草业学报 ›› 2025, Vol. 34 ›› Issue (8): 149-164.DOI: 10.11686/cyxb2024483
• 研究论文 • 上一篇
收稿日期:2024-12-04
修回日期:2025-01-09
出版日期:2025-08-20
发布日期:2025-06-16
通讯作者:
孙娟
作者简介:E-mail: sunjuan@qau.edu.cn基金资助:
Wei TANG(
), Zi-guang LI, Qing-tian ZHAO, Juan SUN(
)
Received:2024-12-04
Revised:2025-01-09
Online:2025-08-20
Published:2025-06-16
Contact:
Juan SUN
摘要:
探讨不同燕麦种植密度对杂草马唐和稗草生长及其根际真菌群落结构和功能的影响,可为杂草综合管理提供科学依据。基于田间研究结果,室内盆栽试验设置3种燕麦种植密度[240,360(推荐密度)和480株·m-2],并对杂草马唐和稗草分别进行单种或混种处理。研究测定植物生长指标、光合特性和土壤理化性质,并采用高通量测序技术分析根际真菌的群落结构、多样性和功能类群。研究结果表明,随着燕麦种植密度的增加(240~480株·m-2),对马唐和稗草株高、分蘖数、生物量、净光合速率及气孔导度的抑制作用显著增强,其中480株·m-2处理的抑制效果最为显著(P<0.05)。根际真菌分析显示,与稗草+马唐混种处理相比,燕麦+稗草+马唐混作处理显著(P<0.05)降低了稗草根际真菌的Shannon指数和马唐根际真菌的Chao1指数。同时,在360和480株·m-2燕麦种植密度下,杂草根际显著(P<0.05)富集了被孢霉科、线黑粉菌科和小囊菌科等真菌菌群,并显著(P<0.05)降低了曲霉科和丝膜菌科的相对丰度。冗余分析显示,土壤硝态氮、速效磷、全碳和pH是影响杂草根际真菌群落结构和多样性的关键环境因子(P<0.05)。关于真菌的营养模式,FUNGuild分析表明,与稗草+马唐处理相比,提高燕麦种植密度(360和480株·m-2)显著(P<0.05)升高了稗草根际共生型真菌的相对丰度,同时显著(P<0.05)降低了病理-腐生型真菌的相对丰度。而在马唐根际,提高燕麦种植密度对大多数真菌营养类群的相对丰度影响不大,但显著(P<0.05)降低了病理型真菌的丰度。综上所述,提高燕麦种植密度(360和480株·m-2)不仅显著抑制了马唐和稗草的生长和光合作用,还通过调控根际真菌群落结构与功能特性,削弱了杂草的竞争力。本研究为实现杂草综合管理和推动可持续农业发展提供了重要的科学依据。
唐伟, 李子光, 赵庆田, 孙娟. 燕麦种植密度对马唐和稗草生长及根际真菌群落结构的影响[J]. 草业学报, 2025, 34(8): 149-164.
Wei TANG, Zi-guang LI, Qing-tian ZHAO, Juan SUN. Effects of oat (Avena sativa) planting density on the growth and rhizosphere fungal community structure of Digitaria sanguinalis and Echinochloa crusgalli[J]. Acta Prataculturae Sinica, 2025, 34(8): 149-164.
物种 Species | 处理 Treatment | 株高Plant height (cm) | 茎粗Stem diameter (mm) | 分蘖数 Tiller | 生物量Biomass (g·plant-1) | |
|---|---|---|---|---|---|---|
| 地上Aboveground | 地下Belowground | |||||
燕麦 A. sativa | As1 | 93.6±1.2bc | 5.75±0.10a | 5.6±0.2a | 11.52±0.30a | 0.819±0.011a |
| As1 _Ec_Ds | 91.8±0.8c | 5.58±0.04a | 5.3±0.2a | 9.70±0.24b | 0.592±0.005b | |
| As2 | 95.6±1.5ab | 5.07±0.03b | 4.5±0.2b | 9.36±0.08b | 0.540±0.016c | |
| As2 _Ec_Ds | 94.4±1.2bc | 4.98±0.09bc | 4.2±0.2bc | 8.54±0.11c | 0.443±0.026d | |
| As3 | 98.2±1.2a | 4.79±0.09c | 3.8±0.1c | 7.94±0.11d | 0.357±0.005e | |
| As3 _Ec_Ds | 96.2±0.3ab | 4.52±0.14d | 3.7±0.1c | 7.63±0.24d | 0.336±0.011e | |
稗草 E. crusgalli | Ec | 114.5±1.7a | 5.41±0.20a | 23.0±1.2a | 40.37±1.99a | 3.298±0.308a |
| Ec_Ds | 105.8±3.3b | 5.25±0.18a | 14.0±0.7b | 22.26±0.99b | 1.973±0.098b | |
| As1_Ec_Ds | 52.8±2.8c | 3.29±0.17b | 5.8±0.3c | 4.98±0.25c | 0.252±0.005c | |
| As2_Ec_Ds | 41.8±0.6d | 1.86±0.04c | 2.5±0.3d | 1.06±0.07d | 0.048±0.003d | |
| As3_Ec_Ds | 36.8±2.7d | 1.65±0.09c | 1.9±0.1d | 0.43±0.02d | 0.020±0.002e | |
马唐 D. sanguinalis | Ds | 115.3±2.1a | 2.60±0.03a | 18.6±1.3a | 30.71±1.01a | 1.493±0.077a |
| Ec_Ds | 102.1±2.4b | 2.44±0.06a | 13.3±0.7b | 17.94±0.66b | 0.854±0.026b | |
| As1_Ec_Ds | 52.0±2.0c | 1.81±0.09b | 6.3±0.3c | 3.99±0.02c | 0.250±0.022c | |
| As2_Ec_Ds | 38.2±1.0d | 1.53±0.05c | 2.9±0.1d | 1.06±0.06d | 0.086±0.003d | |
| As3_Ec_Ds | 33.4±1.4d | 1.22±0.01d | 2.0±0.2d | 0.31±0.02e | 0.026±0.004e | |
表1 不同种植处理对燕麦、稗草和马唐生长性状的影响
Table 1 Effect of different planting treatments on growth traits of A. sativa, E. crusgalli and D. sanguinalis
物种 Species | 处理 Treatment | 株高Plant height (cm) | 茎粗Stem diameter (mm) | 分蘖数 Tiller | 生物量Biomass (g·plant-1) | |
|---|---|---|---|---|---|---|
| 地上Aboveground | 地下Belowground | |||||
燕麦 A. sativa | As1 | 93.6±1.2bc | 5.75±0.10a | 5.6±0.2a | 11.52±0.30a | 0.819±0.011a |
| As1 _Ec_Ds | 91.8±0.8c | 5.58±0.04a | 5.3±0.2a | 9.70±0.24b | 0.592±0.005b | |
| As2 | 95.6±1.5ab | 5.07±0.03b | 4.5±0.2b | 9.36±0.08b | 0.540±0.016c | |
| As2 _Ec_Ds | 94.4±1.2bc | 4.98±0.09bc | 4.2±0.2bc | 8.54±0.11c | 0.443±0.026d | |
| As3 | 98.2±1.2a | 4.79±0.09c | 3.8±0.1c | 7.94±0.11d | 0.357±0.005e | |
| As3 _Ec_Ds | 96.2±0.3ab | 4.52±0.14d | 3.7±0.1c | 7.63±0.24d | 0.336±0.011e | |
稗草 E. crusgalli | Ec | 114.5±1.7a | 5.41±0.20a | 23.0±1.2a | 40.37±1.99a | 3.298±0.308a |
| Ec_Ds | 105.8±3.3b | 5.25±0.18a | 14.0±0.7b | 22.26±0.99b | 1.973±0.098b | |
| As1_Ec_Ds | 52.8±2.8c | 3.29±0.17b | 5.8±0.3c | 4.98±0.25c | 0.252±0.005c | |
| As2_Ec_Ds | 41.8±0.6d | 1.86±0.04c | 2.5±0.3d | 1.06±0.07d | 0.048±0.003d | |
| As3_Ec_Ds | 36.8±2.7d | 1.65±0.09c | 1.9±0.1d | 0.43±0.02d | 0.020±0.002e | |
马唐 D. sanguinalis | Ds | 115.3±2.1a | 2.60±0.03a | 18.6±1.3a | 30.71±1.01a | 1.493±0.077a |
| Ec_Ds | 102.1±2.4b | 2.44±0.06a | 13.3±0.7b | 17.94±0.66b | 0.854±0.026b | |
| As1_Ec_Ds | 52.0±2.0c | 1.81±0.09b | 6.3±0.3c | 3.99±0.02c | 0.250±0.022c | |
| As2_Ec_Ds | 38.2±1.0d | 1.53±0.05c | 2.9±0.1d | 1.06±0.06d | 0.086±0.003d | |
| As3_Ec_Ds | 33.4±1.4d | 1.22±0.01d | 2.0±0.2d | 0.31±0.02e | 0.026±0.004e | |
图1 不同种植处理下燕麦、稗草和马唐的净光合速率(Pn)和气孔导度(Gs)不同小写字母表示在P<0.05水平差异显著,下同。Different lowercase letters mean significant differences at the P<0.05 level, the same below.
Fig.1 Net photosynthetic rate (Pn) and stomatal conductance (Gs) of A. sativa, E. crusgalli and D. sanguinalis leaves under different planting treatments
杂草 Weed | 处理 Treatment | 速效磷AP (mg·kg-1) | NO3--N (mg·kg-1) | NH4+-N (mg·kg-1) | 全磷TP (g·kg-1) | 全碳TC (g·kg-1) | 全氮TN (g·kg-1) | pH |
|---|---|---|---|---|---|---|---|---|
稗草 E. crusgalli | Ec | 7.09±0.10a | 7.93±0.24a | 10.97±0.21b | 0.617±0.007a | 13.97±0.11a | 1.28±0.01ab | 6.52±0.06ab |
| Ec_Ds | 6.97±0.06a | 7.62±0.15a | 9.86±0.27c | 0.606±0.003a | 13.43±0.02b | 1.25±0.01b | 6.62±0.03a | |
| As1_Ec_Ds | 6.40±0.08b | 6.32±0.21b | 9.77±0.17c | 0.583±0.002b | 14.05±0.17a | 1.28±0.03ab | 6.33±0.03b | |
| As2_Ec_Ds | 6.03±0.05c | 5.49±0.04c | 10.32±0.17bc | 0.556±0.004c | 14.08±0.10a | 1.32±0.01a | 6.46±0.10ab | |
| As3_Ec_Ds | 5.89±0.08c | 4.45±0.09d | 12.05±0.43a | 0.560±0.003c | 13.88±0.09a | 1.32±0.01a | 6.66±0.05a | |
马唐 D. sanguinalis | Ds | 6.95±0.12a | 9.74±0.35a | 9.06±0.16c | 0.598±0.003a | 14.56±0.15a | 1.32±0.01a | 6.59±0.07b |
| Ec_Ds | 6.73±0.06a | 6.65±0.21b | 9.94±0.28b | 0.589±0.002a | 13.65±0.12b | 1.31±0.02a | 6.54±0.05bc | |
| As1_Ec_Ds | 6.49±0.04b | 6.05±0.09b | 10.04±0.11b | 0.565±0.002b | 14.42±0.09a | 1.31±0.01a | 6.37±0.03c | |
| As2_Ec_Ds | 6.18±0.05c | 5.30±0.16c | 11.36±0.25a | 0.568±0.004b | 13.94±0.09b | 1.27±0.02a | 6.53±0.03bc | |
| As3_Ec_Ds | 5.99±0.04c | 4.45±0.13d | 10.40±0.13b | 0.569±0.002b | 13.91±0.02b | 1.27±0.01a | 6.80±0.08a |
表2 不同种植处理对杂草稗草和马唐根际土壤速效磷、硝态氮、氨态氮、全磷、全碳、全氮含量及pH值的影响
Table 2 Effect of different planting treatments on contents of soil available phosphorus, nitrate nitrogen, ammonium nitrogen, total phosphorus, total carbon, total nitrogen, and pH of E. crusgalli and D. sanguinalis
杂草 Weed | 处理 Treatment | 速效磷AP (mg·kg-1) | NO3--N (mg·kg-1) | NH4+-N (mg·kg-1) | 全磷TP (g·kg-1) | 全碳TC (g·kg-1) | 全氮TN (g·kg-1) | pH |
|---|---|---|---|---|---|---|---|---|
稗草 E. crusgalli | Ec | 7.09±0.10a | 7.93±0.24a | 10.97±0.21b | 0.617±0.007a | 13.97±0.11a | 1.28±0.01ab | 6.52±0.06ab |
| Ec_Ds | 6.97±0.06a | 7.62±0.15a | 9.86±0.27c | 0.606±0.003a | 13.43±0.02b | 1.25±0.01b | 6.62±0.03a | |
| As1_Ec_Ds | 6.40±0.08b | 6.32±0.21b | 9.77±0.17c | 0.583±0.002b | 14.05±0.17a | 1.28±0.03ab | 6.33±0.03b | |
| As2_Ec_Ds | 6.03±0.05c | 5.49±0.04c | 10.32±0.17bc | 0.556±0.004c | 14.08±0.10a | 1.32±0.01a | 6.46±0.10ab | |
| As3_Ec_Ds | 5.89±0.08c | 4.45±0.09d | 12.05±0.43a | 0.560±0.003c | 13.88±0.09a | 1.32±0.01a | 6.66±0.05a | |
马唐 D. sanguinalis | Ds | 6.95±0.12a | 9.74±0.35a | 9.06±0.16c | 0.598±0.003a | 14.56±0.15a | 1.32±0.01a | 6.59±0.07b |
| Ec_Ds | 6.73±0.06a | 6.65±0.21b | 9.94±0.28b | 0.589±0.002a | 13.65±0.12b | 1.31±0.02a | 6.54±0.05bc | |
| As1_Ec_Ds | 6.49±0.04b | 6.05±0.09b | 10.04±0.11b | 0.565±0.002b | 14.42±0.09a | 1.31±0.01a | 6.37±0.03c | |
| As2_Ec_Ds | 6.18±0.05c | 5.30±0.16c | 11.36±0.25a | 0.568±0.004b | 13.94±0.09b | 1.27±0.02a | 6.53±0.03bc | |
| As3_Ec_Ds | 5.99±0.04c | 4.45±0.13d | 10.40±0.13b | 0.569±0.002b | 13.91±0.02b | 1.27±0.01a | 6.80±0.08a |
图2 不同种植处理下燕麦、稗草和马唐根际真菌多样性指数
Fig.2 Diversity indices of soil fungal communities under various planting treatments for A. sativa, E. crusgalli and D. sanguinalis
图3 不同种植处理下燕麦、稗草和马唐真菌群落的β多样性A: 燕麦A. sativa; B: 稗草E. crusgalli; C: 马唐D. sanguinalis.
Fig.3 β-diversities of fungal family communities of the A. sativa, E. crusgalli and D. sanguinalis under various planting treatments
图4 不同种植处理下燕麦、稗草和马唐根际土壤真菌群落在科水平上的结构组成及优势科相对丰度差异*: P<0.05; **: P<0.01; ***: P<0.001; 下同The same below; 基于Tukey-Kramer检验Based on Tukey-Kramer test.
Fig.4 Structural composition at the family level and the differences in the relative abundance of dominant families in the rhizosphere soil fungal communities of A. sativa, E. crusgalli and D. sanguinalis under different planting treatments
图5 不同种植处理下稗草和马唐根际土壤真菌在科水平上的群落结构与土壤理化因子的冗余分析(RDA)和Spearman相关性分析TP: 全磷Total phosphorus; AP: 速效磷Available phosphorus; NO3--N: 硝态氮Nitrate nitrogen; TC: 全碳Total carbon; TN:全氮Total nitrogen; NH4+-N: 氨态氮Ammonium nitrogen.
Fig.5 Redundancy analysis (RDA) and Spearman correlation analysis of fungal community structures at the family level in the rhizosphere soils of E. crusgalli and D. sanguinalis under different planting treatments
图6 不同种植处理下稗草(A)和马唐(B)土壤真菌功能类群不同营养模式真菌相对丰度差异
Fig.6 Differences in the relative abundance of fungi from different nutritional modes within soil fungal functional groups of E. crusgalli (A) and D. sanguinalis (B) under different planting treatments
| 1 | Horvath D P, Clay S A, Swanton C J, et al. Weed-induced crop yield loss: a new paradigm and new challenges. Trends in Plant Science, 2023, 28(5): 567-582. |
| 2 | Zhang L L, Xu F, Li J W, et al. Advances on the mechanisms of weed resistance to herbicides.Chinese Journal of Pesticide Science, 2024, 26(4): 703-715. |
| 张玲玲, 徐凡, 李嘉文, 等. 杂草对除草剂抗性机理研究进展. 农药学学报, 2024, 26(4): 703-715. | |
| 3 | Li X J. Main problems and management strategies of weeds in agricultural fields in China in recent years. Plant Protection, 2018, 44(5): 77-84. |
| 李香菊. 近年我国农田杂草防控中的突出问题与治理对策. 植物保护, 2018, 44(5): 77-84. | |
| 4 | MacLaren C, Storkey J, Menegat A, et al. An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 2020, 40(6): 24. |
| 5 | Xi N, Wu Y, Weiner J, et al. Does weed suppression by high crop density depend on crop spatial pattern and soil water availability? Basic and Applied Ecology, 2022, 61: 20-29. |
| 6 | Tang W, Li Z G, Guo H P, et al. Annual weeds suppression and oat forage yield responses to crop density management in an oat-cultivated grassland: a case study in Eastern China. Agronomy, 2024, 14(3): 583. |
| 7 | Olsen J M, Griepenrog H W, Nielsen J, et al. How important are crop spatial pattern and density for weed suppression by spring wheat? Weed Science, 2012, 60: 501-509. |
| 8 | Li C H, Sun D W, He C X, et al. Effects of planting density and row spacing on weed infestation and yield of buckwheat. Journal of Weed Science, 2018, 36(2): 19-24. |
| 李春花, 孙道旺, 何成兴, 等. 种植密度和行距对荞麦田杂草及荞麦产量的影响. 杂草学报, 2018, 36(2): 19-24. | |
| 9 | Colbach N, Munier-Jolay N, Dugou F, et al. The response of weed and crop species to shading. How to predict their morphology and plasticity from species traits and ecological indexes? European Journal of Agronomy, 2020, 121: 126158. |
| 10 | Trognitz F, Hackl E, Widhalm S, et al. The role of plant-microbiome interactions in weed establishment and control. FEMS Microbiology Ecology, 2016, 92(10): 1-15. |
| 11 | Sun F, Zhao C C, He Q J, et al. Effects of fertilization and diversity of weed species on the soil microbial community. Acta Ecologica Sinica, 2015, 35(18): 6023-6031. |
| 孙锋, 赵灿灿, 何琼杰, 等. 施肥和杂草多样性对土壤微生物群落的影响. 生态学报, 2015, 35(18): 6023-6031. | |
| 12 | Li B C, Geng G, Li T, et al. Dynamics of soil properties and microbial communities by crop rotation length: unveiling the key factors for enhanced sugar yield. Plant and Soil, 2024, 501: 377-391. |
| 13 | Monteiro L C P, Diaz-Gallo C A, Matos C D C, et al. Rhizosphere microbial community changes due to weed-weed competition. European Journal of Soil Biology, 2024, 120: 103594. |
| 14 | Ghorbani R, Wilcoxon S, Koocheki A, et al. Soil management for sustainable crop disease control: a review. Environmental Chemistry Letters, 2008, 6: 149-162. |
| 15 | Jing J Y, Cong W F, Bezemer T M. Legacies at work: plant-soil-microbiome interactions underpinning agricultural sustainability. Trends in Plant Science, 2022, 27(8): 781-792. |
| 16 | Zhao Y X, Yang H M. Effects of crop pattern, tillage practice and water and fertilizer management on weeds and their control mechanisms. Acta Prataculturae Sinica, 2015, 24(8): 199-210. |
| 赵玉信, 杨惠敏.作物格局、土壤耕作和水肥管理对农田杂草发生的影响及其调控机制. 草业学报, 2015, 24(8): 199-210. | |
| 17 | Menalled U D, Bybee-Finley K A, Smith R G, et al. Soil-mediated effects on weed-crop competition: elucidating the role of annual and perennial intercrop diversity legacies. Agronomy, 2020, 10(9): 1373. |
| 18 | Hou L Y, Zhu Z Y, Yang J, et al. Current status, problems and potentials of forage oat in China. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(3): 248-253. |
| 侯龙鱼, 朱泽义, 杨杰, 等. 我国饲草用燕麦现状、问题和潜力. 西南民族大学学报(自然科学版), 2019, 45(3): 248-253. | |
| 19 | Liu X M, Li J, Xu X, et al. Competitive effects of mung bean (Vigna radiata L.) on the growth of three dominant weeds in summer maize fields. Chinese Journal of Ecology, 2021, 40(5): 1324-1330. |
| 刘小民, 李杰, 许贤, 等. 绿豆与夏玉米田3种优势杂草的竞争效应. 生态学杂志, 2021, 40(5): 1324-1330. | |
| 20 | Yang C, Tang W, Sun J Q, et al. Weeds in the alfalfa field decrease rhizosphere microbial diversity and association networks in the North China Plain. Frontiers in Microbiology, 2022, 13: 840774. |
| 21 | Zhang L H, Song L P, Xu G, et al. Seasonal dynamics of rhizosphere soil microbial abundances and enzyme activities under different vegetation types in the coastal zone, Shandong, China. Clean-Soil Air Water, 2014, 42(8): 1115-1120. |
| 22 | Tang W, Guo H P, Baskin C C, et al. Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants, 2022, 11(13): 3-18. |
| 23 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
| 24 | Li C H, Zhang Y J, Huang J L, et al. Effects of different sowing methods and planting densities of buckwheat on weed occurrence and buckwheat yield. Journal of Weed Science, 2019, 37(3): 36-41. |
| 李春花, 张艳军, 黄金亮, 等. 荞麦不同播种方式和种植密度对田间杂草及荞麦产量的影响. 杂草学报, 2019, 37(3): 36-41. | |
| 25 | Weiner J. Weed suppression by cereals: Beyond ‘competitive ability’. Weed Research, 2023, 63(3): 133-138. |
| 26 | Roberts C D, Yost M A, Robins J G, et al. Oat companion seeding rate, herbicide, and irrigation effects on alfalfa stand establishment. Agronomy Journal, 2023, 115: 273-285. |
| 27 | Datta A, Ullah H, Tursun N, et al. Managing weeds using crop competition in soybean [Glycine max (L.)]. Crop Protection, 2017, 95: 60-68. |
| 28 | Fiorucci A S, Fankhauser C. Plant strategies for enhancing access to sunlight. Current Biology, 2017, 27(17): 931-940. |
| 29 | Sultan S E, Matesanz S. An ideal weed: plasticity and invasiveness in Polygonum cespitosum. Annals of the New York Academy of Science, 2015, 1360(1): 101-119. |
| 30 | Newberger D R, Minas I S, Manter D K, et al. Shifts of the soil microbiome composition induced by plant-plant interactions under increasing cover crop densities and diversities. Scientific Reports, 2023, 13: 17150. |
| 31 | Pérez-Jaramillo J E, Mendes R, Raijmakers J M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 2016, 90: 635-644. |
| 32 | De Matos C D C, Pacheco M L C, Diaz G S A, et al. Changes in soil microbial communities modulate interactions between maize and weeds. Plant and Soil, 2019, 440: 249-264. |
| 33 | Sweeney C J, De Vries F T, Van Donnen B E, et al. Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytologist, 2021, 229: 1492-1507. |
| 34 | Zhao W, Yin Y L, Li S X, et al. Changes in soil fungal community composition and functional groups during the succession of alpine grassland. Plant and Soil, 2023, 484: 201-216. |
| 35 | Hugoni M, Luis P, Guyonnet J, et al. Plant host habitat and root exudates shape fungal diversity. Mycorrhiza, 2018, 28: 451-463. |
| 36 | Telagathoti A, Probst M, Peintner U. Habitat, snow-cover and soil pH, affect the distribution and diversity of Mortierellaceae species and their associations to bacteria. Frontiers in Microbiology, 2021, 12: 669784. |
| 37 | Guo N, Li L, Cui J Q, et al. Effects of Funneliformis mosseae on the fungal community in and soil properties of a continuously cropped soybean system. Applied Soil Ecology, 2021, 164: 103930. |
| 38 | Du T T, Qu X D, Wang Y B, et al. Rhizosphere Mortierella strain of alfalfa exerted weed growth inhibition by inducing expression of plant hormone-related genes. Frontiers in Microbiology, 2024, 15: 1385992. |
| 39 | Hou S D, Zhang G P, Zhao W, et al. High oxygen shocking reduces postharvest disease and maintains satisfying quality in fresh goji berries during cold storage by affecting fungi community composition. Foods, 2023, 12(13): 2548. |
| 40 | Sandoval-Denis M, Gené J, Sutton D A, et al. Redefining Microascus, Scopulariopsis and allied genera. Persoonia, 2016, 36: 1-36. |
| 41 | Liu B, Dai Y, Cheng X, et al. Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field. Frontiers in Microbiology, 2023, 14: 1217966. |
| 42 | Xiao C Q, Fang Y J, Chi R. Phosphate solubilization in vitro by isolated Aspergillus niger and Aspergillus carbonarius. Research on Chemical Intermediates, 2015, 41: 2867-2878. |
| 43 | Liao L R, Wang X T, Wang J, et al. Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland. Plant and Soil, 2021, 465: 515-532. |
| 44 | Sun Q, Zhang P Y, Zhao Z X, et al. Continuous wheat/soybean cropping influences soybean yield and rhizosphere microbial community structure and function. Agronomy, 2023, 13: 28. |
| 45 | Tayyab M, Fallah N, Zhang C, et al. Sugarcane cultivar-dependent changes in assemblage of soil rhizosphere fungal communities in subtropical ecosystem. Environmental Science and Pollution Research, 2022, 29: 20795-20807. |
| 46 | Ning Q, Chen L, Jia Z, et al. Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems and Environment, 2020, 293: 106837. |
| 47 | Bezemer T M, Jing J, Bakx-Schotman J M T, et al. Plant competition alters the temporal dynamics of plant-soil feedbacks. Journal of Ecology, 2018, 106(6): 2287-2300. |
| 48 | Wang Z Q, Zhang Z B, Li Q H, et al. Response characteristics of fungal communities in Allium chinense rhizosphere soil under different mulching treatments. Southwest China Journal of Agricultural Sciences, 2024, 37(2): 258-267. |
| 王正强, 张政兵, 李清昊, 等.不同覆膜处理下藠头根际土壤真菌群落的响应特征.西南农业学报, 2024, 37(2): 258-267. | |
| 49 | Xie Y, Yan Y Y, Tian X W, et al. Effects of facility cultivation on soil fungal community structure and function in Ningxia. Acta Ecologica Sinica, 2024, 44(18): 8383-8396. |
| 谢祎, 闫元元, 田兴武, 等. 宁夏设施栽培对土壤真菌群落结构和功能的影响. 生态学报, 2024, 44(18): 8383-8396. | |
| 50 | Rim S O, Roy M, Jeon J, et al. Diversity and communities of fungal endophytes from four Pinus species in Korea. Forests, 2021, 12(3): 302. |
| [1] | 孔天赐, 马学青, 贺晨帮, 樊泰延, 芦光新, 祁鹤兴. 青贮玉米真菌性病害对青贮发酵微生物多样性的影响[J]. 草业学报, 2025, 34(7): 95-106. |
| [2] | 严双, 夏菲, 魏巍, 王敬龙, 吴皓阳, 冉林灵, 薛云尹, 石昊, 郑晒坤, 王军强, 贺俊东. 高寒草甸不同侵蚀样地植物多样性的差异及其关键影响因子[J]. 草业学报, 2025, 34(6): 1-13. |
| [3] | 李若璇, 李升郅粲, 陈奕彤, 孙雨豪, 杨培志, 崔彦农, 龙明秀, 何树斌. 保护播种下紫花苜蓿根际土壤氨氧化和反硝化微生物群落对糜子种植比例变化的响应[J]. 草业学报, 2025, 34(6): 110-121. |
| [4] | 罗顺华, 刘新宇, 孟宝平, 陈璇黎, 胡仁杰, 于红妍, 王贤颖, 张勃, 秦彧. 祁连山国家公园高寒草地功能群多样性与生产力研究[J]. 草业学报, 2025, 34(6): 14-26. |
| [5] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [6] | 李雪萍, 许世洋, 李建军, 漆永红. 青稞根腐病根际土壤细菌多样性及群落结构变化规律[J]. 草业学报, 2025, 34(5): 118-129. |
| [7] | 董晓慧, 师尚礼, 尹国丽, 陈三冬, 巩海强, 刘林波. 玉米器官组织内生细菌和真菌群落多样性[J]. 草业学报, 2025, 34(5): 130-145. |
| [8] | 王守兴, 周华坤, 欧立鹏, 李成先, 王雁鹤, 宁晓春, 谷强, 魏代军, 杨明新. 三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究[J]. 草业学报, 2025, 34(4): 16-26. |
| [9] | 陈鑫珠, 林平冬, 岳稳, 杨雅妮, 邱水玲, 郑向丽. 不同添加剂对蚕豆秸秆青贮品质及微生物多样性的影响[J]. 草业学报, 2025, 34(4): 164-174. |
| [10] | 马江萍, 张译尹, 王腾飞, 王斌, 兰剑. 饲用高粱与拉巴豆混播对种间关系及草地生产力的影响[J]. 草业学报, 2025, 34(3): 111-122. |
| [11] | 姜安静, 董乙强, 周时杰, 聂婷婷, 吴悦, 柳泽宇, 单兴芸, 雷雅欣, 吴凯, 安沙舟. 草地植物多样性沿海拔梯度分布特征及其驱动因素——以天山北坡东段为例[J]. 草业学报, 2025, 34(3): 29-40. |
| [12] | 刘淑琪, 崔东, 刘文新, 杨海军, 杨延成, 江智诚, 闫江超, 刘江慧. 短期氮、水添加和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响[J]. 草业学报, 2025, 34(3): 41-55. |
| [13] | 龚昕, 霍新茹, 李雯, 杨彦东, 刘超, 秦伟春, 沈艳, 王国会, 马红彬. 宁夏罗山山地草原植被群落特征及其空间分异[J]. 草业学报, 2025, 34(2): 1-15. |
| [14] | 吕娜, 高吉喜, 李政海, 尤春赫, 刘晓曼, 张彪, 莫宇, 朱萨宁, 彭阳, 杨雪. 植物生长中期施肥对草甸草原群落特征与物种多样性的影响[J]. 草业学报, 2025, 34(2): 109-122. |
| [15] | 王文虎, 王世林, 梁国玲, 李文, 曹文侠. 坡向和坡位对祁连山高寒灌丛植物群落多样性的影响[J]. 草业学报, 2025, 34(1): 17-28. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||