草业学报 ›› 2025, Vol. 34 ›› Issue (5): 118-129.DOI: 10.11686/cyxb2024255
• 研究论文 • 上一篇
收稿日期:2024-07-02
修回日期:2024-09-05
出版日期:2025-05-20
发布日期:2025-03-20
通讯作者:
漆永红
作者简介:E-mail: qiyonghong920@gsagr.cn基金资助:
Xue-ping LI1(
), Shi-yang XU2, Jian-jun LI1, Yong-hong QI1(
)
Received:2024-07-02
Revised:2024-09-05
Online:2025-05-20
Published:2025-03-20
Contact:
Yong-hong QI
摘要:
青稞根腐病危害严重,其发生、蔓延与其根际土壤细菌群落动态密切相关。为明确青稞根腐病的发生对其根际土壤细菌多样性及群落结构的影响,本研究通过对甘肃甘南藏族自治州青稞种植区的根腐病进行系统调查,采集不同发病率青稞根际土壤样品,采用高通量测序获得其根际土壤细菌群落遗传信息,分析其多样性及演替规律,并通过COG基因库注释其基因功能。结果发现,青稞根际土壤细菌物种组成丰富,均匀程度高,能全面反映样品细菌群落结构。健康样品与发病率为5%青稞根际土壤细菌群落距离最近,发病率越高,则与健康样品的距离越大。随青稞根腐病发病率升高,不同发病样本特有物种数呈先增高后降低趋势;变形菌门相对丰度先升高后降低,与绿弯菌门、酸杆菌门、拟杆菌门、放线菌门和芽单胞菌门变化相反;芽孢杆菌目、硝化螺旋菌目,芽单胞菌科、芽孢杆菌科、硝化螺旋菌科及对应的芽单胞菌属、芽孢杆菌属、硝化螺旋菌属相对丰度先升高后降低,简单芽孢杆菌相对丰度先升高后降低,而醋酸钙不动杆菌、嗜根寡养单胞菌等相对丰度先降低后升高。青稞根际土壤细菌氨基酸转运代谢、转录、脂肪转运代谢及翻译后修饰、蛋白质折叠和伴侣蛋白等功能基因的丰度因根腐病的发生而降低,信号转导机制、能量生成和转换等功能基因的丰度则升高。
李雪萍, 许世洋, 李建军, 漆永红. 青稞根腐病根际土壤细菌多样性及群落结构变化规律[J]. 草业学报, 2025, 34(5): 118-129.
Xue-ping LI, Shi-yang XU, Jian-jun LI, Yong-hong QI. Bacterial diversity and community structural changes in rhizosphere soil of naked barley disturbed by root rot[J]. Acta Prataculturae Sinica, 2025, 34(5): 118-129.
样本 Samples | 谱系多样性 PD_whole_tree | 丰富度估计量指数 Chao1 | 测序深度指数Goods_coverage | 种类丰富度维度 Observed_species | 香浓指数 Shannon index | 辛普森指数 Simpson index |
|---|---|---|---|---|---|---|
| AH | 54.95 | 1975.18 | 0.96 | 1598.00 | 9.25 | 0.99 |
| AR1 | 54.70 | 1892.30 | 0.97 | 1598.60 | 9.32 | 0.99 |
| AR2 | 54.52 | 1889.42 | 0.97 | 1597.20 | 9.26 | 0.99 |
| AR3 | 55.62 | 1933.35 | 0.96 | 1607.00 | 9.32 | 0.99 |
| AR4 | 54.67 | 1926.21 | 0.97 | 1608.90 | 9.37 | 0.99 |
表1 不同发病青稞根际土壤细菌多样性指数
Table 1 Bacterial diversity indexes in rhizosphere soil of naked barley with different root rot incidences
样本 Samples | 谱系多样性 PD_whole_tree | 丰富度估计量指数 Chao1 | 测序深度指数Goods_coverage | 种类丰富度维度 Observed_species | 香浓指数 Shannon index | 辛普森指数 Simpson index |
|---|---|---|---|---|---|---|
| AH | 54.95 | 1975.18 | 0.96 | 1598.00 | 9.25 | 0.99 |
| AR1 | 54.70 | 1892.30 | 0.97 | 1598.60 | 9.32 | 0.99 |
| AR2 | 54.52 | 1889.42 | 0.97 | 1597.20 | 9.26 | 0.99 |
| AR3 | 55.62 | 1933.35 | 0.96 | 1607.00 | 9.32 | 0.99 |
| AR4 | 54.67 | 1926.21 | 0.97 | 1608.90 | 9.37 | 0.99 |
图4 门、纲水平不同发病青稞根际土壤细菌群落结构
Fig.4 Bacterial community structure at phylum and class level in rhizosphere soil of naked barley with different root rot incidences
图5 目、科水平不同发病青稞根际土壤细菌群落结构
Fig.5 Community structure of bacteria at order and family level in rhizosphere soil of naked barley with different root rot incidences
图6 属水平不同发病青稞根际土壤细菌群落结构及相关性**: 不同属间相关性极显著(P<0.01) The correlations among different genera are extremely significant (P<0.01); *: 不同属间相关性显著(P<0.05) The correlations among different genera are significant (P<0.05).
Fig.6 Bacterial community structure and correlation analysis at genus level in rhizosphere soil of naked barley with different root rot incidences
| 1 | Li X P. Naked barley root rot diseases and influence on its rhizosphere microecology in Qinghai-tibet plateau, China. Lanzhou: Gansu Agricultural University, 2017: 1-3. |
| 李雪萍. 青藏高原青稞根腐类病害及其对根际土壤微生态的影响. 兰州: 甘肃农业大学, 2017: 1-3. | |
| 2 | Li M J, Shan L, Tong L T, et al. Effect of pearling on composition, microstructure, water migration and cooking quality of highland barley (Hordeum vulgare var. Coeleste linnaeus). Food Chemistry, 2022, 395: 133581. |
| 3 | Gong W F, Wei L P, Du J, et al. Structure and diversity of the bacterial community in the rhizosphere of highland barley in Xizang. Acta Microbiologica Sinica, 2023, 63(10): 4034-4050. |
| 巩文峰, 魏丽萍, 杜娟, 等. 西藏青稞根际细菌群落结构及多样性. 微生物学报, 2023, 63(10): 4034-4050. | |
| 4 | Li X P, Xu S Y, Wang X M, et al. Field survey and pathogen identification of naked barley root rot in Qinghai Province. Journal of Plant Protection, 2021, 48(4): 757-765. |
| 李雪萍, 许世洋, 汪学苗, 等. 青海省青稞根腐病调查及病原菌鉴定. 植物保护学报, 2021, 48(4): 757-765. | |
| 5 | Li X P, Liu M J, Xu S Y, et al. Investigation and pathogen identification of common root rot of Qingke barley (Hordeum vulgare var. nudum).Acta Prataculturae Sinica, 2021, 30(7): 190-198. |
| 李雪萍, 刘梅金, 许世洋, 等. 青稞普通根腐病的调查与病原鉴定. 草业学报, 2021, 30(7): 190-198. | |
| 6 | Li X P, Li M Q, Xu S Y, et al. Pathogens identification and pathogenicity analysis of Fusarium root rot on naked barley. Journal of Triticeae Crops, 2022, 42(9): 1149-1161. |
| 李雪萍, 李敏权, 许世洋, 等. 青稞镰孢根腐病病原鉴定及致病性分析. 麦类作物学报, 2022, 42(9): 1149-1161. | |
| 7 | Xu S Y, Li X P, Liu M J, et al. Study on the screening of disease prevention pesticides for naked barley root rot. Journal of Cold-Arid Agricultural Sciences, 2023, 2(5): 458-463. |
| 许世洋, 李雪萍, 刘梅金, 等. 青稞根腐病防治药剂筛选研究. 寒旱农业科学, 2023, 2(5): 458-463. | |
| 8 | Xu S Y, Li M Q, Liu M J, et al. Screening of highland barley root rot resistant varieties. Gansu Agricultural Science and Technology, 2022, 53(3): 25-30. |
| 许世洋, 李敏权, 刘梅金, 等. 青稞根腐病抗性品种筛选. 甘肃农业科技, 2022, 53(3): 25-30. | |
| 9 | Xu S Y, Li M Q, Liu M J, et al. Screening of bacteria with biocontrol effects against naked barley root rot accompany with plant growth-promoting properties and the biocontrol effects of the bacterial inoculant. Microbiology China, 2022, 49(7): 2575-2586. |
| 许世洋, 李敏权, 刘梅金, 等. 青稞根腐病防病促生细菌的筛选及其菌剂防效. 微生物学通报, 2022, 49(7): 2575-2586. | |
| 10 | Yang Z, Dai C C, Wang X X, et al. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases. Acta Pedologica Sinica, 2019, 56(1): 12-22. |
| 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展. 土壤学报, 2019, 56(1): 12-22. | |
| 11 | Ling N, Wang T, Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13(1): 836. |
| 12 | De Corato U. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chemical and Biological Technologies in Agriculture, 2020, 7(1): 17. |
| 13 | Liu J W, Li X Z, Yao M J. Research progress on assembly of plant rhizosphere microbial community. Acta Microbiologica Sinica, 2021, 61(2): 231-246. |
| 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展. 微生物学报, 2021, 61(2): 231-246. | |
| 14 | Xu S Y, Li X P, Li M Q, et al. Effects of root rot disease at seedling stage on bacterial community structure in the rhizosphere soil of naked barley. Grassland and Turf, 2023, 43(5): 120-128. |
| 许世洋, 李雪萍, 李敏权, 等. 青稞苗期根腐病对根际土壤细菌群落结构的影响. 草原与草坪, 2023, 43(5): 120-128. | |
| 15 | Shi X, Zhao Y, Xu M, et al. Insights into plant-microbe interactions in the rhizosphere to promote sustainable agriculture in the new crops era. New Crops, 2024, 1: 1-17. |
| 16 | Fang Z D. Research methods of plant pathology. Beijing: China Agriculture Press, 1998: 6-18. |
| 方中达. 植病研究方法. 北京: 中国农业出版社, 1998: 6-18. | |
| 17 | Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120. |
| 18 | Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963. |
| 19 | Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. |
| 20 | Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16): 2194-2200. |
| 21 | Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 2016, 4: e2584. |
| 22 | Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied & Environmental Microbiology, 2007, 73(16): 5261-5267. |
| 23 | Desantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied & Environmental Microbiology, 2006, 72(7): 5069-5072. |
| 24 | Langille M G, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9): 814-821. |
| 25 | Zhang J, Wei Z, Chen J. A distance-based approach for testing the mediation effect of the human microbiome. Bioinformatics, 2018, 34(11): 1875-1883. |
| 26 | Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research, 2022, 40: 45-58. |
| 27 | Qi Y H, Cao S F, Li X P, et al. Study on the relationship between root rot disease and nutrient content, enzyme activity and microbial quantity in rhizosphere soil of naked barley in Lintan County, Gannan State. Acta Agrestia Sinica, 2018, 26(4): 877-884. |
| 漆永红, 曹素芳, 李雪萍, 等. 甘南州临潭县青稞根际土壤养分含量、酶活性和微生物数量与根腐病的关系研究. 草地学报, 2018, 26(4): 877-884. | |
| 28 | Liu H, Dong Y H, Shen M C, et al. Characteristics of rhizosphere microbial communities in a disease suppressive soil of tomato bacterial wilt and its disease-suppressive transmission mechanism. Acta Pedologica Sinica, 2022, 59(4): 1125-1135. |
| 刘洪, 董元华, 申民翀, 等. 番茄青枯病抑病土壤根际微生物群落特征及其抑制性传递机制. 土壤学报, 2022, 59(4): 1125-1135. | |
| 29 | Sharma V, Vashishtha A, Jos A L M, et al. Phylogenomics of the phylum Proteobacteria: Resolving the complex relationships. Current Microbiology, 2022, 79(8): 224. |
| 30 | Xian W D, Zhang X T, Li W J. Research status and prospect on bacterial phylum Chloroflexi. Acta Microbiologica Sinica, 2020, 60(9): 1801-1820. |
| 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望. 微生物学报, 2020, 60(9): 1801-1820. | |
| 31 | Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 2016, 32(2): 14-20. |
| 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 2016, 32(2): 14-20. | |
| 32 | Pan X, Raaijmakers J M, Carrión V J. Importance of bacteroidetes in host-microbe interactions and ecosystem functioning. Trends in Microbiology, 2023, 31(9): 959-971. |
| 33 | Yang Y, Li H L, Ma K L, et al. Actinomycetes and their metabolites: visual analysis based on CiteSpace. Acta Microbiologica Sinica, 2022, 62(10): 3825-3843. |
| 杨阳, 李海亮, 马凯丽, 等. 放线菌及其代谢产物研究进展-基于CiteSpace可视化分析. 微生物学报, 2022, 62(10): 3825-3843. | |
| 34 | Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and its role in the environment. Microorganisms, 2022, 10(1): 151. |
| 35 | Liu H, Wei L L, Zhu L F, et al. Research progress of Sphingomonas. Microbiology China, 2023, 50(6): 2738-2752. |
| 刘辉, 韦璐璐, 朱龙发, 等. 鞘氨醇单胞菌的研究进展. 微生物学通报, 2023, 50(6): 2738-2752. | |
| 36 | Liu G H, Liu B, Wang J P, et al. Advances in taxonomy and application of Bacillus. Microbiology China, 2017, 44(4): 949-958. |
| 刘国红, 刘波, 王阶平, 等. 芽胞杆菌分类与应用研究进展. 微生物学通报, 2017, 44(4): 949-958. | |
| 37 | Zhou Y F, Bai Y S, Yue T, et al. Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria. Microbiology China, 2023, 50(2): 644-666. |
| 周益帆, 白寅霜, 岳童, 等. 植物根际促生菌促生特性研究进展. 微生物学通报, 2023, 50(2): 644-666. | |
| 38 | Wu H M, Sha B C, Zhang J Y, et al. Effects of bacterial root rot on photosynthetic characteristics in Panax notoginseng. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1739-1752. |
| 武洪敏, 沙本才, 张金燕, 等. 细菌性根腐病对三七光合特性的影响. 中国生态农业学报, 2020, 28(11): 1739-1752. | |
| 39 | Boussageon R, Sportes A, Lemaitre J P, et al. A bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy. Symbiosis, 2023, 89(2): 235-250. |
| 40 | Daims H, Lebedeva E, Pjevac P, et al. Complete nitrification by Nitrospira bacteria. Nature, 2015(528): 504-509. |
| 41 | Sun Y, Wang M, Mur L A J, et al. Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences, 2020, 21(2): 572. |
| 42 | Huang C, Jiang L, Liang Y P, et al. Acinetobacter calcoaceticus promotes the seedling growth of Lespedeza daurica under saline-alkaline stress. ActaMicrobiologica Sinica, 2023, 63(8): 3264-3278. |
| 黄臣, 蒋霖, 梁银萍, 等. 醋酸钙不动杆菌对盐碱胁迫下达乌里胡枝子促生效应研究. 微生物学报, 2023, 63(8): 3264-3278. | |
| 43 | Wu W, Zhang P F, Zhang G P, et al. Screening, identification and growth promoting characteristics of high efficient organic phosphate-mineralizing bacterium from rhizosphere soils of Forsythia suspensa. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(3): 93-100. |
| 吴伟, 张鹏飞, 张桂萍, 等. 连翘根际高效解有机磷细菌的筛选鉴定及促生长特性研究. 西南林业大学学报(自然科学), 2018, 38(3): 93-100. | |
| 44 | Song M, Yun H Y, Kim Y H. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. Journal of Ginseng Research, 2014, 38(2): 136-145. |
| [1] | 王守兴, 周华坤, 欧立鹏, 李成先, 王雁鹤, 宁晓春, 谷强, 魏代军, 杨明新. 三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究[J]. 草业学报, 2025, 34(4): 16-26. |
| [2] | 龚昕, 霍新茹, 李雯, 杨彦东, 刘超, 秦伟春, 沈艳, 王国会, 马红彬. 宁夏罗山山地草原植被群落特征及其空间分异[J]. 草业学报, 2025, 34(2): 1-15. |
| [3] | 吕娜, 高吉喜, 李政海, 尤春赫, 刘晓曼, 张彪, 莫宇, 朱萨宁, 彭阳, 杨雪. 植物生长中期施肥对草甸草原群落特征与物种多样性的影响[J]. 草业学报, 2025, 34(2): 109-122. |
| [4] | 郭璟, 王越, 祁存英, 李静. 内生真菌浸种对燕麦生长和根部内生真菌群落的影响[J]. 草业学报, 2025, 34(1): 151-160. |
| [5] | 王宝, 谢占玲, 郭璟, 唐永鹏, 孟清, 彭清青, 杨家宝, 董德誉, 徐鸿雁, 高太侦, 张凡, 段迎珠. 真菌发酵液浸种燕麦对其抗旱性及根际真菌群落结构的影响[J]. 草业学报, 2024, 33(9): 126-139. |
| [6] | 李争艳, 徐智明, 李岩, 李杨. 江淮地区苜蓿短期连作对后作高丹草生长及土壤微环境的影响[J]. 草业学报, 2024, 33(9): 155-168. |
| [7] | 郑荣春, 南志标, 段廷玉. 四个品种红三叶种带真菌多样性研究[J]. 草业学报, 2024, 33(8): 170-180. |
| [8] | 刘倩, 丁彦芬, 宋杉杉, 许文婕, 杨威. 南京明城墙绿带草本层自生植物群落数量分类与排序分析[J]. 草业学报, 2024, 33(5): 1-15. |
| [9] | 王安林, 马瑞, 马彦军, 刘腾, 田永胜, 董正虎, 柴巧弟. 复合型治沙措施对土壤细菌群落结构及功能的影响[J]. 草业学报, 2024, 33(3): 46-60. |
| [10] | 张晨阳, 金梦军, 许永锋, 杨成德. 基于宏基因组分析玉米连作对土壤微生物群落结构的影响[J]. 草业学报, 2024, 33(12): 160-174. |
| [11] | 张许可, 夏红飞, 陈国立, 李德州, 张晓伟, 李克梅, 王丽丽. 白三叶草镰刀菌根腐病病原鉴定及其生物学特性[J]. 草业学报, 2024, 33(12): 175-187. |
| [12] | 石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45. |
| [13] | 曹师, 李惠霞, 曹守蓉. 不同紫花苜蓿品种对异茎点霉根腐病的抗病性评价[J]. 草业学报, 2024, 33(10): 123-134. |
| [14] | 蒋晶晶, 陈爱昌, 魏周全, 孙兴明, 徐美蓉, 李雪萍, 杜蕙, 漆永红. 甘肃陇西黄芩镰孢菌根腐病病原鉴定及其病株根部元素含量的变化[J]. 草业学报, 2023, 32(7): 109-121. |
| [15] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸物种多样性与系统发育多样性沿海拔梯度分布格局及驱动因子[J]. 草业学报, 2023, 32(7): 12-22. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||