzhou University, 2011. |
李积胜. G6PDH、cGMP、H2O2和Ca2+在植物耐盐适应中调节作用的机理研究. 兰州: 兰州大学, 2011. | |
36 | Wang K H, Zhu B, Zhu Z J. Review of the role of GSH/GSSG in plant abiotic stress response. Acta Horticultural Sinica, 2021, 48(4): 647-660. |
汪宽鸿, 祝彪, 朱祝军. GSH/GSSG在植物应对非生物胁迫中的作用综述. 园艺学报, 2021, 48(4): 647-660. | |
37 | Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. |
38 | Lewis G. Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Annals of Applied Biology, 2005, 144(1): 53-63. |
39 | Ravel C, Courty C, Coudret A, et al. Beneficial effects of Neotyphodium lolii on the growth and water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie, 1997, 17(3): 173-181. |
[1] | 曾露婧, 王国华. 干旱及复水对荒漠绿洲过渡带一年生草本植物生长及生理特性的影响[J]. 草业学报, 2024, 33(5): 41-57. |
[2] | 谭炯锐, 查同刚, 张泽宇, 张晓霞, 滕红梅, 王玲丽, 赵莉丽, 王奥, 王馨珧. 猪毛菜响应干旱胁迫的叶片结构、生理及转录组分析[J]. 草业学报, 2024, 33(1): 75-88. |
[3] | 韩丹, 龙凤, 陈胜, 户萌菲, 王栋, 陈水红. 布顿大麦TB1基因的克隆及内生真菌对其表达量的影响[J]. 草业学报, 2023, 32(8): 176-185. |
[4] | 金媛媛, 陈振江, 王添, 李春杰. 内生真菌和田间管理措施对土壤真菌群落丰度和多样性的影响[J]. 草业学报, 2023, 32(4): 142-152. |
[5] | 李想, 张梦, 刘春增, 朱益飞, 叶晓馨. 等离子体处理对紫云英种子萌发和生理特性的影响[J]. 草业学报, 2023, 32(10): 129-140. |
[6] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
[7] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[8] | 张铎, 李岚涛, 林迪, 郑龙辉, 耿赛男, 石纹碹, 盛开, 苗玉红, 王宜伦. 施磷水平对菊芋块茎产量、品质、植株生理特性与磷利用率的影响[J]. 草业学报, 2022, 31(6): 139-149. |
[9] | 连鹤娜, 李春杰. 不同栽培措施对醉马草坪用性状的影响[J]. 草业学报, 2022, 31(6): 178-188. |
[10] | 李春杰, 郎鸣晓, 陈振江, 陈泰祥, 刘静, 金媛媛, 魏学凯. Epichloë内生真菌对禾草种子萌发影响研究进展[J]. 草业学报, 2022, 31(3): 192-206. |
[11] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[12] | 穆海婷, 王英哲, 苗一凡, 郁伟杰, 徐博. 重金属铜和铅胁迫对东方山羊豆幼苗生长及生理特性的影响[J]. 草业学报, 2022, 31(11): 139-146. |
[13] | 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. |
[14] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[15] | 李春杰, 郎鸣晓, 陈振江, 王正凤, 陈泰祥. 禾草-内生真菌人工接种技术研究进展[J]. 草业学报, 2021, 30(7): 179-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||