草业学报 ›› 2024, Vol. 33 ›› Issue (10): 83-95.DOI: 10.11686/cyxb2024038
王金兰1,3(), 王小军2,3, 刘启林2,3, 梁国玲2,3, 琚泽亮2,3, 石红梅4, 汪小兵5, 文培6, 青梅然丁null6, 李文2,3()
收稿日期:
2024-01-27
修回日期:
2024-03-07
出版日期:
2024-10-20
发布日期:
2024-07-15
通讯作者:
李文
作者简介:
Corresponding author. E-mail: lw@qhu.edu.cn基金资助:
Jin-lan WANG1,3(), Xiao-jun WANG2,3, Qi-lin LIU2,3, Guo-ling LIANG2,3, Ze-liang JU2,3, Hong-mei SHI4, Xiao-bing WANG5, Pei WEN6, Qingmeiranding6, Wen LI2,3()
Received:
2024-01-27
Revised:
2024-03-07
Online:
2024-10-20
Published:
2024-07-15
Contact:
Wen LI
摘要:
为筛选出适宜三江源区种植的优质高产燕麦品种,本研究以15个燕麦品种为对象,在班玛县和治多县开展引种评比试验,分析不同燕麦品种的农艺性状、产量性状和品质性状特征,采用分段结构方程模型探讨品种、种植区域及其交互作用如何通过影响农艺性状和产量性状进而影响营养品质,并采用TOPSIS-多准则决策模型对供试品种的各项指标进行综合评价,以筛选出适宜三江源区种植的优良燕麦品种,从而为该区的饲草生产提供数据支撑。结果表明:15个燕麦品种均不能实现籽粒成熟,无法完成整个生长周期。青燕2号、青燕5号和青引1号株高较高,为82.2~89.7 cm;青燕4号、青燕3号和青燕5号干草产量较高,为1012.3~1167.1 g·m-2;青引2号、陇燕1号和青燕5号的粗蛋白含量较高,为7.6%~8.1%;青燕5号的茎叶比、酸性洗涤纤维和中性洗涤纤维含量较低,而相对饲用价值较高。结构方程模型分析表明,品种、种植区域及其交互作用主要通过影响产量和株高间接影响燕麦的营养品质。TOPSIS-多准则决策模型分析表明,青燕5号和青燕3号既能维持较高的生产性能,又具有较好的营养品质,是三江源地区理想种植的燕麦品种。
王金兰, 王小军, 刘启林, 梁国玲, 琚泽亮, 石红梅, 汪小兵, 文培, 青梅然丁null, 李文. 不同燕麦品种在三江源区的生产性能和营养品质综合评价[J]. 草业学报, 2024, 33(10): 83-95.
Jin-lan WANG, Xiao-jun WANG, Qi-lin LIU, Guo-ling LIANG, Ze-liang JU, Hong-mei SHI, Xiao-bing WANG, Pei WEN, Qingmeiranding, Wen LI. A multi-trait evaluation of production performance and nutritional quality of different oat varieties in the Sanjiangyuan area[J]. Acta Prataculturae Sinica, 2024, 33(10): 83-95.
编号 Number | 品种 Varieties | 拉丁名 Latin name | 纯净度 Seed purity (%) | 发芽率 Germination rate (%) | 类型 Type | 原产地 Producing area |
---|---|---|---|---|---|---|
V1 | 青海444 | A. sativa cv. Qinghai No.444 | 95.2 | 96 | 早熟 Early maturity | 丹麦 Denmark |
V2 | 白燕7号 | A. sativa cv. Baiyan No.7 | 96.7 | 97 | 中熟 Mid maturity | 吉林Jilin |
V3 | 青燕4号 | A. sativa cv. Qingyan No.4 | 95.8 | 93 | 中晚熟 Mid-late maturity | 青海 Qinghai |
V4 | 陇燕1号 | A. sativa cv. Longyan No.1 | 96.3 | 93 | 中熟 Mid maturity | 甘肃Gansu |
V5 | 青引2号 | A. sativa cv. Qingyin No.2 | 96.4 | 95 | 早熟 Early maturity | 加拿大 Canada |
V6 | 青燕3号 | A. sativa cv. Qingyan No.3 | 94.3 | 96 | 晚熟 Late maturity | 青海 Qinghai |
V7 | 林纳 | A. sativa cv. Lena | 94.7 | 95 | 中熟 Mid maturity | 挪威 Norway |
V8 | 青海甜燕麦 | A. sativa cv. Qinghai | 93.3 | 95 | 中熟 Mid maturity | 苏联 Soviet Union |
V9 | 青燕1号 | A. sativa cv. Qingyan No.1 | 95.5 | 94 | 早熟 Early maturity | 青海 Qinghai |
V10 | 青燕2号 | A. sativa cv. Qingyan No.2 | 96.3 | 95 | 中晚熟 Mid-late maturity | 甘肃Gansu |
V11 | 青莜3号 | A. nuda cv. Qingyou No.3 | 96.3 | 94 | 晚熟 Late maturity | 英国 England |
V12 | 加燕2号 | A. sativa cv. Jiayan No.2 | 94.8 | 94 | 中熟 Mid maturity | 加拿大 Canada |
V13 | 青引1号 | A. sativa cv. Qingyin No.1 | 95.2 | 97 | 中早熟 Mid-early maturity | 河北 Hebei |
V14 | 青燕5号 | A. sativa cv. Qingyan No.5 | 96.4 | 95 | 中晚熟Mid-late maturity | 加拿大 Canada |
V15 | 甜燕1号 | A. sativa cv. Tianyan No.1 | 94.4 | 95 | 中熟 Mid maturity | 加拿大 Canada |
表 1 供试燕麦品种基本特征
Table 1 The basic characteristics of tested oat varieties
编号 Number | 品种 Varieties | 拉丁名 Latin name | 纯净度 Seed purity (%) | 发芽率 Germination rate (%) | 类型 Type | 原产地 Producing area |
---|---|---|---|---|---|---|
V1 | 青海444 | A. sativa cv. Qinghai No.444 | 95.2 | 96 | 早熟 Early maturity | 丹麦 Denmark |
V2 | 白燕7号 | A. sativa cv. Baiyan No.7 | 96.7 | 97 | 中熟 Mid maturity | 吉林Jilin |
V3 | 青燕4号 | A. sativa cv. Qingyan No.4 | 95.8 | 93 | 中晚熟 Mid-late maturity | 青海 Qinghai |
V4 | 陇燕1号 | A. sativa cv. Longyan No.1 | 96.3 | 93 | 中熟 Mid maturity | 甘肃Gansu |
V5 | 青引2号 | A. sativa cv. Qingyin No.2 | 96.4 | 95 | 早熟 Early maturity | 加拿大 Canada |
V6 | 青燕3号 | A. sativa cv. Qingyan No.3 | 94.3 | 96 | 晚熟 Late maturity | 青海 Qinghai |
V7 | 林纳 | A. sativa cv. Lena | 94.7 | 95 | 中熟 Mid maturity | 挪威 Norway |
V8 | 青海甜燕麦 | A. sativa cv. Qinghai | 93.3 | 95 | 中熟 Mid maturity | 苏联 Soviet Union |
V9 | 青燕1号 | A. sativa cv. Qingyan No.1 | 95.5 | 94 | 早熟 Early maturity | 青海 Qinghai |
V10 | 青燕2号 | A. sativa cv. Qingyan No.2 | 96.3 | 95 | 中晚熟 Mid-late maturity | 甘肃Gansu |
V11 | 青莜3号 | A. nuda cv. Qingyou No.3 | 96.3 | 94 | 晚熟 Late maturity | 英国 England |
V12 | 加燕2号 | A. sativa cv. Jiayan No.2 | 94.8 | 94 | 中熟 Mid maturity | 加拿大 Canada |
V13 | 青引1号 | A. sativa cv. Qingyin No.1 | 95.2 | 97 | 中早熟 Mid-early maturity | 河北 Hebei |
V14 | 青燕5号 | A. sativa cv. Qingyan No.5 | 96.4 | 95 | 中晚熟Mid-late maturity | 加拿大 Canada |
V15 | 甜燕1号 | A. sativa cv. Tianyan No.1 | 94.4 | 95 | 中熟 Mid maturity | 加拿大 Canada |
品种Varieties | 班玛Banama County (9月20日September 20th) | 治多Zhiduo County (9月23日September 23th) |
---|---|---|
青海444 A. sativa cv. Qinghai No.444 | 盛花期Full-blossom period | 初花期Initial bloom stage |
白燕7号 A. sativa cv. Baiyan No.7 | 孕穗期Booting stage | 孕穗期Booting stage |
青燕4号 A. sativa cv. Qingyan No.4 | 孕穗期Booting stage | 孕穗期Booting stage |
陇燕1号 A. sativa cv. Longyan No.1 | 孕穗期Booting stage | 孕穗期Booting stage |
青引2号 A. sativa cv. Qingyin No.2 | 盛花期Full-blossom period | 初花期Initial bloom stage |
青燕3号 A. sativa cv. Qingyan No.3 | 孕穗期Booting stage | 孕穗期Booting stage |
林纳 A. sativa cv. Lena | 初花期Initial bloom stage | 初花期Initial bloom stage |
青海甜燕麦 A. sativa cv. Qinghai | 初花期Initial bloom stage | 初花期Initial bloom stage |
青燕1号 A. sativa cv. Qingyan No.1 | 盛花期Full-blossom period | 初花期Initial bloom stage |
青燕2号 A. sativa cv. Qingyan No.2 | 孕穗期Booting stage | 孕穗期Booting stage |
青莜3号 A. nuda cv. Qingyou No.3 | 孕穗期Booting stage | 孕穗期Booting stage |
加燕2号 A. sativa cv. Jiayan No.2 | 初花期Initial bloom stage | 初花期Initial bloom stage |
青引1号 A. sativa cv. Qingyin No.1 | 初花期Initial bloom stage | 初花期Initial bloom stage |
青燕5号 A. sativa cv. Qingyan No.5 | 孕穗期Booting stage | 孕穗期Booting stage |
甜燕1号 A. sativa cv. Tianyan No.1 | 孕穗期Booting stage | 初花期Initial bloom stage |
表2 生长季末期不同燕麦品种的生育期
Table 2 The growth period of different oat varieties at the end of the growing season
品种Varieties | 班玛Banama County (9月20日September 20th) | 治多Zhiduo County (9月23日September 23th) |
---|---|---|
青海444 A. sativa cv. Qinghai No.444 | 盛花期Full-blossom period | 初花期Initial bloom stage |
白燕7号 A. sativa cv. Baiyan No.7 | 孕穗期Booting stage | 孕穗期Booting stage |
青燕4号 A. sativa cv. Qingyan No.4 | 孕穗期Booting stage | 孕穗期Booting stage |
陇燕1号 A. sativa cv. Longyan No.1 | 孕穗期Booting stage | 孕穗期Booting stage |
青引2号 A. sativa cv. Qingyin No.2 | 盛花期Full-blossom period | 初花期Initial bloom stage |
青燕3号 A. sativa cv. Qingyan No.3 | 孕穗期Booting stage | 孕穗期Booting stage |
林纳 A. sativa cv. Lena | 初花期Initial bloom stage | 初花期Initial bloom stage |
青海甜燕麦 A. sativa cv. Qinghai | 初花期Initial bloom stage | 初花期Initial bloom stage |
青燕1号 A. sativa cv. Qingyan No.1 | 盛花期Full-blossom period | 初花期Initial bloom stage |
青燕2号 A. sativa cv. Qingyan No.2 | 孕穗期Booting stage | 孕穗期Booting stage |
青莜3号 A. nuda cv. Qingyou No.3 | 孕穗期Booting stage | 孕穗期Booting stage |
加燕2号 A. sativa cv. Jiayan No.2 | 初花期Initial bloom stage | 初花期Initial bloom stage |
青引1号 A. sativa cv. Qingyin No.1 | 初花期Initial bloom stage | 初花期Initial bloom stage |
青燕5号 A. sativa cv. Qingyan No.5 | 孕穗期Booting stage | 孕穗期Booting stage |
甜燕1号 A. sativa cv. Tianyan No.1 | 孕穗期Booting stage | 初花期Initial bloom stage |
项目 Item | 因素 Factor | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
产量 Yield | 区域Region | 1587.60 | 1.00 | 1587.60 | 0.22 | 0.65 |
品种Variety | 918270.79 | 14.00 | 65590.77 | 8.87 | 0.00 | |
区域×品种Region×variety | 94783.40 | 14.00 | 6770.24 | 0.92 | 0.55 | |
株高 Plant height | 区域Region | 23.51 | 1.00 | 23.51 | 0.40 | 0.53 |
品种Variety | 7298.98 | 14.00 | 521.36 | 8.79 | 0.00 | |
区域×品种Region×variety | 421.49 | 14.00 | 30.11 | 0.51 | 0.92 | |
茎叶比 Stem leaf ratio | 区域Region | 0.04 | 1.00 | 0.04 | 65.46 | 0.00 |
品种Variety | 0.03 | 14.00 | 0.00 | 3.81 | 0.00 | |
区域×品种Region×variety | 0.02 | 14.00 | 0.00 | 1.86 | 0.05 | |
分蘖数 Tiller number | 区域Region | 0.90 | 1.00 | 0.90 | 2.03 | 0.16 |
品种Variety | 31.60 | 14.00 | 2.26 | 5.08 | 0.00 | |
区域×品种Region×variety | 2.93 | 14.00 | 0.21 | 0.47 | 0.94 |
表3 品种及种植区域对燕麦生产性能影响的双因素方差分析
Table 3 Two-factor variance analysis of varieties and region on oat production performance
项目 Item | 因素 Factor | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
产量 Yield | 区域Region | 1587.60 | 1.00 | 1587.60 | 0.22 | 0.65 |
品种Variety | 918270.79 | 14.00 | 65590.77 | 8.87 | 0.00 | |
区域×品种Region×variety | 94783.40 | 14.00 | 6770.24 | 0.92 | 0.55 | |
株高 Plant height | 区域Region | 23.51 | 1.00 | 23.51 | 0.40 | 0.53 |
品种Variety | 7298.98 | 14.00 | 521.36 | 8.79 | 0.00 | |
区域×品种Region×variety | 421.49 | 14.00 | 30.11 | 0.51 | 0.92 | |
茎叶比 Stem leaf ratio | 区域Region | 0.04 | 1.00 | 0.04 | 65.46 | 0.00 |
品种Variety | 0.03 | 14.00 | 0.00 | 3.81 | 0.00 | |
区域×品种Region×variety | 0.02 | 14.00 | 0.00 | 1.86 | 0.05 | |
分蘖数 Tiller number | 区域Region | 0.90 | 1.00 | 0.90 | 2.03 | 0.16 |
品种Variety | 31.60 | 14.00 | 2.26 | 5.08 | 0.00 | |
区域×品种Region×variety | 2.93 | 14.00 | 0.21 | 0.47 | 0.94 |
图1 不同燕麦品种生产性能V1:青海444;V2:白燕7号;V3:青燕4号;V4:陇燕1号;V5:青引2号;V6:青燕3号;V7:林纳;V8:青海甜燕麦;V9:青燕1号;V10:青燕2号;V11:青莜3号;V12:加燕2号;V13:青引1号;V14:青燕5号;V15:甜燕1号。图中不同小写字母表示同一种植区域不同燕麦品种间差异显著(P<0.05),下同。V1: A. sativa cv. Qinghai No.444; V2: A. sativa cv. Baiyan No.7; V3: A. sativa cv. Qingyan No.4; V4: A. sativa cv. Longyan No. 1; V5: A. sativa cv. Qingyin No.2; V6: A. sativa cv. Qingyan No.3; V7: A. sativa cv. Lena; V8: A. sativa cv. Qinghai; V9: A. sativa cv. Qingyan No.1; V10: A. sativa cv. Qingyan No.2; V11: A. nuda cv. Qingyou No.3; V12: A. sativa cv. Jiayan No.2; V13: A. sativa cv. Qingyin No.1; V14: A. sativa cv. Qingyan No.5; V15: A. sativa cv. Tianyan No.1. The different lowercase letters in the figure indicate significant differences among the oat varieties in the same region, the same below.
Fig.1 Changes in production performance of different oat varieties
项目 Item | 因素 Factor | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
粗蛋白 Crude protein | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 25.62 | 14.00 | 1.83 | 4.93 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
粗脂肪 Crude fat | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 6.29 | 14.00 | 0.45 | 11.47 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
粗灰分 Crude ash | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 39.42 | 14.00 | 2.82 | 6.35 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
酸性洗涤纤维 Acid detergent fiber | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 223.10 | 14.00 | 15.94 | 79.03 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
中性洗涤纤维 Neutral detergent fiber | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 413.27 | 14.00 | 29.52 | 201.66 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
相对饲用价值 Relative feeding value | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 1735.72 | 14.00 | 123.98 | 150.03 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 |
表4 品种及种植区域对燕麦营养品质的双因素方差分析
Table 4 Two-factor variance analysis of varieties and region on oat nutritional quality
项目 Item | 因素 Factor | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
粗蛋白 Crude protein | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 25.62 | 14.00 | 1.83 | 4.93 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
粗脂肪 Crude fat | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 6.29 | 14.00 | 0.45 | 11.47 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
粗灰分 Crude ash | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 39.42 | 14.00 | 2.82 | 6.35 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
酸性洗涤纤维 Acid detergent fiber | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 223.10 | 14.00 | 15.94 | 79.03 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
中性洗涤纤维 Neutral detergent fiber | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 413.27 | 14.00 | 29.52 | 201.66 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 | |
相对饲用价值 Relative feeding value | 区域Region | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
品种Variety | 1735.72 | 14.00 | 123.98 | 150.03 | 0.00 | |
区域×品种Region×variety | 0.00 | 14.00 | 0.00 | 0.00 | 1.00 |
图6 结构方程模型分析品种与种植区域对燕麦营养品质的影响路径及各变量的标准化效应值实线和虚线箭头分别表示显著正和负的路径关系。数值为标准化路径系数。*表示在0.05水平上差异显著,**表示在0.01水平上差异显著,***表示在0.001水平上差异显著。Solid and dashed arrows represent significantly positive or negative effects at the 0.05 level, respectively. The significant standard path coefficients were shown on arrows. *P<0.05, **P<0.01, ***P<0.001.
Fig.6 Structural equation model was used to analyze the influence path of variety and region on the nutritional quality of oat and the standardized effect value of each variable
1 | Bai Y F, Ma L N, Abraham A, et al. Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon. Global Change Biology, 2020, 26(12): 7217-7228. |
2 | Zhao X Q, Xu S X, Zhao L, et al. Innovation and practice on biodiversity conservation in Sanjiangyuan National Park. Bulletin of Chinese Academy of Sciences, 2023, 38(12): 1833-1844. |
赵新全, 徐世晓, 赵亮, 等. 三江源国家公园生物多样性保护创新及实践. 中国科学院院刊, 2023, 38(12): 1833-1844. | |
3 | Mo X G, Liu W, Meng C C, et al. Variations of forage yield and forage-livestock balance in grasslands over the Tibetan Pla-teau, China. Chinese Journal of Applied Ecology, 2021, 32(7): 2415-2425. |
莫兴国, 刘文, 孟铖铖, 等. 青藏高原草地产量与草畜平衡变化. 应用生态学报, 2021, 32(7): 2415-2425. | |
4 | Li W, Wei T H, Yong C B Z, et al. Effects of different mixed planting ratios on vegetation and soil characteristics of sown pasture in the Sanjiangyuan region. Acta Prataculturae Sinica, 2021, 30(12): 39-48. |
李文, 魏廷虎, 永措巴占, 等. 混播比例对三江源人工草地植被和土壤养分特征的影响. 草业学报, 2021, 30(12): 39-48. | |
5 | Ren C Y, Liang G L, Liu W H, et al. Screening and adaptability evaluation of early maturing oats in alpine regions of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2023, 32(9): 116-129. |
任春燕, 梁国玲, 刘文辉, 等. 青藏高原高寒地区早熟燕麦资源筛选和适应性评价. 草业学报, 2023, 32(9): 116-129. | |
6 | Li D M, Zhang R, Wu H J, et al. Genetic diversity analysis and comprehensive evaluation of 35 oat varieties in high cold and humid areas of Tianzhu County. Pratacultural Science, 2023, 40(12): 3114-3123. |
李德明, 张榕, 武慧娟, 等. 天祝县高寒阴湿区35份燕麦主要性状的遗传多样性分析及生产性能综合评价. 草业科学, 2023, 40(12): 3114-3123. | |
7 | Ofelia B, Elizabeth S, Gerardo M, et al. Short-term response of oat crop yield and soil microbial activity promoted by inorganic fertilization suppression and organic fertilization addition in a periurban agroecosystem. Applied Soil Ecology, 2024, 195: 105249. |
8 | Li W, Wei T H, A B D, et al. Effects of reduction of chemical fertilizer and organic manure supplement on oat nutrient quality and soil nutrient in alpine cold region. Acta Agrestia Sinica, 2021, 29(12): 2878-2886. |
李文, 魏廷虎, 阿保地, 等. 化肥减施配合有机肥对高寒区燕麦营养品质和土壤养分的影响. 草地学报, 2021, 29(12): 2878-2886. | |
9 | Zhao Y W, Ma X, Zhang R, et al. Selection of high-yield and good-quality oat varieties in the eastern agricultural area of Qinghai Province. Pratacultural Science, 2020, 37(3): 532-541. |
赵祎伟, 马祥, 张然, 等. 青海东部农区高产优质燕麦品种筛选. 草业科学, 2020, 37(3): 532-541. | |
10 | Wang T Y, Zhou H K, Xue W C, et al. Comprehensive evaluation on production performance and nutritional quality of seven Avena sativa species in agro-pastoral ecotone of Qinghai Plateau. Feed Research, 2023, 46(23): 135-139. |
王廷艳, 周华坤, 薛万朝, 等. 青海高原农牧交错带上7种燕麦生产性能及营养品质综合评价. 饲料研究, 2023, 46(23): 135-139. | |
11 | Wu H, Zhang Y, Jia Z F, et al. C, N and P stoichiometry characteristics of oat cultivars in eastern agricultural area of Qinghai Province. Agricultural Research in the Arid Areas, 2023, 41(1): 160-168. |
吴浩, 张燕, 贾志锋, 等. 青海东部农区引进燕麦品种各器官C、N、P生态化学计量学特征变化研究. 干旱地区农业研究, 2023, 41(1): 160-168. | |
12 | Wei X X, A Q L, Liu Y, et al. Study on the production performance and nutritional quality of different oat varieties in the pastoral region of Eastern Qinghai Province. Agricultural Research in the Arid Areas, 2019, 37(6): 24-28. |
魏小星, 阿啟兰, 刘勇, 等. 青海东部农区不同饲用燕麦品种生产性能及营养品质的比较. 干旱地区农业研究, 2019, 37(6): 24-28. | |
13 | Wei X J, Wang W, Ma X Y. Comparative test of eight oats varieties in Haibei prefecture. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2018, 48(4): 22-24. |
魏希杰, 王伟, 马兴贇. 海北州8个燕麦品种评比试验. 青海畜牧兽医杂志, 2018, 48(4): 22-24. | |
14 | Liang G L, Qin Y, Wei X X, et al. Evaluation on productivity and quality of oat strain I-D in the alpine regions of the Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2018, 26(4): 917-927. |
梁国玲, 秦燕, 魏小星, 等. 青藏高原高寒区I-D燕麦品系饲草生产性能及品质评价. 草地学报, 2018, 26(4): 917-927. | |
15 | Wang Y L, Li S X, Sheng L, et al. Introduction test of oat varieties on moderate and mild saline-alkali land in Qaidam basin. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2018, 48(1): 12-17. |
王彦龙, 李世雄, 盛丽, 等. 柴达木盆地中、轻度盐碱地燕麦引种试验. 青海畜牧兽医杂志, 2018, 48(1): 12-17. | |
16 | Wang Y L, Shi J J, Sheng L, et al. Adaptive evaluation on oat varieties on severe saline-alkali land in Qaidam basin. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2019, 49(1): 36-41, 51. |
王彦龙, 施建军, 盛丽, 等. 柴达木盆地重度盐碱地燕麦引种适应性评价. 青海畜牧兽医杂志, 2019, 49(1): 36-41, 51. | |
17 | Bao S D. Agrochemical analysis of soil. Beijing: China Agriculture Press, 2001. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2001. | |
18 | Linn J G, Martin N P. Forage quality analyses and interpretation. Veterinary Clinics of North America: Food Animal Practice, 1991, 7(2): 509-523. |
19 | Li J, Nan M, Liu Y M, et al. Comprehensive evaluation of the yield, quality and feeding performance on different oat varieties. Acta Agrestia Sinica, 2023, 31(4): 1089-1098. |
李晶, 南铭, 刘彦明, 等. 不同燕麦品种产量和品质及饲喂性能综合评价. 草地学报, 2023, 31(4): 1089-1098. | |
20 | Zhang F F, He H X, Yu L, et al. Nutritional quality of four important herbage species in summer grazing grassland in the alpine zone, west Tianshan Mountain. Acta Prataculturae Sinica, 2017, 26(8): 207-215. |
张凡凡, 和海秀, 于磊, 等. 天山西部高山区夏季放牧草地4种重要牧草营养品质评价. 草业学报, 2017, 26(8): 207-215. | |
21 | Wang X, Li D, Pan X L, et al. Adaptability evaluation of 10 forage oat varieties in Chifeng semiarid area. Pratacultural Science, 2023, 40(2): 521-529. |
王筱, 李夺, 潘翔磊, 等. 赤峰半干旱区10个饲用燕麦品种适应性评价. 草业科学, 2023, 40(2): 521-529. | |
22 | Zhang X J, Jin W J, Xu W T, et al. Comparison of five endogenous reference genes for specific PCR detection and quantification of rice. Rice Science, 2019, 26(4): 248-256. |
23 | Jing F, Nan M, Liu Y M, et al. Effects of variety and planting density on yield, quality and disease of forage oat. Acta Agrestia Sinica, 2023, 31(10): 3174-3184. |
景芳, 南铭, 刘彦明, 等. 品种和种植密度对燕麦饲草产量, 品质和病害的影响. 草地学报, 2023, 31(10): 3174-3184. | |
24 | Kumhálová J, Novák P, Madaras M, et al. Monitoring oats and winter wheat within-field spatial variability by satellite images. Scientia Agriculturae Bohemica, 2018, 49(2): 127-135. |
25 | Zhang R, Han C Y, Cai J B, et al. Evaluation of production performance of six Festuca arundinacea varieties in the Chengdu Plain. Acta Prataculturae Sinica, 2024, 33(1): 138-148. |
张睿, 韩重阳, 蔡家邦, 等. 6个苇状羊茅(型)品种在成都平原区的生产性能评价. 草业学报, 2024, 33(1): 138-148. | |
26 | Fu X N, Pan Z W, Meng X J, et al. The relationship of agronomic traits and fresh forage yield of Secale cereale L. ‘ganyin No1’. Acta Agrestia Sinica, 2017, 25(2): 433-436. |
富新年, 潘正武, 孟祥君, 等. “甘引1号”黑麦农艺性状与鲜草产量的关系. 草地学报, 2017, 25(2): 433-436. | |
27 | Wang L X, Lou Y H, Shao S. Effects of planting density on the growth and quality of Eremopyrum orientale. Pratacultural Science, 2022, 39(3): 503-510. |
王玲秀, 娄亚桦, 邵帅. 种植密度对东方旱麦草生长与品质的影响. 草业科学, 2022, 39(3): 503-510. | |
28 | Razafindrazaka A, Stuerz S, Cotter M, et al. Genotypic yield responses of lowland rice in high-altitude cropping systems. Journal of Agronomy and Crop Science, 2020, 206(4): 444-455. |
29 | Shang H M, Tian Y, Xu B, et al. Reform and practice of ideological and political teaching in the course of processing and storage of forage crops. Region-Educational Research and Reviews, 2023, 5(3): 131-136. |
30 | Ye T, Wu X J, Lu Y X, et al. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures. Acta Prataculturae Sinica, 2023, 32(5): 127-137. |
叶婷, 吴晓娟, 芦奕晓, 等. 混播比例对两种苜蓿混播草地产量和种群密度稳定性的影响. 草业学报, 2023, 32(5): 127-137. |
[1] | 王宝, 谢占玲, 郭璟, 唐永鹏, 孟清, 彭清青, 杨家宝, 董德誉, 徐鸿雁, 高太侦, 张凡, 段迎珠. 真菌发酵液浸种燕麦对其抗旱性及根际真菌群落结构的影响[J]. 草业学报, 2024, 33(9): 126-139. |
[2] | 关皓, 许多, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 李欣洋, 黄艳玲, 周青平, 陈仕勇. 高寒地区17个燕麦品种营养品质及瘤胃降解特性研究[J]. 草业学报, 2024, 33(9): 185-198. |
[3] | 米春娇, 洪流, 马馼, 毛培胜. 谷胱甘肽引发对老化燕麦种胚线粒体抗氧化特性的影响[J]. 草业学报, 2024, 33(9): 51-59. |
[4] | 马圆, 刘欢, 赵桂琴, 王敬龙, 张然, 姚瑞瑞. 燕麦sHSP基因家族的鉴定及其响应高温及老化的表达分析[J]. 草业学报, 2024, 33(8): 145-158. |
[5] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
[6] | 李中利, 蒋丛泽, 马仁诗, 高玮, 受娜, 沈禹颖, 杨宪龙. 陇东旱塬区5个饲用甜高粱品种生产适宜性评价[J]. 草业学报, 2024, 33(8): 50-62. |
[7] | 桑瑞娟, 崔超杰, 何云, 张晓霞, 姚晋, 董春阳, 孙浩, 史莹华, 朱晓艳, 李德锋. 豫北地区18个秋播饲用燕麦品种抗倒伏特性及生产性能评价[J]. 草业学报, 2024, 33(8): 74-85. |
[8] | 张昭, 伏莹莹, 孙浩文, 孙逢雪, 闫慧芳. 不同品种燕麦种子活力鉴定与耐贮藏性评价[J]. 草业学报, 2024, 33(6): 165-174. |
[9] | 王敏, 李莉, 贾蓉, 包爱科. 10种紫花苜蓿在低温胁迫下的生理特性及耐寒性评价[J]. 草业学报, 2024, 33(6): 76-88. |
[10] | 赵洁, 陈恒光, 裴晓蒙, 于昊, 徐银莹, 茆达干. 围产期日粮添加白藜芦醇对山羊生产性能、血液指标及炎症因子基因表达的影响[J]. 草业学报, 2024, 33(4): 210-220. |
[11] | 李鸿飞, 周帮伟, 张淼, 施树楠, 李志坚. 不同燕麦品种在呼伦贝尔地区的引种适应性评价[J]. 草业学报, 2024, 33(4): 60-72. |
[12] | 慕平, 柴继宽, 苏玮娟, 章海龙, 赵桂琴. 燕麦不同组合正、反交杂种后代的表型及遗传参数分析[J]. 草业学报, 2024, 33(4): 73-86. |
[13] | 冯琴, 何小莉, 王斌, 王腾飞, 倪旺, 马霞, 明雪花, 邓建强, 兰剑. 宁夏引黄灌区燕麦与箭筈豌豆的混播效果研究[J]. 草业学报, 2024, 33(3): 107-119. |
[14] | 李妍, 马富龙, 韩路, 王海珍. 美国‘WL’系列不同秋眠级苜蓿品种在南疆的生产性能与适应性评价[J]. 草业学报, 2024, 33(3): 139-149. |
[15] | 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||