草业学报 ›› 2024, Vol. 33 ›› Issue (4): 99-109.DOI: 10.11686/cyxb2023189
收稿日期:
2023-06-09
修回日期:
2023-07-24
出版日期:
2024-04-20
发布日期:
2024-01-15
通讯作者:
石兆勇
作者简介:
E-mail: shizy1116@126.com基金资助:
Lu-ping MA1(), Zhao-yong SHI1,2,3(), Wen-jing WEI1, Shuang YANG1
Received:
2023-06-09
Revised:
2023-07-24
Online:
2024-04-20
Published:
2024-01-15
Contact:
Zhao-yong SHI
摘要:
叶片作为植物的重要器官,其养分、光合色素、可溶性糖、可溶性蛋白等含量,以及各种酶活性都是表征其生理的重要参数;而光合作用、蒸腾作用则是叶片重要的生理活动指标。菌根菌是一类与绝大多数植物形成共生的土壤微生物,能够影响叶片生理。本研究选择分布最广泛的丛枝菌根菌(arbuscular mycorrhizal fungi, AMF),针对以往大多数研究只关注单一植物接种AMF探究其生理功能的问题,采用Meta分析(Meta-analysis)的定量研究方法,对152篇相关文献整理建库,评估了AMF对植物叶片生理的影响,探究了不同分类水平上AMF的效应。结果表明:AMF显著提高了叶片氮、磷、钾、钙、镁和锌含量,提高了12.6%~26.3%;增加了叶绿素、叶绿素a和叶绿素b含量,分别增加了16.3%、12.1%和11.1%;对可溶性糖和可溶性蛋白则分别提升了34.8%和18.4%;同时,AMF提高了叶片各种酶活性,分别为过氧化物酶31.3%、超氧化物歧化酶17.8%、过氧化氢酶23.3%、多酚氧化酶59.1%、苯丙氨酸解氨酶65.3%;AMF提高了叶片的净光合速率(27.7%)和蒸腾速率(31.1%)。表明AMF因分类(科、属、种)不同,对叶片生理的影响也存在差异。本研究系统评价了AMF对叶片生理的影响,丰富了AMF的功能多样性理论,为筛选改善叶片生理的高效AMF提供了切实的依据。
马路平, 石兆勇, 韦文敬, 杨爽. 基于Meta分析菌根菌对植物叶片生理的影响[J]. 草业学报, 2024, 33(4): 99-109.
Lu-ping MA, Zhao-yong SHI, Wen-jing WEI, Shuang YANG. Meta-analysis of the effects of mycorrhizal fungi on plant leaf physiology[J]. Acta Prataculturae Sinica, 2024, 33(4): 99-109.
图2 不同分类的AMF对植物叶片养分含量的影响Gl: 球囊霉科Glomeraceae; Ac: 无柄孢子科Acaulosporaceae; Gi: 巨孢囊霉科Gigasporaceae; Cl: 近明球囊霉科Claroideoglomeraceae; Fu: 管柄囊霉属Funneliformis; Glo: 球囊霉属Glomus; Rh: 根内球囊霉属Rhizophagus; Cla: 近明球囊霉属Claroideoglomus;Fm: 摩西管柄囊霉Funneliformis mosseae; Gv: 地表球囊霉Glomus versiforme; Ri: 根内根孢囊霉Rhizophagus intraradices; Ce: 幼套近明球囊霉Claroideoglomus etunicatum; 下同The same below.
Fig.2 Effect of different classifications of AMF on the nutrient content of plant leaves
图4 不同分类的AMF对叶片光合作用、蒸腾作用和气孔生理特性的影响
Fig.4 Effects of different classifications of AMF on leaf photosynthesis, transpiration, and stomatal physiological characteristics
图10 不同分类的AMF对叶片酶活性及丙二醛含量的影响Gig: 巨孢囊霉属Gigaspora.
Fig.10 The effect of different classified AMF on the enzyme activity and malondialdehyde content of leaves
图11 丛枝菌根真菌对植物吸收养分元素的影响①: AM真菌扩大根系吸收面积AMF expands root absorption area; ②: AM真菌促进土壤有机质矿化和矿物质溶解AMF promotes soil organic matter mineralization and mineral dissolution; ③: 宿主细胞内的丛枝菌丝Arbuscular hyphae within host cells; ④, ⑤: AM真菌转运调节营养元素在宿主体内的分布AMF transport regulates the distribution of nutrients in the host body.
Fig.11 Effects of arbuscular mycorrhiza fungi on nutrient uptake by plants
图12 丛枝菌根真菌对植物叶片生理影响的过程图中数字表示的是效应值Numbers indicate the effect size; ↑: 正效应Positive effect; ↓: 负效应Negative effect.
Fig.12 Process mechanism of the physiological effects of AMF on plant leaves
1 | Lu L H, Zou Y N, Wu Q S.Relationship between arbuscular mycorrhizas and plant growth: improvement or depression? Soil Biology, 2018, 52: 451-464. |
2 | Berruti A, Lumini E, Balestrini R, et al. Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Frontiers in Microbiology, 2016, 6: 1559. |
3 | Jiang S J, Liu Y J, Shi G X, et al. The diversity and community assembly of arbuscular mycorrhizal fungi: a review. Chinese Bulletin of Life Sciences, 2014, 26(2): 169-180. |
蒋胜竞, 刘永俊, 石国玺, 等. 丛枝菌根真菌物种多样性及其群落构建机制研究进展. 生命科学, 2014, 26(2): 169-180. | |
4 | Chu W, Guo X L, Zhang C, et al. Research progress and future directions of arbuscular mycorrhizal fungi-plant-rhizosphere microbial interaction. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1709-1721. |
储薇, 郭信来, 张晨, 等. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望. 中国生态农业学报, 2022, 30(11): 1709-1721. | |
5 | Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759. |
6 | Van Der Heijden M G A, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396(6706): 69-72. |
7 | Maherali H, Klironomos J N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 2007, 316(5832): 1746-1748. |
8 | Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461. |
9 | Hikosaka K, Ishikawa K, Borjigidai A, et al. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 2006, 57(2): 291-302. |
10 | Duc N H, Csintalan Z, Posta K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiology and Biochemistry, 2018, 132: 297-307. |
11 | Bi Y, Zhang Y, Zou H. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science & Technology, 2018, 5: 47-53. |
12 | Morris E K, Morris D J P, Vogt S, et al. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. The ISME Journal, 2019, 13(7): 1639-1646. |
13 | Agus C, Primananda E, Faridah E, et al. Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils. International Journal of Environmental Science and Technology, 2019, 16: 3365-3374. |
14 | Zhang H, Xu N, Li X, et al. Arbuscular mycorrhizal fungi(Glomus mosseae)improves growth, photosynthesis and protects photosystem Ⅱ in leaves of Lolium perenne L. in cadmium contaminated soil. Frontiers in Plant Science, 2018, 9: 1156. |
15 | Hoeksema J D, Chaudhary V B, Gehring C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. |
16 | Van Houwelingen H C, Arends L R, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine, 2002, 21(4): 589-624. |
17 | Viechtbauer W. Conducting Meta-analyses in R with the metafor package. Journal of Statistical Software, 2010, 36(3): 1-48. |
18 | Liu H, Wu M, Chen J, et al. Arbuscular mycorrhizal fungus identity modulates growth effects of endophyte-infected grasses on neighboring plants. Mycorrhiza, 2020, 30: 663-670. |
19 | Wipf D, Krajinski F, Van Tuinen D, et al. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223(3): 1127-1142. |
20 | Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach(Prunus persica)seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39(2): 232-236. |
21 | Smith S E, Read D J. Mycorrhizal symbiosis. London, United Kingdom: Academic Press, 2010. |
22 | Kohl L, Marcel G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biology and Biochemistry, 2016, 94: 191-199. |
23 | Pellegrino E, Opik M, Bonari E, et al. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 2015, 84: 210-217. |
24 | Wang Y, Zhou W, Wu J, et al. LjAMT2;2 promotes ammonium nitrogen transport during arbuscular mycorrhizal fungi symbiosis in Lotus japonicus. International Journal of Molecular Sciences, 2022, 23(17): 9522. |
25 | Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195. |
26 | Han J J, Shen X A, Yang F, et al. Research progress on the mechanism of arbuscular mycorrhizal fungi(AMF)mediated mineral elements uptake by plants. Acta Agrestia Sinica, 2023, 31(6): 1609-1621. |
韩金吉, 沈小奥, 杨帆, 等. 丛枝菌根真菌(AMF)介导植物矿质元素吸收机制的研究进展. 草地学报, 2023, 31(6): 1609-1621. | |
27 | Lehmann A, Rillig M C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-a meta-analysis. Soil Biology and Biochemistry, 2015, 81: 147-158. |
28 | Outamamat E, El Mrabet S, Dounas H, et al. Symbiotic interactions between a newly identified native mycorrhizal fungi complex and the endemic tree Argania spinosa mediate growth, photosynthesis, and enzymatic responses under drought stress conditions. Canadian Journal of Forest Research, 2022, 52(3): 335-345. |
29 | Karthikeyan A. Effects of arbuscular mycorrhizal fungi and Rhizobium on photosynthetic activity and growth response in Acacia auriculiformis seedlings under elevated CO2. Journal of Tropical Forest Science, 2019, 31(4): 398-403. |
30 | Zhang T, Hu Y, Zhang K, et al. Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 2018, 117: 13-19. |
31 | Rostamikia Y, Kouchaksaraei M T, Asgharzadeh A, et al. Biomass allocation, leaf gas exchange and nutrient uptake of hazelnut seedlings in response to Trichoderma harzianum and Glomus intraradices inoculation. Journal of Forest Science, 2017, 63(5): 219-226. |
32 | Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882. |
33 | Sánchez-Díaz M, Pardo M, Antolin M, et al. Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Science, 1990, 71(2): 215-221. |
34 | Liu H, Yao T, Liu T, et al. Effect of different arbuscularmycorrhizal fungi on the growth of Medicago sativa. Grassland and Turf, 2017, 37(4): 61-67, 73. |
刘欢, 姚拓, 刘婷, 等. 不同丛枝菌根真菌对苜蓿生长的影响. 草原与草坪, 2017, 37(4): 61-67, 73. | |
35 | Singh J, Thakur J K. Photosynthesis and abiotic stress in plants//Biotic and abiotic stress tolerance in plants. Singapore: Springer, 2018: 27-46. |
36 | Gao M Y, Chen X W, Huang W X, et al. Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root. Journal of Hazardous Materials, 2021, 416: 125894. |
37 | Amanifar S, Toghranegar Z. The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L. and enhancing valerenic acid accumulation under salinity stress. Industrial Crops and Products, 2020, 147: 112234. |
38 | Feng G, Zhang F, Li X, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 2002, 12: 185-190. |
39 | Zhang Y X, Bi Y L, Guo N, et al. Effects of arbuscular mycorrhizal fungi on the growth of Medicago falcata. Journal of China Coal Society, 2019, 44(12): 3815-3822. |
张延旭, 毕银丽, 郭楠, 等. 接种不同丛枝菌根真菌对黄花苜蓿生长影响. 煤炭学报, 2019, 44(12): 3815-3822. | |
40 | Zhang H S, Zhao G Q, Li M F, et al. Physiological responses of Pennisetum longissimum var. intermedium seedlings to PEG, low temperature and salt stress treatments. Acta Prataculturae Sinica, 2014, 23(2): 180-188. |
张怀山, 赵桂琴, 栗孟飞, 等. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答. 草业学报, 2014, 23(2): 180-188. | |
41 | He J D, Zou Y N, Wu Q S, et al. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 2020, 262: 108745. |
42 | Tahiri A, Meddich A, Raklami A, et al. Assessing the potential role of compost, PGPR, and AMF in improving tomato plant growth, yield, fruit quality, and water stress tolerance. Journal of Soil Science and Plant Nutrition, 2022, 22: 743-764. |
43 | Kapoor R, Singh N. Arbuscular mycorrhiza and reactive oxygen species//Arbuscular mycorrhizas and stress tolerance of plants. Singapore: Springer, 2017: 225-243. |
44 | Sayyahfar M, Mirshekari B, Yarnia M, et al. Effect of mycorrhiza inoculation and methanol spraying on some photosynthetic characteristics and yield in wheat cultivars under end-season drought stress. Applied Ecology & Environmental Research, 2018, 16(4): 3783-3803. |
[1] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[2] | 安晓霞, 张盈盈, 马春晖, 李曼, 张前兵. 施磷与接种丛枝菌根真菌对苜蓿产量和磷素利用效率的影响[J]. 草业学报, 2023, 32(6): 71-84. |
[3] | 赵艳兰, 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3): 179-188. |
[4] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[5] | 卫宏健, 贺文员, 王越, 唐明, 陈辉. 丛枝菌根真菌与褪黑素对多年生黑麦草耐热性的影响[J]. 草业学报, 2023, 32(12): 126-138. |
[6] | 银敏华, 马彦麟, 康燕霞, 贾琼, 齐广平, 汪精海. 氮素添加对中国苜蓿产量与品质效应的Meta分析[J]. 草业学报, 2022, 31(9): 36-49. |
[7] | 关士琪, 李泓薇, 唐增. 影响牧民收入的关键因素研究—基于Meta分析与累积Meta分析[J]. 草业学报, 2021, 30(6): 1-15. |
[8] | 蒋翔, 马建霞. 我国草地生态恢复对不同因素响应的Meta分析[J]. 草业学报, 2021, 30(2): 14-31. |
[9] | 孙红, 郑玉龙, 林炎丽, 陈超, 杨富裕. 生物炭、磷及AMF对Cd胁迫下柳枝稷生长及土壤性质的影响[J]. 草业学报, 2021, 30(12): 71-80. |
[10] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
[11] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[12] | 贾红梅, 方千, 张秫华, 严铸云, 柳敏. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020, 29(6): 83-92. |
[13] | 赵昕, 吴子龙, 张浩, 杨旭钊, 韩超, 高杰. 峰峰矿区煤矸石山周边植物丛枝菌根真菌的侵染及Cd含量研究[J]. 草业学报, 2020, 29(5): 78-87. |
[14] | 王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用[J]. 草业学报, 2020, 29(12): 95-104. |
[15] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||