草业学报 ›› 2025, Vol. 34 ›› Issue (3): 164-174.DOI: 10.11686/cyxb2024177
• 研究论文 • 上一篇
高守舆(
), 刘文静, 李钰莹(
), 向清源, 许佳俊, 舒蕾淇, 李肇中
收稿日期:2024-05-14
修回日期:2024-06-20
出版日期:2025-03-20
发布日期:2025-01-02
通讯作者:
李钰莹
作者简介:E-mail: liyuy_ing@163.com基金资助:
Shou-yu GAO(
), Wen-jing LIU, Yu-ying LI(
), Qing-yuan XIANG, Jia-jun XU, Lei-qi SHU, Zhao-zhong LI
Received:2024-05-14
Revised:2024-06-20
Online:2025-03-20
Published:2025-01-02
Contact:
Yu-ying LI
摘要:
土壤盐渍化是我国北方草业发展的重要限制因素之一,开发抗盐碱能力强的乡土草种质资源,是解决盐碱地资源化利用的有效手段。为探究苗期白羊草的抗盐机制及其耐盐阈值,本研究以苗期‘太行’白羊草为材料,设置9个NaCl浓度盐胁迫处理,测定其株高、根长、地上部生物量等13个指标,并利用主成分分析计算其耐盐阈值。结果表明,NaCl胁迫对白羊草地上部生长影响更大,但地下部对Na+、K+的响应更为敏感。在胁迫时间和NaCl浓度两个维度上,叶片中过氧化物酶和超氧化物歧化酶活性均呈先升后降的趋势,并于210 mmol·L-1 NaCl处理下的第8和10天分别达到最大值;丙二醛、可溶性糖含量呈升高趋势;叶绿素含量呈下降趋势。通过主成分分析选取分数集前二的指标(根长和干重)建立回归曲线,经验证后发现地上部干重更适合作为评价耐盐阈值的指标,得出白羊草的耐盐阈值为207.53 mmol·L-1。本试验将为禾本科植物耐盐机制研究和后续探究白羊草抗盐机制研究的试验处理时间提供参考依据。
高守舆, 刘文静, 李钰莹, 向清源, 许佳俊, 舒蕾淇, 李肇中. 苗期白羊草对盐胁迫的生理生化响应及其耐盐阈值的界定[J]. 草业学报, 2025, 34(3): 164-174.
Shou-yu GAO, Wen-jing LIU, Yu-ying LI, Qing-yuan XIANG, Jia-jun XU, Lei-qi SHU, Zhao-zhong LI. Physiological and biochemical responses of Bothriochloa ischaemum seedlings to salt stress at seedling stage and definition of salt tolerance threshold[J]. Acta Prataculturae Sinica, 2025, 34(3): 164-174.
NaCl浓度 NaCl concentration (mmol·L-1) | 株高 Plant height (cm) | 根长 Root length (cm) | 根冠比 Root-crown ratio (%) |
|---|---|---|---|
| 0(CK) | 48.46±0.88a | 18.10±0.64a | 10.43±0.64cd |
| 30 | 45.66±0.64ab | 16.23±0.23b | 10.75±0.23cd |
| 60 | 43.06±0.48b | 16.65±0.73ab | 10.75±0.38cd |
| 90 | 42.30±1.79b | 16.58±0.17ab | 11.15±0.32cd |
| 120 | 36.75±0.32c | 14.88±0.23bc | 10.15±0.49d |
| 150 | 36.24±0.64c | 13.68±0.22cd | 10.83±0.67cd |
| 180 | 35.60±0.57c | 13.20±0.11cde | 11.83±1.47bcd |
| 210 | 35.28±1.09c | 12.95±0.38de | 12.88±1.17abc |
| 240 | 33.94±0.98cd | 11.55±0.68e | 13.75±0.80ab |
| 270 | 31.08±0.47d | 8.55±0.34f | 14.90±0.54a |
表1 NaCl胁迫对白羊草生长的影响
Table 1 Effects of NaCl stress on the growth of B. ischaemum
NaCl浓度 NaCl concentration (mmol·L-1) | 株高 Plant height (cm) | 根长 Root length (cm) | 根冠比 Root-crown ratio (%) |
|---|---|---|---|
| 0(CK) | 48.46±0.88a | 18.10±0.64a | 10.43±0.64cd |
| 30 | 45.66±0.64ab | 16.23±0.23b | 10.75±0.23cd |
| 60 | 43.06±0.48b | 16.65±0.73ab | 10.75±0.38cd |
| 90 | 42.30±1.79b | 16.58±0.17ab | 11.15±0.32cd |
| 120 | 36.75±0.32c | 14.88±0.23bc | 10.15±0.49d |
| 150 | 36.24±0.64c | 13.68±0.22cd | 10.83±0.67cd |
| 180 | 35.60±0.57c | 13.20±0.11cde | 11.83±1.47bcd |
| 210 | 35.28±1.09c | 12.95±0.38de | 12.88±1.17abc |
| 240 | 33.94±0.98cd | 11.55±0.68e | 13.75±0.80ab |
| 270 | 31.08±0.47d | 8.55±0.34f | 14.90±0.54a |
图1 NaCl胁迫下白羊草生物量不同小写字母表示同一部位在不同盐浓度下差异显著(P<0.05),下同。Different lowercase letters indicated significant difference under different salt concentrations (P<0.05) in the same part, the same below.
Fig.1 Biomass of B. ischaemum under NaCl stress
图3 NaCl胁迫对白羊草叶绿素含量的影响不同大写字母表示同一浓度处理不同胁迫时间差异显著(P<0.05),不同小写字母表示同一时间节点不同NaCl浓度处理间差异显著(P<0.05),下同。Different capital letters indicate that there are significant differences in different stress time under the same concentration treatment (P<0.05), and different lowercase letters indicate that different NaCl concentrations treatments are significantly different at the same time node (P<0.05), the same below.
Fig.3 Effects of NaCl stress on chlorophyll content of B. ischaemum
指标 Parameter | 第一主成分 Principal component 1 | 第二主成分 Principal component 2 | 权重 Weight (%) | 影响顺序 Influence order | ||
|---|---|---|---|---|---|---|
特征向量 Eigenvectors | 载荷 Loading matri (x) | 特征向量 Eigenvectors | 载荷 Loading matri (x) | |||
| 株高Plant height | 0.347 | 0.979 | 0.133 | -0.069 | 11.30 | 5 |
| 根长Root length | 0.331 | 0.934 | 0.394 | 0.106 | 11.49 | 1 |
| 地上部干重Aboveground dry weight | 0.349 | 0.984 | 0.130 | 0.109 | 11.35 | 2 |
| 地下部干重Underground dry weight | 0.338 | 0.953 | -0.128 | 0.147 | 11.00 | 7 |
| 叶绿素含量Total chlorophyll content | 0.337 | 0.952 | -0.035 | -0.105 | 10.74 | 8 |
| 超氧化物歧化酶活性Superoxide dismutase activity | -0.343 | -0.969 | 0.180 | -0.188 | 11.31 | 4 |
| 过氧化物酶活性Peroxidase activity | -0.254 | -0.715 | 0.837 | -0.028 | 10.22 | 9 |
| 丙二醛含量Malondialdehyde content | -0.338 | -0.953 | -0.230 | 0.322 | 11.26 | 6 |
| 可溶性糖含量Soluble sugar content | -0.352 | -0.994 | -0.084 | 0.684 | 11.34 | 3 |
表2 盐胁迫下白羊草叶片各指标的成分载荷矩阵、特征向量和权重分析
Table 2 Component load matrix, eigenvector and weight analysis of each index of B. ischaemum leaves under salt stress
指标 Parameter | 第一主成分 Principal component 1 | 第二主成分 Principal component 2 | 权重 Weight (%) | 影响顺序 Influence order | ||
|---|---|---|---|---|---|---|
特征向量 Eigenvectors | 载荷 Loading matri (x) | 特征向量 Eigenvectors | 载荷 Loading matri (x) | |||
| 株高Plant height | 0.347 | 0.979 | 0.133 | -0.069 | 11.30 | 5 |
| 根长Root length | 0.331 | 0.934 | 0.394 | 0.106 | 11.49 | 1 |
| 地上部干重Aboveground dry weight | 0.349 | 0.984 | 0.130 | 0.109 | 11.35 | 2 |
| 地下部干重Underground dry weight | 0.338 | 0.953 | -0.128 | 0.147 | 11.00 | 7 |
| 叶绿素含量Total chlorophyll content | 0.337 | 0.952 | -0.035 | -0.105 | 10.74 | 8 |
| 超氧化物歧化酶活性Superoxide dismutase activity | -0.343 | -0.969 | 0.180 | -0.188 | 11.31 | 4 |
| 过氧化物酶活性Peroxidase activity | -0.254 | -0.715 | 0.837 | -0.028 | 10.22 | 9 |
| 丙二醛含量Malondialdehyde content | -0.338 | -0.953 | -0.230 | 0.322 | 11.26 | 6 |
| 可溶性糖含量Soluble sugar content | -0.352 | -0.994 | -0.084 | 0.684 | 11.34 | 3 |
图7 白羊草耐盐阈值计算虚线为白羊草耐盐阈值。The dotted line in the figure is the salt tolerance threshold of B. ischaemum.
Fig.7 Calculation of salt tolerance threshold of B. ischaemum
| 1 | Che-Othman M H, Millar A H, Taylor N L. Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. Plant, Cell & Environment, 2017, 40(12): 2875-2905. |
| 2 | Zhu J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2): 66-71. |
| 3 | Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63(5): 635-674. |
| 4 | Wu W T. Physiological response and transcriptome analysis of tomato to salt stress. Yantai: Ludong University, 2022. |
| 吴雯婷. 番茄对盐胁迫的生理响应及转录组分析. 烟台: 鲁东大学, 2022. | |
| 5 | Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. |
| 沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. | |
| 6 | Wang X, Fan L Q, Zhang Y H, et al. Effects of afforestation trees on soil water-salt distribution in saline-alkali soil of Ningxia. Soils, 2023, 55(1): 211-217. |
| 王旭, 樊丽琴, 张永宏, 等. 造林树木对宁夏盐碱土水盐分布的影响. 土壤, 2023, 55(1): 211-217. | |
| 7 | Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
| 8 | Chen X, Ding Y, Yang Y, et al. Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 2021, 63(1): 53-78. |
| 9 | Jia T, Yao Y S, Guo T Y. Characteristics of arbuscular mycorrhizal fungi communities in rhizosphere soil at different growth stages of Bothriochloa ischaemum in copper tailings. Acta Ecologica Sinica, 2020, 40(13): 4651-4658. |
| 贾彤, 姚玉珊, 郭婷艳. 铜尾矿白羊草各生长阶段根际土壤丛枝菌根真菌群落特征. 生态学报, 2020, 40(13): 4651-4658. | |
| 10 | Gao S Y, Li Y Y, Yang Z Q, et al. Codon usage bias analysis of the chloroplast genome of Bothriochloa ischaemum. Acta Prataculturae Sinica, 2023, 32(7): 85-95. |
| 高守舆, 李钰莹, 杨志青, 等. 白羊草叶绿体基因组密码子使用偏好性分析. 草业学报, 2023, 32(7): 85-95. | |
| 11 | Liu W J, Yang Z Q, Li Y Y, et al. Effects of salt stress on the growth of Bothriochloa ischaemum and its physiological response. Pratacultural Science, 2023, 40(10): 2651-2658. |
| 刘文静, 杨志青, 李钰莹, 等. 盐胁迫对‘太行’白羊草生长与生理特性的影响. 草业科学, 2023, 40(10): 2651-2658. | |
| 12 | Wu L G, Fang Z H, Dong K H. Effects of NaCl and Na2SO4 stress on seeds germination of Bothriochloa ischaemum. Journal of Shanxi Agricultural Sciences, 2011, 39(10): 1115-1118. |
| 武路广, 方志红, 董宽虎. NaCl和Na2SO4胁迫对白羊草种子萌发的影响. 山西农业科学, 2011, 39(10): 1115-1118. | |
| 13 | Xiao G Z, Teng K, Li L J, et al. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress. Acta Prataculturae Sinica, 2016, 25(9): 74-82. |
| 肖国增, 滕珂, 李林洁, 等. 盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究. 草业学报, 2016, 25(9): 74-82. | |
| 14 | Wang B S, Zhao K F. Comparison of extractive methods of Na and K in wheat leaves. Plant Physiology Communications, 1995, 31(1): 50-52. |
| 王宝山, 赵可夫. 小麦叶片中Na、K提取方法的比较. 植物生理学通讯, 1995, 31(1): 50-52. | |
| 15 | Li H S. Principle and technology of plant physiology and biochemical experiments. Beijing: Higher Education Press, 2000. |
| 李合生. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000. | |
| 16 | Qian Y L, Wilhelm S J, Marcum K B. Comparative responses of two Kentucky bluegrass cultivars to salinity stress. Crop Science, 2001, 41(6): 1895-1900. |
| 17 | Suplick-Ploense M R, Qian Y L, Read J C. Relative NaCl tolerance of Kentucky bluegrass, Texas bluegrass, and their hybrids. Crop Science, 2002, 42(6): 2025-2030. |
| 18 | Zhao X T, Wang Y S, Duan J, et al. Effects of salt stress on growth and photosynthetic characteristics of Magnolia wufengensis grafted seedlings. Scientia Silvae Sincae, 2021, 57(4): 43-53. |
| 赵秀婷, 王延双, 段劼, 等. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响. 林业科学, 2021, 57(4): 43-53. | |
| 19 | Gouia H, Ghorbal M H, Touraine B. Effects of NaCl on flows of N and mineral ions and on N O 3 - reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiology, 1994, 105(4): 1409-1418. |
| 20 | Yuan Y H. Study on physiological response and adaptive mechanism of broom corn millet (Panicum miliaceum L.) under salt stress. Yangling: Northwest A&F University, 2022. |
| 袁雨豪. 盐胁迫下糜子的生理响应及适应机制研究. 杨凌: 西北农林科技大学, 2022. | |
| 21 | Gao Y K, Yang P Y, Xiang X D, et al. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 113-121. |
| 高玉坤, 杨溥原, 项晓冬, 等. 不同耐盐高粱品种全生育期对盐胁迫的响应. 华北农学报, 2020, 35(6): 113-121. | |
| 22 | Guo W T, Wang G H, Gou Q Q. Effects of sodium salt stress on seed germination and seedling growth of three Chenopodiaceae annuals. Acta Prataculturae Sinica, 2023, 32(2): 128-141. |
| 郭文婷, 王国华, 缑倩倩. 钠盐胁迫对藜科一年生草本植物种子萌发和幼苗生长的影响. 草业学报, 2023, 32(2): 128-141. | |
| 23 | Wang Z D. Characterization of phenotype traits, salt tolerance and genetic composition of new triticale strains. Tai’an: Shandong Agricultural University, 2022. |
| 王紫铎. 小黑麦新品系农艺性状、耐盐特性分析及遗传组成鉴定. 泰安: 山东农业大学, 2022. | |
| 24 | Su X L, Shu X, Wang X Y, et al. Effects of exogenous melatonin on seed germination and seedling growth of Elymus sibiricus under NaCl stress. Pratacultural Science, 2023, 40(10): 2595-2606. |
| 苏晓丽, 舒欣, 王晓耘, 等. 外源褪黑素对 NaCl 胁迫下老芒麦种子萌发和幼苗生长的影响. 草业科学, 2023, 40(10): 2595-2606. | |
| 25 | Cassaniti C, Romano D, Flowers T J. The response of ornamental plants to saline irrigation water. Irrigation-water Management, Pollution and Alternative Strategies, 2012, 131: 158. |
| 26 | Cassaniti C, Leonardi C, Flowers T J. The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 2009, 122(4): 586-593. |
| 27 | Li R Q, Wang Y X, Sun Y L, et al. Effects of salt stress on the growth, physiology, and biochemistry of five Bromus inermis varieties. Acta Prataculturae Sinica, 2023, 32(1): 99-111. |
| 李瑞强, 王玉祥, 孙玉兰, 等. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价. 草业学报, 2023, 32(1): 99-111. | |
| 28 | Liu B, Kang C, Wang X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4): 217-226. |
| 29 | Renault S, Croser C, Franklin J A, et al. Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant and Soil, 2001, 233(2): 261-268. |
| 30 | Ashraf M, Ahmad R, Bhatti A S, et al. Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere, 2010, 20(2): 153-162. |
| 31 | Puyang X H, An M, Han L B, et al. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 2015, 117: 96-106. |
| 32 | Li X Y, Lin J X, Li X J, et al. Growth adaptation and Na+ and K+ metabolic response of Leymus chinensis to saline-alkali stress at seedling stage. Acta Prataculturae Sinica, 2013, 22(1): 201-209. |
| 李晓宇, 蔺吉祥, 李秀军, 等. 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应. 草业学报, 2013, 22(1): 201-209. | |
| 33 | Wang X T. Physiological response of Chenopodium album L. to different concentrations of NaHCO3 stress. Changchun: Northeast Normal University, 2020. |
| 王献田. 藜对不同浓度NaHCO3胁迫的生理反应. 长春: 东北师范大学, 2020. | |
| 34 | Tepe H D, Aydemir T. Protective effects of Ca2+ against NaCl induced salt stress in two lentil (Lens culinaris) cultivars. African Journal of Agricultural Research, 2015, 10(23): 2389-2398. |
| 35 | Zhao Y X, Zhang F L, Hao L Z, et al. Effect of NaCl stress on root characters and inorganic ion contents of Allium mongolicum regel. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(3): 115-121. |
| 赵映雪, 张凤兰, 郝丽珍, 等. NaCl胁迫对沙葱苗期根系特征及无机离子含量的影响. 西北农林科技大学学报(自然科学版), 2020, 48(3): 115-121. | |
| 36 | Alam H, Khattak J Z K, Ksiksi T S, et al. Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiologia Plantarum, 2021, 172(2): 1336-1351. |
| 37 | Jiang Y, Zhou M, Wu Y, et al. Evaluation of tolerance and its underlying physiological mechanisms in different oats. Pratacultural Science, 2018, 35(12): 2903-2914. |
| 姜瑛, 周萌, 吴越, 等. 不同燕麦品种耐盐性差异及其生理机制. 草业科学, 2018, 35(12): 2903-2914. | |
| 38 | Li S, Wang A Y, Jiao Z, et al. Physiological and chemical characteristics and transcriptome analysis of different type of wheat seedlings under salt stress. Journal of Agricultural Science and Technology, 2024, 26(2): 20-32. |
| 李双, 王爱英, 焦浈, 等. 盐胁迫下不同抗性小麦幼苗生理生化特性及转录组分析. 中国农业科技导报, 2024, 26(2): 20-32. | |
| 39 | Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plant. Plant Science, 2004, 166(1): 3-16. |
| 40 | Yang Y J, Zheng W, Tian Y, et al. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284. |
| 41 | Zou P, Yang X, Yuan Y, et al. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. International Journal of Biological Macromolecules, 2021, 180: 547-558. |
| 42 | Lin D D, Zhao G Q, Ju Z L, et al. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
| 蔺豆豆, 赵桂琴, 琚泽亮, 等. 15份燕麦材料苗期抗旱性综合评价. 草业学报, 2021, 30(11): 108-121. | |
| 43 | Fazeli F, Ghorbanli M, Niknam V. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum, 2007, 51(7): 98-103. |
| 44 | Wang N. Biological response of different maize varieties at seedling to salt stress and mechanism of tolerance. Shenyang: Shenyang Agricultural University, 2009. |
| 王宁. 不同玉米品种苗期对盐胁迫的生物学响应及耐性机制研究. 沈阳: 沈阳农业大学, 2009. | |
| 45 | Zhang Y. Alleviative effects and its mechanism of exogenous spermidine on tomato seedlings under salinity-alkalinity mixed stress. Yangling: Northwest A & F University, 2013. |
| 张毅. 亚精胺对番茄幼苗盐碱胁迫的缓解效应及其调控机理. 杨凌: 西北农林科技大学, 2013. | |
| 46 | Sui L, Yi J N, Wang K C, et al. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress. Chinese Journal of Ecology, 2018, 37(11): 3277-3283. |
| 隋利, 易家宁, 王康才, 等. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响. 生态学杂志, 2018, 37(11): 3277-3283. | |
| 47 | Wang Y, Wang Y T, Yang R F, et al. Effects of gibberellin priming on seedling emergence and transcripts involved in mesocotyl elongation in rice under deep direct-seeding conditions. Journal of Zhejiang University-Science (Biomedicine & Biotechnology), 2021, 22(12): 1002-1021. |
| 48 | Yuan H, Zhang X H, Han X Q, et al. Effects of salt and alkali stress on biomass and physiological characteristics of four Phleum pratense at seedling stage.Acta Agrestia Sinica, 2024, 32(4): 1184-1193. |
| 袁惠, 张鲜花, 韩禧卿, 等. 盐、碱胁迫对4份梯牧草苗期生物量及生理特性的影响. 草地学报, 2024, 32(4): 1184-1193. | |
| 49 | Wang M M, Zhao G Q, Liang G L, et al. Physiological response of different salt-tolerant oats to salt stress. Pratacultural Science, 2021, 38(11): 2200-2209. |
| 王苗苗, 赵桂琴, 梁国玲, 等. 不同耐盐性燕麦对盐胁迫的生理响应. 草业科学, 2021, 38(11): 2200-2209. | |
| 50 | Hayat K, Zhou Y, Menhas S, et al. Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. Environmental Pollution, 2020, 265: 114876. |
| 51 | Xue L, Li X, Yan Z, et al. Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion. Hydrobiologia, 2018, 806(1): 47-65. |
| 52 | Lupo Y, Schlisser A, Dong S, et al. Root system response to salt stress in grapevines (Vitis spp.): a link between root structure and salt exclusion. Plant Science, 2022, 325: 111460. |
| 53 | Chen X H. Identification and tolerance mechanism of common millet (Panicum miliaceum L.) in neutral mixed salts. Jinzhong: Shanxi Agricultural University, 2022. |
| 陈小红. 糜子耐中性混合盐鉴定与耐盐机制研究. 晋中: 山西农业大学, 2022. | |
| 54 | Li X K, Wu C N, Wang W, et al. Screening and evaluation of salt-tolerant germplasm of synthetic hexaploid wheat. Journal of Triticeae Crops, 2021, 41(12): 1487-1495. |
| 李小康, 吴崇宁, 王维, 等. 人工合成六倍体小麦耐盐种质资源的筛选及评价. 麦类作物学报, 2021, 41(12): 1487-1495. | |
| 55 | Jia X P, Deng Y M, Sun X B, et al. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
| 贾新平, 邓衍明, 孙晓波, 等. 盐胁迫对海滨雀稗生长和生理特性的影响. 草业学报, 2015, 24(12): 204-212. | |
| 56 | Li Y B, Han D Y, Fu R Y, et al. Effects of NaCl stress on morphology and related physiological indexes of Carex subpediformis. Pratacultural Science, 2022, 39(3): 529-537. |
| 李英博, 韩戴宇, 付如裕, 等. NaCl胁迫对亚柄薹草形态和相关生理指标的影响. 草业科学, 2022, 39(3): 529-537. | |
| 57 | Lan Y. Physiological responses of three Echinochloa forages to saline-alkaline stress and comprehensive evaluation for their saline-alkaline tolerance. Yinchuan: Ningxia University, 2022. |
| 兰艳. 三种稗属牧草种子萌发和幼苗对盐碱胁迫的生理响应及耐性评估. 银川: 宁夏大学, 2022. | |
| 58 | Shaheen S, Naseer S, Ashraf M, et al. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions, 2013, 8(1): 85-96. |
| [1] | 关皓, 许多, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 李欣洋, 黄艳玲, 周青平, 陈仕勇. 高寒地区17个燕麦品种营养品质及瘤胃降解特性研究[J]. 草业学报, 2024, 33(9): 185-198. |
| [2] | 陆姣云, 田宏, 熊军波, 吴新江, 刘洋, 张鹤山. 14份乡土狼尾草材料幼苗的耐冷性综合评价[J]. 草业学报, 2024, 33(8): 98-111. |
| [3] | 孟晨, 鲁雪莉, 宋亦汝, 张成省, 李义强, 项海芹, 徐宗昌. 11份益母草种质材料苗期耐盐性评价与鉴定[J]. 草业学报, 2024, 33(5): 196-203. |
| [4] | 张珈敏, 关皓, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 陈仕勇, 蒋永梅, 甘丽, 周青平, 杨丽雪. 混播比例及乳酸菌剂对燕麦-饲用豌豆发酵TMR品质及瘤胃降解特性的影响[J]. 草业学报, 2024, 33(1): 169-181. |
| [5] | 高守舆, 李钰莹, 杨志青, 董宽虎, 夏方山. 白羊草叶绿体基因组密码子使用偏好性分析[J]. 草业学报, 2023, 32(7): 85-95. |
| [6] | 曹玉莹, 苏雪萌, 周正朝, 郑群威, 岳佳辉. 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究[J]. 草业学报, 2023, 32(5): 94-105. |
| [7] | 朱丽丽, 张业猛, 李万才, 赵亚利, 李想, 陈志国. 39个我国不同生态区培育的青贮玉米品种在青海高原适应性研究[J]. 草业学报, 2023, 32(4): 68-78. |
| [8] | 李春艳, 王艳, 李欣瑞, 李英主, 李明峰, 陈丽丽, 雷雄, 闫利军, 游明鸿, 季晓菲, 张昌兵, 吴婍, 苟文龙, 李达旭, 鄢家俊, 白史且. 中国野生老芒麦形态多样性研究与种质利用潜力分析[J]. 草业学报, 2023, 32(3): 67-79. |
| [9] | 徐宗昌, 鲁雪莉, 魏云冲, 孟晨, 张梦超, 张缘杨, 王萌, 王菊英, 张成省, 李义强. 航天诱变野大豆SP1群体苗期耐盐性鉴定与评价[J]. 草业学报, 2023, 32(11): 168-178. |
| [10] | 王珊珊, 谷海涛, 谢慧芳, 何绍冬, 甘长波, 卫小勇, 孔广超. 113份饲草型六倍体小黑麦种质饲草产量与品质性状的评价[J]. 草业学报, 2023, 32(1): 192-202. |
| [11] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
| [12] | 陈子英, 常单娜, 韩梅, 李正鹏, 严清彪, 张久东, 周国朋, 孙小凤, 曹卫东. 47份箭筈豌豆品种(系)在青海作秋绿肥的能力评价[J]. 草业学报, 2022, 31(2): 39-51. |
| [13] | 吴廷美, 林慧龙, 范迪, 籍常婷, 赵玉婷, 魏靖琼. 冻原高山草地牧户家畜养殖规模影响因素分析——以青海省为例[J]. 草业学报, 2021, 30(9): 117-126. |
| [14] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
| [15] | 蔺豆豆, 赵桂琴, 琚泽亮, 宫文龙. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||