草业学报 ›› 2024, Vol. 33 ›› Issue (11): 69-83.DOI: 10.11686/cyxb2023475
卢晓瑜(), 刘雅洁, 白彩霞, 李进华, 王子贺, 杨春雪()
收稿日期:
2023-12-12
修回日期:
2024-01-19
出版日期:
2024-11-20
发布日期:
2024-09-09
通讯作者:
杨春雪
作者简介:
E-mail: senxiu99@163.com基金资助:
Xiao-yu LU(), Ya-jie LIU, Cai-xia BAI, Jin-hua LI, Zi-he WANG, Chun-xue YANG()
Received:
2023-12-12
Revised:
2024-01-19
Online:
2024-11-20
Published:
2024-09-09
Contact:
Chun-xue YANG
摘要:
羊草和虎尾草是松嫩盐碱草地常见的抗盐碱、耐瘠薄植物,能够与丛枝菌根(AM)真菌良好共生,并常伴生存在。为探究虎尾草伴生和AM真菌对羊草侵染及耐碱能力的影响,以羊草为寄主植物,虎尾草为伴生种,松嫩盐碱草地羊草根围土AM真菌群落为菌剂进行盆栽控制试验,设计接菌、伴生、碱胁迫3个变量因素,通过观测菌根侵染、羊草生长以及叶片叶绿素含量、丙二醛(MDA)含量、抗氧化酶活性和渗透调节物质含量以分析碱胁迫下虎尾草伴生和AM真菌接种对羊草生理生长的影响。结果表明:1)AM真菌在碱胁迫下能与羊草建立良好的共生关系,虎尾草在碱胁迫下抑制羊草与AM真菌共生关系的建立。2)碱胁迫下AM真菌能够通过显著降低羊草植株MDA含量,提高其单株生物量、叶绿素含量、抗氧化酶活性和渗透调节物质积累等途径增强羊草耐碱能力。3)虎尾草与羊草伴生在非碱胁迫条件下会降低羊草单株生物量,但是其在胁迫条件下会通过调整羊草渗透调节物质含量、酶活性等缓解羊草损伤,促进其生长。4)虎尾草与AM真菌互作提高了羊草叶片宽度、饱和鲜重、叶绿素含量、可溶性糖含量、可溶性蛋白含量,且增强了羊草过氧化物酶(POD)、过氧化氢酶(CAT)活性。5)隶属函数分析表明,AM真菌与虎尾草均可提高羊草对盐碱生境的耐受性。研究结果可为解析碱胁迫下虎尾草伴生及AM真菌共生对羊草生长的调节作用提供一定的理论基础,同时为引入适宜的伴生植物种和利用菌根技术修复松嫩盐碱草地提供重要参考依据。
卢晓瑜, 刘雅洁, 白彩霞, 李进华, 王子贺, 杨春雪. 虎尾草伴生和丛枝菌根真菌对碱胁迫下羊草生长的影响[J]. 草业学报, 2024, 33(11): 69-83.
Xiao-yu LU, Ya-jie LIU, Cai-xia BAI, Jin-hua LI, Zi-he WANG, Chun-xue YANG. Effects of Chloris virgata and arbuscular mycorrhizal fungi on the growth of Leymus chinensis under alkali stress[J]. Acta Prataculturae Sinica, 2024, 33(11): 69-83.
碱胁迫 Alkali stress | 虎尾草伴生 C. virgata | 侵染率 Colonization rate | 侵染强度 Colonization intensity | 泡囊丰度 Vesicular abundance | 丛枝丰度 Arbuscule abundance |
---|---|---|---|---|---|
CK | NT | 64.44±5.88c | 2.63±0.29b | 11.38±1.28c | 6.29±1.29b |
MT | 75.55±2.22bc | 10.84±0.35b | 16.17±1.95c | 9.62±0.46b | |
ST | NT | 97.78±2.22a | 46.55±7.04a | 87.36±3.87a | 26.05±6.70a |
MT | 84.44±4.44ab | 15.70±3.72b | 27.65±4.48b | 12.54±3.15b |
表1 不同处理下AM真菌的侵染特性
Table 1 Colonization properties of AM fungi under different treatments (%)
碱胁迫 Alkali stress | 虎尾草伴生 C. virgata | 侵染率 Colonization rate | 侵染强度 Colonization intensity | 泡囊丰度 Vesicular abundance | 丛枝丰度 Arbuscule abundance |
---|---|---|---|---|---|
CK | NT | 64.44±5.88c | 2.63±0.29b | 11.38±1.28c | 6.29±1.29b |
MT | 75.55±2.22bc | 10.84±0.35b | 16.17±1.95c | 9.62±0.46b | |
ST | NT | 97.78±2.22a | 46.55±7.04a | 87.36±3.87a | 26.05±6.70a |
MT | 84.44±4.44ab | 15.70±3.72b | 27.65±4.48b | 12.54±3.15b |
图2 不同处理下羊草幼苗生长状况NM: 未接种AM真菌AM fungi was not colonized; AM: 接种AM真菌AM fungi was colonized.下同The same below.
Fig.2 Growth of L. chinensis seedlings under different treatments
碱胁迫 Alkali stress | 接菌 AMF | 虎尾草伴生 C. virgata | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 鲜重 Fresh weight (g·plant-1) | 饱和鲜重 Saturation fresh weight (g·plant-1) | 干重 Dry weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | NM | NT | 13.53±0.61b | 0.28±0.02a | 0.567±0.007a | 0.767±0.065a | 0.127±0.016a |
MT | 10.77±0.38c | 0.25±0.03a | 0.133±0.014e | 0.227±0.024e | 0.044±0.004d | ||
AM | NT | 16.50±0.92a | 0.25±0.03a | 0.450±0.026b | 0.570±0.010b | 0.080±0.003bc | |
MT | 11.70±0.86bc | 0.23±0.04a | 0.300±0.006c | 0.407±0.022c | 0.072±0.003bcd | ||
ST | NM | NT | 10.73±0.18c | 0.27±0.02a | 0.233±0.020d | 0.293±0.029de | 0.059±0.015cd |
MT | 12.00±0.56bc | 0.32±0.02a | 0.310±0.021c | 0.360±0.021cd | 0.067±0.005bcd | ||
AM | NT | 11.77±0.41bc | 0.28±0.02a | 0.563±0.009a | 0.603±0.015b | 0.081±0.002bc | |
MT | 10.60±0.82c | 0.32±0.02a | 0.540±0.015a | 0.640±0.031b | 0.093±0.006b |
表2 不同处理下AM真菌和虎尾草伴生对羊草生物量的影响
Table 2 Effects of AM fungi and C. virgata on biomass of L. chinensis under different treatments
碱胁迫 Alkali stress | 接菌 AMF | 虎尾草伴生 C. virgata | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 鲜重 Fresh weight (g·plant-1) | 饱和鲜重 Saturation fresh weight (g·plant-1) | 干重 Dry weight (g·plant-1) |
---|---|---|---|---|---|---|---|
CK | NM | NT | 13.53±0.61b | 0.28±0.02a | 0.567±0.007a | 0.767±0.065a | 0.127±0.016a |
MT | 10.77±0.38c | 0.25±0.03a | 0.133±0.014e | 0.227±0.024e | 0.044±0.004d | ||
AM | NT | 16.50±0.92a | 0.25±0.03a | 0.450±0.026b | 0.570±0.010b | 0.080±0.003bc | |
MT | 11.70±0.86bc | 0.23±0.04a | 0.300±0.006c | 0.407±0.022c | 0.072±0.003bcd | ||
ST | NM | NT | 10.73±0.18c | 0.27±0.02a | 0.233±0.020d | 0.293±0.029de | 0.059±0.015cd |
MT | 12.00±0.56bc | 0.32±0.02a | 0.310±0.021c | 0.360±0.021cd | 0.067±0.005bcd | ||
AM | NT | 11.77±0.41bc | 0.28±0.02a | 0.563±0.009a | 0.603±0.015b | 0.081±0.002bc | |
MT | 10.60±0.82c | 0.32±0.02a | 0.540±0.015a | 0.640±0.031b | 0.093±0.006b |
指标 Index | 接菌 AMF | 虎尾草伴生 C. virgata | 碱胁迫 Alkali stress | 接菌×虎尾草伴生 AMF×C. virgata | 接菌×碱 胁迫 AMF×alkali stress | 虎尾草伴生×碱胁迫 C. virgata×alkali stress | 接菌×虎尾草伴生×碱胁迫AMF×C. virgata×alkali stress |
---|---|---|---|---|---|---|---|
丙二醛含量MDA content | 3.464 | 47.486*** | 350.118*** | 104.261*** | 63.160*** | 1.012 | 11.021** |
可溶性糖含量Soluble sugar content | 4045.727*** | 78.128*** | 164.486*** | 207.761*** | 3.972 | 43.756*** | 23.549*** |
可溶性蛋白含量Soluble protein content | 48.495*** | 14.248** | 127.662*** | 27.157*** | 104.476*** | 26.156*** | 2.475 |
叶绿素含量Chlorophyll content | 0.033 | 3.419 | 0.369 | 0.182 | 0.182 | 0.054 | 3.862 |
脯氨酸含量Proline content | 139.226*** | 203.910*** | 36.856*** | 2029.885*** | 833.404*** | 122.917*** | 7386.285*** |
超氧化物歧化酶活性SOD activity | 2.741 | 2.799 | 0.125 | 1.295 | 0.194 | 0.906 | 0.008 |
过氧化物酶活性POD activity | 414.609*** | 428.090*** | 299.047*** | 0.390 | 136.834*** | 17.185** | 998.947** |
过氧化氢酶活性CAT activity | 16.781** | 11.521** | 0.342 | 57.877*** | 0.671 | 0.014 | 8.562* |
干重Dry weight | 1.645 | 8.735** | 1.008 | 10.825** | 7.775* | 21.424*** | 8.409* |
鲜重Fresh weight | 168.286*** | 127.040*** | 17.492** | 15.201** | 117.633*** | 183.322*** | 66.457*** |
饱和鲜重Saturation fresh weight | 42.203*** | 46.220** | 0.690 | 15.429** | 47.252*** | 83.544*** | 21.233*** |
叶长Leaf length | 3.801 | 16.974** | 16.673** | 6.074* | 5.543* | 17.896** | 0.049 |
叶宽Leaf width | 0.222 | 0.222 | 5.556* | 0.000 | 0.889 | 3.556 | 0.222 |
表3 羊草各项生理指标与AM真菌、虎尾草伴生和胁迫的多因素方差分析
Table 3 Multifactor variance analysis of physiological indexes of L. chinensis and AM fungi, C. virgata and alkali stress
指标 Index | 接菌 AMF | 虎尾草伴生 C. virgata | 碱胁迫 Alkali stress | 接菌×虎尾草伴生 AMF×C. virgata | 接菌×碱 胁迫 AMF×alkali stress | 虎尾草伴生×碱胁迫 C. virgata×alkali stress | 接菌×虎尾草伴生×碱胁迫AMF×C. virgata×alkali stress |
---|---|---|---|---|---|---|---|
丙二醛含量MDA content | 3.464 | 47.486*** | 350.118*** | 104.261*** | 63.160*** | 1.012 | 11.021** |
可溶性糖含量Soluble sugar content | 4045.727*** | 78.128*** | 164.486*** | 207.761*** | 3.972 | 43.756*** | 23.549*** |
可溶性蛋白含量Soluble protein content | 48.495*** | 14.248** | 127.662*** | 27.157*** | 104.476*** | 26.156*** | 2.475 |
叶绿素含量Chlorophyll content | 0.033 | 3.419 | 0.369 | 0.182 | 0.182 | 0.054 | 3.862 |
脯氨酸含量Proline content | 139.226*** | 203.910*** | 36.856*** | 2029.885*** | 833.404*** | 122.917*** | 7386.285*** |
超氧化物歧化酶活性SOD activity | 2.741 | 2.799 | 0.125 | 1.295 | 0.194 | 0.906 | 0.008 |
过氧化物酶活性POD activity | 414.609*** | 428.090*** | 299.047*** | 0.390 | 136.834*** | 17.185** | 998.947** |
过氧化氢酶活性CAT activity | 16.781** | 11.521** | 0.342 | 57.877*** | 0.671 | 0.014 | 8.562* |
干重Dry weight | 1.645 | 8.735** | 1.008 | 10.825** | 7.775* | 21.424*** | 8.409* |
鲜重Fresh weight | 168.286*** | 127.040*** | 17.492** | 15.201** | 117.633*** | 183.322*** | 66.457*** |
饱和鲜重Saturation fresh weight | 42.203*** | 46.220** | 0.690 | 15.429** | 47.252*** | 83.544*** | 21.233*** |
叶长Leaf length | 3.801 | 16.974** | 16.673** | 6.074* | 5.543* | 17.896** | 0.049 |
叶宽Leaf width | 0.222 | 0.222 | 5.556* | 0.000 | 0.889 | 3.556 | 0.222 |
碱胁迫 Alkali stress | 接菌 AMF | 虎尾草伴生 C. virgata | 叶绿素含量 Chlorophyll content (mg·g-1) | 可溶性糖含量 Soluble sugar content (mg·g-1) | 可溶性蛋白含量 Soluble protein content (mg·g-1) | 脯氨酸含量 Proline content (μg·g-1) |
---|---|---|---|---|---|---|
CK | NM | NT | 2.17±0.24a | 3.12±0.28d | 3.62±0.02cd | 99.32±0.29c |
MT | 2.18±0.01a | 2.90±0.17d | 4.69±1.85c | 84.42±0.38d | ||
AM | NT | 1.90±0.01a | 5.57±0.12c | 3.80±0.05c | 99.24±0.29c | |
MT | 2.30±0.12a | 7.57±0.12a | 1.49±0.02de | 116.67±0.49b | ||
ST | NM | NT | 1.76±0.15a | 2.37±0.52e | 1.02±0.01e | 69.97±0.27f |
MT | 2.33±0.06a | 1.95±0.02f | 8.29±0.03b | 131.80±1.25a | ||
AM | NT | 2.10±0.13a | 5.60±0.16c | 12.14±0.07a | 115.02±0.42b | |
MT | 2.06±0.39a | 6.28±0.02b | 13.12±0.01a | 73.25±0.36e |
表4 不同处理下AM真菌和虎尾草伴生对羊草总叶绿素及渗透调节物质含量的影响
Table 4 Effects of AM fungi and C. virgata on total chlorophyll and osmotic substance content of L. chinensis under different treatments
碱胁迫 Alkali stress | 接菌 AMF | 虎尾草伴生 C. virgata | 叶绿素含量 Chlorophyll content (mg·g-1) | 可溶性糖含量 Soluble sugar content (mg·g-1) | 可溶性蛋白含量 Soluble protein content (mg·g-1) | 脯氨酸含量 Proline content (μg·g-1) |
---|---|---|---|---|---|---|
CK | NM | NT | 2.17±0.24a | 3.12±0.28d | 3.62±0.02cd | 99.32±0.29c |
MT | 2.18±0.01a | 2.90±0.17d | 4.69±1.85c | 84.42±0.38d | ||
AM | NT | 1.90±0.01a | 5.57±0.12c | 3.80±0.05c | 99.24±0.29c | |
MT | 2.30±0.12a | 7.57±0.12a | 1.49±0.02de | 116.67±0.49b | ||
ST | NM | NT | 1.76±0.15a | 2.37±0.52e | 1.02±0.01e | 69.97±0.27f |
MT | 2.33±0.06a | 1.95±0.02f | 8.29±0.03b | 131.80±1.25a | ||
AM | NT | 2.10±0.13a | 5.60±0.16c | 12.14±0.07a | 115.02±0.42b | |
MT | 2.06±0.39a | 6.28±0.02b | 13.12±0.01a | 73.25±0.36e |
图3 不同处理下AM真菌和虎尾草伴生对羊草MDA含量和抗氧化酶活性的影响
Fig.3 Effects of AM fungi and C. virgata on MDA content and antioxidant enzyme activity of L. chinensis under different treatments
碱胁迫 Alkali stress | 接菌 AMF | 虎尾草伴生 C. virgata | 主成分 Principal component | 丙二醛含量 MDA content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白 Soluble protein content | 叶绿素 Chlorophyll content | 脯氨酸 Proline content | SOD | POD | CAT | 干重 Dry weight | 鲜重 Fresh weight | 饱和鲜重 Saturation fresh weight | 叶长 Leaf length | 叶宽 Leaf width |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | NM | NT | PC1 | -0.050 | 0.876* | -0.050 | -0.846* | -0.985* | -0.812* | -0.982* | 0.971* | 0.050 | 0.877* | 0.967* | -0.424 | 0.890* |
PC2 | 0.999* | 0.482 | 0.999* | -0.533 | 0.173 | 0.583 | 0.191 | 0.238 | -0.999* | 0.480 | 0.255 | 0.906* | -0.456 | |||
MT | PC1 | 0.978* | 0.856* | 0.943* | 0.670 | 0.698 | 0.854* | -0.947* | -0.921* | 0.910* | 0.939* | 0.999* | 0.862* | 0.951* | ||
PC2 | -0.209 | -0.518 | -0.334 | 0.742 | -0.716 | -0.520 | -0.322 | 0.390 | 0.415 | 0.344 | 0.032 | 0.507 | 0.308 | |||
AM | NT | PC1 | 0.925* | -0.948* | -0.995* | -0.791* | 0.959* | 0.319 | 0.944* | -0.925* | 0.197 | -0.341 | 0.925* | 0.892* | 0.379 | |
PC2 | -0.379 | -0.319 | 0.099 | -0.612 | -0.282 | -0.948* | 0.329 | 0.379 | 0.980* | 0.940* | -0.379 | 0.451 | 0.925* | |||
MT | PC1 | 0.805* | -0.996* | -0.497 | -0.946* | 0.706 | 0.999* | 0.792* | 0.946* | -0.324 | 0.992* | 0.895* | 0.879* | -1.000* | ||
PC2 | 0.593 | 0.092 | 0.868* | -0.324 | -0.708 | 0.037 | -0.611 | 0.324 | 0.946* | -0.130 | 0.446 | 0.478 | 0.004 | |||
ST | NM | NT | PC1 | 0.131 | -0.994* | -0.991* | -0.668 | -0.988* | 0.939* | 0.922* | -0.994* | 0.970* | 0.952* | 0.956* | 0.903* | -0.994* |
PC2 | 0.991* | -0.111 | 0.131 | 0.744 | -0.152 | 0.343 | -0.387 | -0.111 | 0.241 | -0.306 | -0.293 | 0.430 | -0.111 | |||
MT | PC1 | -0.791* | -0.079 | 0.593 | -0.606 | -0.794* | -0.920* | 0.998* | 0.824* | 0.987* | 0.679 | 0.748 | -0.233 | -0.903* | ||
PC2 | 0.611 | 0.997* | 0.805* | -0.795* | -0.608 | -0.391 | 0.064 | 0.567 | -0.163 | -0.734 | -0.663 | 0.972* | 0.430 | |||
AM | NT | PC1 | -0.944* | 0.874* | 0.690 | 0.891* | -0.011 | 0.715 | 0.992* | -0.874* | -0.979* | 1.000* | -0.583 | -0.646 | -0.874* | |
PC2 | 0.330 | 0.486 | -0.724 | 0.455 | -1.000* | 0.699 | 0.124 | 0.486 | -0.205 | 0.016 | -0.812* | 0.763* | 0.486 | |||
MT | PC1 | -0.523 | 0.615 | 0.928* | 0.782* | 0.641 | 0.877* | 0.987* | 0.990* | 0.982* | -0.328 | -0.889* | 0.348 | 0.928* | ||
PC2 | 0.853* | -0.788* | 0.373 | -0.623 | 0.768* | 0.480 | 0.159 | -0.141 | 0.191 | 0.945* | 0.458 | 0.938* | 0.373 |
表5 不同处理下羊草各项指标在主成分分析中的PC1和PC2得分
Table 5 PC1 and PC2 scores of the various indicators in principal component analysis of different treatments
碱胁迫 Alkali stress | 接菌 AMF | 虎尾草伴生 C. virgata | 主成分 Principal component | 丙二醛含量 MDA content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白 Soluble protein content | 叶绿素 Chlorophyll content | 脯氨酸 Proline content | SOD | POD | CAT | 干重 Dry weight | 鲜重 Fresh weight | 饱和鲜重 Saturation fresh weight | 叶长 Leaf length | 叶宽 Leaf width |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | NM | NT | PC1 | -0.050 | 0.876* | -0.050 | -0.846* | -0.985* | -0.812* | -0.982* | 0.971* | 0.050 | 0.877* | 0.967* | -0.424 | 0.890* |
PC2 | 0.999* | 0.482 | 0.999* | -0.533 | 0.173 | 0.583 | 0.191 | 0.238 | -0.999* | 0.480 | 0.255 | 0.906* | -0.456 | |||
MT | PC1 | 0.978* | 0.856* | 0.943* | 0.670 | 0.698 | 0.854* | -0.947* | -0.921* | 0.910* | 0.939* | 0.999* | 0.862* | 0.951* | ||
PC2 | -0.209 | -0.518 | -0.334 | 0.742 | -0.716 | -0.520 | -0.322 | 0.390 | 0.415 | 0.344 | 0.032 | 0.507 | 0.308 | |||
AM | NT | PC1 | 0.925* | -0.948* | -0.995* | -0.791* | 0.959* | 0.319 | 0.944* | -0.925* | 0.197 | -0.341 | 0.925* | 0.892* | 0.379 | |
PC2 | -0.379 | -0.319 | 0.099 | -0.612 | -0.282 | -0.948* | 0.329 | 0.379 | 0.980* | 0.940* | -0.379 | 0.451 | 0.925* | |||
MT | PC1 | 0.805* | -0.996* | -0.497 | -0.946* | 0.706 | 0.999* | 0.792* | 0.946* | -0.324 | 0.992* | 0.895* | 0.879* | -1.000* | ||
PC2 | 0.593 | 0.092 | 0.868* | -0.324 | -0.708 | 0.037 | -0.611 | 0.324 | 0.946* | -0.130 | 0.446 | 0.478 | 0.004 | |||
ST | NM | NT | PC1 | 0.131 | -0.994* | -0.991* | -0.668 | -0.988* | 0.939* | 0.922* | -0.994* | 0.970* | 0.952* | 0.956* | 0.903* | -0.994* |
PC2 | 0.991* | -0.111 | 0.131 | 0.744 | -0.152 | 0.343 | -0.387 | -0.111 | 0.241 | -0.306 | -0.293 | 0.430 | -0.111 | |||
MT | PC1 | -0.791* | -0.079 | 0.593 | -0.606 | -0.794* | -0.920* | 0.998* | 0.824* | 0.987* | 0.679 | 0.748 | -0.233 | -0.903* | ||
PC2 | 0.611 | 0.997* | 0.805* | -0.795* | -0.608 | -0.391 | 0.064 | 0.567 | -0.163 | -0.734 | -0.663 | 0.972* | 0.430 | |||
AM | NT | PC1 | -0.944* | 0.874* | 0.690 | 0.891* | -0.011 | 0.715 | 0.992* | -0.874* | -0.979* | 1.000* | -0.583 | -0.646 | -0.874* | |
PC2 | 0.330 | 0.486 | -0.724 | 0.455 | -1.000* | 0.699 | 0.124 | 0.486 | -0.205 | 0.016 | -0.812* | 0.763* | 0.486 | |||
MT | PC1 | -0.523 | 0.615 | 0.928* | 0.782* | 0.641 | 0.877* | 0.987* | 0.990* | 0.982* | -0.328 | -0.889* | 0.348 | 0.928* | ||
PC2 | 0.853* | -0.788* | 0.373 | -0.623 | 0.768* | 0.480 | 0.159 | -0.141 | 0.191 | 0.945* | 0.458 | 0.938* | 0.373 |
指标 Index | CK | ST | ||||||
---|---|---|---|---|---|---|---|---|
NM | AM | NM | AM | |||||
NT | MT | NT | MT | NT | MT | NT | MT | |
MDA含量MDA content | 0.034 | 0.000 | 0.007 | 0.433 | 1.000 | 0.812 | 0.221 | 0.936 |
可溶性糖含量Soluble sugar content | 0.209 | 0.170 | 0.644 | 1.000 | 0.075 | 0.000 | 0.650 | 0.771 |
可溶性蛋白含量Soluble protein content | 0.215 | 0.303 | 0.230 | 0.039 | 0.000 | 0.601 | 0.919 | 1.000 |
叶绿素含量Chlorophyll content | 0.723 | 0.740 | 0.243 | 0.948 | 0.000 | 1.000 | 0.590 | 0.520 |
脯氨酸含量Proline content | 0.475 | 0.234 | 0.473 | 0.755 | 0.000 | 1.000 | 0.729 | 0.053 |
SOD活性SOD activity | 0.351 | 0.282 | 0.386 | 0.762 | 0.000 | 0.296 | 0.184 | 1.000 |
POD活性POD activity | 0.888 | 0.000 | 0.885 | 1.000 | 0.245 | 0.469 | 0.861 | 0.122 |
CAT活性CAT activity | 0.212 | 0.727 | 0.727 | 0.636 | 0.000 | 0.909 | 1.000 | 0.545 |
干重Dry weight | 1.000 | 0.000 | 0.441 | 0.340 | 0.178 | 0.271 | 0.445 | 0.595 |
鲜重Fresh weight | 1.000 | 0.000 | 0.727 | 0.386 | 0.227 | 0.409 | 0.977 | 0.932 |
饱和鲜重Saturation fresh weight | 1.000 | 0.000 | 0.636 | 0.333 | 0.123 | 0.247 | 0.698 | 0.765 |
叶长Leaf length | 0.497 | 0.028 | 1.000 | 0.186 | 0.023 | 0.237 | 0.198 | 0.000 |
叶宽Leaf width | 0.600 | 0.200 | 0.200 | 0.000 | 0.400 | 1.000 | 0.600 | 1.000 |
隶属函数平均值Subjection average value | 0.554 | 0.206 | 0.508 | 0.525 | 0.175 | 0.558 | 0.621 | 0.634 |
排序Rank | 4 | 7 | 6 | 5 | 8 | 3 | 2 | 1 |
表6 不同处理下羊草各项指标的隶属函数值及耐碱性综合评价
Table 6 Subordinative function values and comprehensive evaluation of the various indicators of L. chinensis underdifferent treatments
指标 Index | CK | ST | ||||||
---|---|---|---|---|---|---|---|---|
NM | AM | NM | AM | |||||
NT | MT | NT | MT | NT | MT | NT | MT | |
MDA含量MDA content | 0.034 | 0.000 | 0.007 | 0.433 | 1.000 | 0.812 | 0.221 | 0.936 |
可溶性糖含量Soluble sugar content | 0.209 | 0.170 | 0.644 | 1.000 | 0.075 | 0.000 | 0.650 | 0.771 |
可溶性蛋白含量Soluble protein content | 0.215 | 0.303 | 0.230 | 0.039 | 0.000 | 0.601 | 0.919 | 1.000 |
叶绿素含量Chlorophyll content | 0.723 | 0.740 | 0.243 | 0.948 | 0.000 | 1.000 | 0.590 | 0.520 |
脯氨酸含量Proline content | 0.475 | 0.234 | 0.473 | 0.755 | 0.000 | 1.000 | 0.729 | 0.053 |
SOD活性SOD activity | 0.351 | 0.282 | 0.386 | 0.762 | 0.000 | 0.296 | 0.184 | 1.000 |
POD活性POD activity | 0.888 | 0.000 | 0.885 | 1.000 | 0.245 | 0.469 | 0.861 | 0.122 |
CAT活性CAT activity | 0.212 | 0.727 | 0.727 | 0.636 | 0.000 | 0.909 | 1.000 | 0.545 |
干重Dry weight | 1.000 | 0.000 | 0.441 | 0.340 | 0.178 | 0.271 | 0.445 | 0.595 |
鲜重Fresh weight | 1.000 | 0.000 | 0.727 | 0.386 | 0.227 | 0.409 | 0.977 | 0.932 |
饱和鲜重Saturation fresh weight | 1.000 | 0.000 | 0.636 | 0.333 | 0.123 | 0.247 | 0.698 | 0.765 |
叶长Leaf length | 0.497 | 0.028 | 1.000 | 0.186 | 0.023 | 0.237 | 0.198 | 0.000 |
叶宽Leaf width | 0.600 | 0.200 | 0.200 | 0.000 | 0.400 | 1.000 | 0.600 | 1.000 |
隶属函数平均值Subjection average value | 0.554 | 0.206 | 0.508 | 0.525 | 0.175 | 0.558 | 0.621 | 0.634 |
排序Rank | 4 | 7 | 6 | 5 | 8 | 3 | 2 | 1 |
1 | Zhang X G, Huang B, Liang Z W, et al. Study on salinization characteristics of surface soil in western Songnen Plain. Soils, 2013, 45(2): 1332-1338. |
张晓光, 黄标, 梁正伟, 等. 松嫩平原西部土壤盐碱化特征研究. 土壤, 2013, 45(2): 1332-1338. | |
2 | Xie W J, Chen Q F, Wu L F, et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil and Tillage Research, 2020, 198: 104535. |
3 | Cui S Y, Zhang J. Effects of straw mulching and vegetative covering on soil salinity dynamics of salt affected soils in Jiangsu coastal region, China. Journal of Agricultural Resources and Environment, 2017, 34(6): 509-516. |
崔士友, 张蛟. 秸秆和植被覆盖对江苏滨海盐土土壤盐分变化的影响. 农业资源与环境学报, 2017, 34(6): 509-516. | |
4 | Li Z Z, Qu Z Y, Yang W, et al. The influence of subsurface drain on solute movement in soils severely affected by salinity and alkalinity in Ordos region. Journal of Irrigation and Drainage, 2021, 40(7): 122-129. |
李争争, 屈忠义, 杨威, 等. 暗管排水对鄂尔多斯地区重度盐碱地盐分迁移规律的影响. 灌溉排水学报, 2021, 40(7): 122-129. | |
5 | Zhou L Y, Li R P, Miao Q F, et al. Effects of underground drainage pipe spacing on salt and alkali characteristics and fertility of heavy saline soil in Hetao irrigation area. Soils, 2021, 53(3): 602-609. |
周利颖, 李瑞平, 苗庆丰, 等. 排盐暗管间距对河套灌区重度盐碱土盐碱特征与肥力的影响. 土壤, 2021, 53(3): 602-609. | |
6 | Li H Y. Research on improvement effects on degraded saline-alkali grassland by bioremediation measures in Songnen plains. Harbin: Northeast Agricultural University, 2014. |
李洪影. 生物措施对松嫩平原盐碱退化草地改良效果的研究.哈尔滨: 东北农业大学, 2014. | |
7 | Gu J F. Effect of microbiological fertilizer on salinized soil. Yangzhou: Yangzhou University, 2013. |
顾金凤. 微生物菌肥对盐渍化土壤的改良研究. 扬州: 扬州大学, 2013. | |
8 | Lyu X P, Zhang J P, Li Y S, et al. Soil saline characteristics of different plants inhabitant on Horqin Grassland. Acta Agrestia Sinica, 2017, 25(4): 749-755. |
吕昕培, 张吉平, 李永生, 等. 内蒙古科尔沁草原不同植物生境土壤盐分特征研究. 草地学报, 2017, 25(4): 749-755. | |
9 | Niu D L, Wang Q J. Research progress on saline-alkali field control. Chinese Journal of Soil Science, 2002(6): 449-455. |
牛东玲, 王启基. 盐碱地治理研究进展. 土壤通报, 2002(6): 449-455. | |
10 | Li J Q, Meng B, Chai H, et al. Arbuscular mycorrhizal fungi alleviate drought stress in C3(Leymus chinensis) and C4(Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 2019, 10: 499. |
11 | Tao Y, Xu L J, Li F, et al. The Leymus chinensis industry in China needs to be urgently revitalized. Acta Prataculturae Sinica, 2023, 32(11): 188-198. |
陶雅, 徐丽君, 李峰, 等. 我国羊草产业亟待振兴. 草业学报, 2023, 32(11): 188-198. | |
12 | Lin J X, Wang Y N, Sun S N, et al. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 2017, 576: 234-241. |
13 | Xiang Y, Zhao S T, Wu H, et al. Effects of alkali stress on the content of mineral elements in different organs of Chloris virgata. Pratacultural Science, 2022, 39(3): 511-519. |
项越, 赵淑婷, 吴昊, 等. 虎尾草不同器官矿质元素含量对碱化环境的响应. 草业科学, 2022, 39(3): 511-519. | |
14 | Liu Z K, Feng J, Li H Y, et al. Effects of different utilization modes on the characteristics of two grasses population modules in Songnen grassland. Chinese Journal of Grassland, 2022, 44(12): 11-18. |
刘志扩, 丰吉, 李海燕, 等. 不同利用方式对松嫩草地两种禾草种群构件特征的影响. 中国草地学报, 2022, 44(12): 11-18. | |
15 | Chen S, Sun T. Research of soil aggreate stability in different degradation stages of Songnen grassland. Pratacultural Science, 2017, 34(2): 217-223. |
陈帅, 孙涛. 松嫩草地不同退化阶段的土壤团聚体稳定性.草业科学, 2017, 34(2): 217-223. | |
16 | Wang W W. Summary on relationship between stable carbon isotope composition of plants and soil salinity.Journal of Anhui Agricultural Sciences, 2012, 40(9): 5515-5520. |
王文文. 植物δ13C与土壤盐分的关系研究综述. 安徽农业科学, 2012, 40(9): 5515-5520. | |
17 | Gu C, Du Y F, Wu L J, et al. Effects of stocking rates on the biomass of desert steppe community and plant functional group. Ecology and Environmental Sciences, 2015, 24(12): 1962-1968. |
古琛, 杜宇凡, 乌力吉, 等. 载畜率对荒漠草原群落及植物功能群生物量的影响. 生态环境学报, 2015, 24(12): 1962-1968. | |
18 | Zhen L N, Wang R M, Yang J X, et al. Effects of arbuscular mycorrhizal fungi and nitrogen fertilizer on the growth of Leymus chinensis. Chinese Journal of Grassland, 2018, 40(3): 49-54. |
甄莉娜, 王润梅, 杨俊霞, 等. 丛枝菌根真菌与氮肥对羊草生长的影响. 中国草地学报, 2018, 40(3): 49-54. | |
19 | Ma Z L, Zhang L D, Miao Y L, et al. Effects of soil salinity-alkalinity stress and arbuscular mycorrhizal fungi on the inter-specific relationship between Leymus chinensis and Chloris virgata. Journal of Northeast Normal University(Natural Science Edition), 2014, 46(1): 124-129. |
马忠莉, 张露丹, 缪伊玲, 等. 盐碱胁迫下丛枝菌根真菌对羊草和虎尾草种间关系的影响. 东北师大学报(自然科学版), 2014, 46(1): 124-129. | |
20 | Hajlaoui H, El Ayeb N, Garrec J P, et al. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties.Industrial Crops and Products, 2010, 31(1): 122-130. |
21 | Wang Y N, Tao S, Hua X Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkali stress. Acta Ecologica Sinica, 2018, 38(6): 2187-2194. |
22 | Wang Q, Wang Q, Wang X J, et al.Research progress on ecological function of arbuscular mycorrhizal network. Chinese Journal of Applied Ecology, 2015, 26(7): 2192-2202. |
王茜, 王强, 王晓娟, 等. 丛枝菌根网络的生态学功能研究进展. 应用生态学报, 2015, 26(7): 2192-2202. | |
23 | Unger S, Habermann F M, Schenke K, et al. Arbuscular mycorrhizal fungi and nutrition determine the outcome of competition between Lolium multiflorum and Trifolium subterraneum. Frontiers in Plant Science, 2021, 23(12): 778861. |
24 | Yang G W, Liu N, Yang X, et al. Relationship between arbuscular mycorrhizal fungi and individual plant and their effects on plant productivity and species diversity of plant community. Acta Prataculturae Sinica, 2015, 24(6): 188-203. |
杨高文, 刘楠, 杨鑫, 等. 丛枝菌根真菌与个体植物的关系及其对群落生产力和物种多样性的影响. 草业学报, 2015, 24(6): 188-203. | |
25 | Weremijewicz J, da Silveira Lobo O’Reilly S L, Janos D P, et al. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses. Mycorrhiza, 2018, 28: 71-83. |
26 | Gao J F. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
27 | Phillips J M, Hayman D S. Improved producers for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55(1): 158-161. |
28 | Fang L L, Zhou Y H, Yang C X. Physiological characteristics of arbuscular mycorrhiza-Rudbeckia hirta symbiont under saline-alkali stress. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(3): 421-431. |
方林林, 周昀晖, 杨春雪. 丛枝菌根-黑心菊共生体对盐碱逆境的生理响应特性. 西北植物学报, 2023, 43(3): 421-431. | |
29 | Wang X K. Principles and techniques of plant physiological biochemical experiment (2nd Edition). Beijing: Higher Education Press, 2006. |
王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. | |
30 | Li J. Study on the effect and mechanism of endophytic fungus Fusarium nematophilum NQ8G Ⅱ 4 of Lycium barium on plant-induced drsease resistance. Yinchuan: Ningxia University, 2023. |
李金. 枸杞内生嗜线虫镰刀菌Fusarium nematophilum NQ8G Ⅱ 4对植物诱导抗病性作用及机理研究. 银川: 宁夏大学, 2023. | |
31 | Li Y L, Ma R, Ma Y J, et al.Effects of salt and drought stress on seeds germination and seedlings growth of Kalidium folliatum. Acta Agrestia Sinica, 2023, 31(12): 3715-3123. |
李亚莉, 马瑞, 马彦军, 等. 盐旱胁迫对盐爪爪种子萌发及幼苗生长的影响. 草地学报, 2023, 31(12): 3715-3723. | |
32 | Li Z, Yun L, Shi Z Y, et al. Physiological characteristics of Psathyrostachys juncea at seed germination and seedling growth stages under salt stress. Acta Prataculturae Sinica, 2019, 28(8): 119-129. |
李珍, 云岚, 石子英, 等. 盐胁迫对新麦草种子萌发及幼苗期生理特性的影响. 草业学报, 2019, 28(8): 119-129. | |
33 | Zhang Y, Dong L L, Zeng G P, et al. Study on mathematical model of salt tolerance evaluation of glutinous sorghum at the bud stage. Crop Research, 2023, 37(4): 354-363. |
张燕, 董俐利, 曾桂萍, 等. 糯高粱芽期耐盐性评价的数学模型研究. 作物研究, 2023, 37(4): 354-363. | |
34 | Wang Y K, Yang Y R, Wang D L. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用. 草业学报, 2020, 29(12): 95-104. | |
35 | José M G G, Juan A O. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 2002, 373(53): 1377-1386. |
36 | Bai Y F, Li M, Liu R J,et al. Interactions effects of invasive plants Coreopsis grandiflora and associated plant Dianthus barbatus and their influences on AM fungi. Journal of Qingdao Agricultural University (Natural Science Edition), 2012, 29(1): 1-5, 14. |
柏艳芳, 李敏, 刘润进, 等. 入侵植物大花金鸡菊与伴生植物须苞石竹的互作效应及其对AM真菌的影响. 青岛农业大学学报(自然科学版), 2012, 29(1): 1-5, 14. | |
37 | Wang Y X, Li F H, Wu Y L, et al. Photosynthetic and physiological response to biochemical improvement of Red Globe grape under saline-alkali stress. Agricultural Research in the Arid Areas, 2018, 36(4): 214-222. |
王延秀, 李飞鸿, 武云龙, 等. 盐碱胁迫下‘红地球’葡萄对生化改良的光合与生理响应. 干旱地区农业研究, 2018, 36(4): 214-222. | |
38 | Liu Z N, Guo S X, Li W. Effect of arbuscular mycorrhizal fungi on growth and physiological characteristics of Lilium brownii. Acta Prataculturae Sinica, 2017, 26(11): 85-93. |
刘兆娜, 郭绍霞, 李伟. AM真菌对百合生长和生理特性的影响. 草业学报, 2017, 26(11): 85-93. | |
39 | Amanifar S, Khodabandeloo M, Mohseni F E, et al. Alleviation of salt stress and changes in glycyrrhizin accumulation by arbuscular mycorrhiza in liquorice (Glycyrrhiza glabra) grown under salinity stress. Environmental and Experimental Botany, 2019, 160: 25-34. |
40 | Zong J W, Li C, Zhang J, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Xanthoceras sorbifolium under salt stress. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, DOI: 10.12302/j.issn.1000-2006.202207008. |
宗建伟, 李柽, 张静, 等. 接种丛枝菌根真菌对盐胁迫下文冠果生长及生理特性的影响. 南京林业大学学报(自然科学版), 2023, DOI: 10.12302/j.issn.1000-2006.202207008. | |
41 | Porcel R, Redondo-Gómez S, Mateos-Naranjo E, et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystemⅡand reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant Physiology, 2015, 185: 75-83. |
42 | Guo L Y. Effect of complex stress on the ecophysiology of seedlings of Dalbergia odorifera T. Chen seedlings. Haikou: Hainan University, 2022. |
郭璐瑶. 复合胁迫对降香黄檀幼苗生理生态的影响. 海口: 海南大学, 2022. | |
43 | Xie X Q, Wang Q C, Li Q Y, et al. Response of growth and photosynthetic physiology of Fraxinus mandshurica and Phellodendron amurense seedlings to different light intensities. Forest Engineering, 2023, 39(3): 73-81. |
谢旭强, 王庆成, 李秋雨, 等. 水曲柳和黄菠萝苗木生长及光合生理对不同光强的响应. 森林工程, 2023, 39(3): 73-81. | |
44 | Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 2009, 103(4): 551-560. |
45 | Guo J X, Ye Y, Guo H J, et al. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves. Acta Agronomica Sinica, 2023, 50(1): 219-236. |
郭家鑫, 叶扬, 郭慧娟, 等.盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析. 作物学报, 2023, 50(1): 219-236. | |
46 | Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2): 437-448. |
47 | Huang B, Dacosta M, Jiang Y. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: From physiology to molecular biology. Critical Reviews in Plant Sciences, 2014, 33(2/3): 141-189. |
48 | Xu Y, Fan Y, Yu Y H, et al. Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress. Chinese Journal of Ecology, 2014, 33(12): 3395-3402. |
徐瑶, 樊艳, 俞云鹤, 等. 丛枝菌根真菌对盐胁迫下红花幼苗生长及耐盐生理指标的影响. 生态学杂志, 2014, 33(12): 3395-3402. | |
49 | Hu Z H. Effects of AM fungi to saline-alkali tolerance of four plants under saline-alkali stress and phosphorus addition. Changchun: Northeast Normal University, 2021. |
胡宗好. 不同盐碱胁迫和磷添加AM真菌对4种植物耐盐碱性的影响. 长春: 东北师范大学, 2021. | |
50 | Wu S J, Meng J L, Shen H, et al. Effects of garlic allelopathy on leaf membrane oxidation system and soil biological characteristics of continuous cropping watermelon. Acta Agriculturae Jiangxi, 2021, 33(8): 53-58. |
吴绍军, 孟佳丽, 沈虹, 等.大蒜化感对连作西瓜叶片膜氧化系统及土壤生物学特性影响. 江西农业学报, 2021, 33(8): 53-58. | |
51 | Han Z. Study on physiological and biochemical mechanisms of the downy mildew resistance increased from cucumber accompany with wheat. Harbin: Northeast Agricultural University, 2013. |
韩哲. 伴生小麦提高黄瓜霜霉病抗性的生理生化机制. 哈尔滨: 东北农业大学, 2013. | |
52 | Sun S M, Chang W, Song F Q. Mechanism of arbuscular mycorrhizal fungi improve the oxidative stress to the host plants under salt stress: A review. Chinese Journal of Applied Ecology, 2020, 31(10): 3589-3596. |
孙思淼, 常伟, 宋福强. 丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展. 应用生态学报, 2020, 31(10): 3589-3596. | |
53 | Abeer H, Abd A E F, Alqarawi A A, et al. Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pakistan Journal of Botany, 2015, 47(1): 327-340. |
54 | Ye L, Zhao X, Bao E C, et al. Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystemⅡ activities and stress-response gene expressions under salinity-alkalinity stresses. Frontiers in Plant Science, 2019, 10: 448052. |
55 | Han S M, Yang L K, Bu H, et al.Effects of heavy metal Cd and salt stress on physiological characteristics of Ulmus pumila seedlings. Forest Engineering, 2022, 38(6): 19-26. |
韩淑敏, 杨立科, 布和, 等. 重金属镉及盐胁迫对白榆幼苗生理特性的影响. 森林工程, 2022, 38(6): 19-26. | |
56 | Dong L, He Y Z, Wang Y L, et al. Research progress on application of superoxide dismutase(SOD). Journal of Agricultural Science and Technology, 2013, 15(5): 53-58. |
董亮, 何永志, 王远亮, 等.超氧化物歧化酶(SOD)的应用研究进展. 中国农业科技导报, 2013, 15(5): 53-58. | |
57 | Xu M L, Yang J H, Xie H X, et al. Effects of AM fungus on defense enzymes and endogenous hormones in leaves of watermelon seedings under salt stress. Journal of Qingdao Agricultural University (Natural Science Edition), 2021, 38(4): 235-239, 255. |
徐萌丽, 杨俊华, 谢宏鑫, 等. 盐胁迫下AM真菌对西瓜幼苗叶片防御酶和内源激素的影响. 青岛农业大学学报(自然科学版), 2021, 38(4): 235-239, 255. | |
58 | Garg N, Singla P. Naringenin and Funneliformis mosseae-mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. Journal of Plant Growth Regulation, 2015, 34(3): 595-610. |
59 | Pedranzani H, Rodríguez R M, Gutiérrez M, et al. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 2016, 26(2): 141-152. |
60 | Guo Y N. The physiological response of different salt-tolerance Medicago sativa L. colonized by arbuscular mycorrhiza fungi to salt stress. Taigu: Shanxi Agricultural University, 2015. |
郭艳妮. 不同耐盐性苜蓿接种丛枝菌根真菌对盐胁迫的生理响应. 太谷: 山西农业大学, 2015. |
[1] | 卜祥琪, 李姗姗, 段莹娜, 王迎春, 郑琳琳. 一氧化氮对盐碱胁迫下盐地碱蓬抗逆性及饲用品质的影响[J]. 草业学报, 2024, 33(9): 60-69. |
[2] | 亓雯雯, 马红媛, 李亚晓, 杜艳, 孙梦丹, 武海涛. 优质牧草新品种选育方法研究进展[J]. 草业学报, 2024, 33(6): 187-202. |
[3] | 谭英, 尹豪. 盐胁迫下根施AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报, 2024, 33(6): 64-75. |
[4] | 段海霞, 师茜, 康生萍, 苟海青, 罗崇亮, 熊友才. 丛枝菌根真菌和根瘤菌与植物共生研究进展[J]. 草业学报, 2024, 33(5): 166-182. |
[5] | 程鑫宇, 王继莲, 麦日艳古·亚生null, 李明源. 盐爪爪根际土壤产IAA菌株分离及促生特性分析[J]. 草业学报, 2024, 33(4): 110-121. |
[6] | 马路平, 石兆勇, 韦文敬, 杨爽. 基于Meta分析菌根菌对植物叶片生理的影响[J]. 草业学报, 2024, 33(4): 99-109. |
[7] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[8] | 杨斯琪, 鲍雅静, 叶佳琦, 吴帅, 张萌, 徐梦冉, 赵钰, 吕晓涛, 韩兴国. 氮添加和刈割条件下羊草光合-CO2响应过程及模型比较研究[J]. 草业学报, 2023, 32(9): 160-172. |
[9] | 亢燕, 王耀辉, 牛天慧, 滕哲, 祁智, 杨佳. 羊草LcZIP1的铁转运功能鉴定[J]. 草业学报, 2023, 32(9): 173-180. |
[10] | 于晓东, 余浩洋, 杨旭, 赵东旭, 张林刚. 内蒙古两种生态型羊草叶绿体基因组序列差异分析[J]. 草业学报, 2023, 32(7): 72-84. |
[11] | 高守舆, 李钰莹, 杨志青, 董宽虎, 夏方山. 白羊草叶绿体基因组密码子使用偏好性分析[J]. 草业学报, 2023, 32(7): 85-95. |
[12] | 安晓霞, 张盈盈, 马春晖, 李曼, 张前兵. 施磷与接种丛枝菌根真菌对苜蓿产量和磷素利用效率的影响[J]. 草业学报, 2023, 32(6): 71-84. |
[13] | 丰吉, 刘志扩, 李海燕, 杨允菲, 郭健. 围栏封育和长期刈割对松嫩草地羊草和野古草种群营养繁殖特征的影响[J]. 草业学报, 2023, 32(5): 50-60. |
[14] | 赵艳兰, 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3): 179-188. |
[15] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||