草业学报 ›› 2025, Vol. 34 ›› Issue (9): 194-205.DOI: 10.11686/cyxb2024465
• 综合评述 • 上一篇
王昶1(
), 闵庚梅1, 张丽娟1, 陆建英2, 牛早霞1, 魏玉明3, 杨发荣3(
)
收稿日期:2024-11-21
修回日期:2025-02-24
出版日期:2025-09-20
发布日期:2025-07-02
通讯作者:
杨发荣
作者简介:E-mail: lzyfr08@163.com基金资助:
Chang WANG1(
), Geng-mei MIN1, Li-juan ZHANG1, Jian-ying LU2, Zao-xia NIU1, Yu-ming WEI3, Fa-rong YANG3(
)
Received:2024-11-21
Revised:2025-02-24
Online:2025-09-20
Published:2025-07-02
Contact:
Fa-rong YANG
摘要:
藜麦以其全面均衡的营养和卓越的抗逆性,在优化人们膳食结构、增加农民收入及保障国家粮食安全等方面发挥着重要作用。藜麦霜霉病是藜麦生产中最具破坏性的全球性病害,严重制约藜麦产业发展。藜麦霜霉病由卵菌引起,其异宗配合生殖是霜霉菌种群不断进化和致病力分化的动力。种子带菌可进行远距离传播和系统侵染,因此,其防治十分困难。我国藜麦霜霉病研究起步较晚、研究滞后。国外学者对藜麦霜霉病开展了大量研究工作,然而,霜霉菌最初被错误鉴定,也影响其研究进程。从霜霉病发生危害规律、病原菌分类鉴定、生物学特性、侵染循环及农业、物理、生物和化学防治措施等方面进行综述,并提出存在的问题,展望未来研究热点与方向,以期为我国藜麦霜霉病的研究提供参考与指导。
王昶, 闵庚梅, 张丽娟, 陆建英, 牛早霞, 魏玉明, 杨发荣. 藜麦霜霉病及其综合防控研究进展[J]. 草业学报, 2025, 34(9): 194-205.
Chang WANG, Geng-mei MIN, Li-juan ZHANG, Jian-ying LU, Zao-xia NIU, Yu-ming WEI, Fa-rong YANG. Progress in research on quinoa downy mildew and its integrated control[J]. Acta Prataculturae Sinica, 2025, 34(9): 194-205.
地区 District | 国家 Country | 参考文献 Reference |
|---|---|---|
| 南美洲South America | 秘鲁Peru; 阿根廷Argentina; 玻利维亚Bolivia; 智利Chile; 哥伦比亚Colombia; 厄瓜多尔Ecuador | [ |
| 北美洲North America | 墨西哥Mexico; 加拿大Canada; 美国United States | [ |
欧洲 Europe | 丹麦Denmark; 葡萄牙Portugal; 法国France; 荷兰Netherlands; 英国United Kingdom; 瑞典Sweden; 意大利Italy | [ |
| 亚洲Asia | 中国China; 印度India; 韩国Republic of Korea | [ |
| 非洲Africa | 肯尼亚Kenya; 埃及Egypt; 摩洛哥Morocco | [ |
表1 世界藜麦霜霉病的分布
Table 1 Distribution of quinoa downy mildew around the world
地区 District | 国家 Country | 参考文献 Reference |
|---|---|---|
| 南美洲South America | 秘鲁Peru; 阿根廷Argentina; 玻利维亚Bolivia; 智利Chile; 哥伦比亚Colombia; 厄瓜多尔Ecuador | [ |
| 北美洲North America | 墨西哥Mexico; 加拿大Canada; 美国United States | [ |
欧洲 Europe | 丹麦Denmark; 葡萄牙Portugal; 法国France; 荷兰Netherlands; 英国United Kingdom; 瑞典Sweden; 意大利Italy | [ |
| 亚洲Asia | 中国China; 印度India; 韩国Republic of Korea | [ |
| 非洲Africa | 肯尼亚Kenya; 埃及Egypt; 摩洛哥Morocco | [ |
图1 霜霉菌的孢子形态特征[3]A: 着生孢子囊的孢囊梗Sporangiophore with sporangia; Aa: 卵孢子和孢子囊大小比较Oospores-sporangia size comparison; B: 干枯叶片组织中的卵孢子Oospores on top of dried leaf tissue; 比例尺Scale bars: 20 μm; C: 藜麦种子中卵孢子位置示意Schematic representation of oospore localization in quinoa seed; O: 卵孢子Oospore; pe: 种皮Pericarp; en: 胚乳Endosperm; p: 外胚乳Perisperm.
Fig.1 Morphological characters of P. variabilis spores[3]
图3 霜霉菌侵染叶肉组织的过程[61]S: 孢子囊Sporangia; SB: 盐囊泡Salt bladder; Ha: 吸器Haustoria; Hy: 菌丝Hypha; St: 气孔Stomata; Sp: 孢囊梗Sporangiophore.
Fig.3 Infection process of P. variabilis in mesophyll tissue[61]
| [1] | Craine E B, Murphy K M. Seed composition and amino acid profiles for quinoa grown in Washington State. Frontiers in Nutrition, 2020, 7: 126. |
| [2] | Vega-galvez A, Mirandaanda M, Vergara J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 2010, 90(15): 2541-2547. |
| [3] | Colque-Little C, Amby D B, Andreasen C. A review of Chenopodium quinoa (Willd.) diseases-An updated perspective. Plants, 2021, 10(6): 1228. |
| [4] | Testen A L, Jiménez-Gasco M, Ochoa J, et al. Molecular detection of Peronospora variabilis in quinoa seed and phylogeny of the quinoa downy mildew pathogen in South America and the United States. Phytopathology, 2014, 104(4): 379-386. |
| [5] | Choi Y J, Danielsen S, Lubeck M, et al. Morphological and molecular characterization of the causal agent of downy mildew on quinoa (Chenopodium quinoa). Mycopathologia, 2010, 169(5): 403-412. |
| [6] | Testen A L, Puri P, Shaw R S, et al. A quantitative real-time PCR method to detect the quinoa downy mildew pathogen, Peronospora variabilis. Plant Disease, 2024, 108(9): 2887-2893. |
| [7] | Danielsen S, Ames T. Mildew (Peronospora farinosa) of quinoa (Chenopodium quinua Willd.) in the Andean region: Practical manual for the study of the disease and the pathogen. Lima, Perú: International Potato Center, 2004: 32. |
| [8] | Verma S C, Chauhan L S, Mathur R S. Peronospora farinose (Fr.) on Chenopodium murale L.-A new record for India. Current Science, 1964, 23: 720-721. |
| [9] | Yin H, Zhou J B, Chang F J, et al. Identification of pathogen causing downy mildew of Chenopodium quinoa. Acta Phytopathologica Sinica, 2018, 48(3): 413-417. |
| 殷辉, 周建波, 常芳娟, 等. 藜麦霜霉病病原菌鉴定. 植物病理学报, 2018, 48(3): 413-417. | |
| [10] | Wang C, Li M Q, Yang F R, et al. Diseases investigation and pathogen identification of quinoa downy mildew in Gansu Province. Journal of Nuclear Agricultural Sciences, 2023, 37(3): 503-512. |
| 王昶, 李敏权, 杨发荣, 等. 甘肃藜麦霜霉病调查及其病原菌鉴定. 核农学报, 2023, 37(3): 503-512. | |
| [11] | Wang C, Yang F R, Li M Q, et al. Identification and evaluation of downy mildew (Peronospora variabilis) resistance in quinoa (Chenopodium quinoa) germplasm resources. Acta Agrestia Sinica, 2022, 30(10): 2626-2634. |
| 王昶, 杨发荣, 李敏权, 等. 藜麦种质资源对霜霉病的抗性鉴定与评价. 草地学报, 2022, 30(10): 2626-2634. | |
| [12] | Zhao L J, Yan S Y, Shi X J, et al. Downy mildew-infection changes the metabolism of quinoa leaves. Acta Phytopathologica Sinica, 2021, 51(3): 334-339. |
| 赵丽娟, 闫素月, 史晓晶, 等. 霜霉病菌侵染对藜麦叶片代谢的影响. 植物病理学报, 2021, 51(3): 334-339. | |
| [13] | Choi Y J, Denchev C M, Shin H D. Morphological and molecular analyses support existence of host-specific Peronospora species infecting Chenopodium. Mycopathologia, 2008, 165(3): 155-164. |
| [14] | Choi Y J, Choi I Y, Kim J S, et al. First report of quinoa downy mildew caused by Peronospora variabilis in Republic of Korea. Plant Disease, 2014, 98(7): 1003. |
| [15] | Webster J. Introduction to fungi (2nd edition). UK: Cambridge University Press, 1980: 696. |
| [16] | Nolen H. Assessing disease concerns on quinoa and evaluating sources of disease resistance in Chenopodium species in New England. New Hampshire: University of New Hampshire, 2019. |
| [17] | Taha E M. Molecular detection and phylogeny of Peronospora variabilis Gäum., the causal agent of downy mildew disease of quinoa at different growth stages. Plan Cell Biotechnology and Molecular Biology, 2019, 20(23/24): 1189-1200. |
| [18] | Colque-Little C, Abondano M C, Lund O S, et al. Genetic variation for tolerance to the downy mildew pathogen Peronospora variabilis in genetic resources of quinoa (Chenopodium quinoa) . BMC Plant Biology, 2021, 21(1): 1-19. |
| [19] | Gandarillas A, Saravia R, Plata G, et al. Principal quinoa pests and diseases//State of the art report on quinoa around the world in 2013. Rome: Food and Agriculture Organization of the United Nations and Centre de coopération Internationale en Recherche Agronomique pour le Développement, 2015: 192-215. |
| [20] | Brouwer M, Lievens B, Van Hemelrijck W, et al. Quantification of disease progression of several microbial-pathogens on Arabidopsis thaliana using real-time fluorescence PCR.FEMS Microbiology Letters, 2003, 228(2): 241-248. |
| [21] | Kumar A, Bhargava A, Shukla S, et al. Screening of exotic Chenopodium quinoa accessions for downy mildew resistance under mid-eastern conditions of India. Crop Protection, 2006, 25(8): 879-889. |
| [22] | Kitz L. Evaluation of downy mildew (Peronospora farinosa f. sp. Chenonopoii) resistance among quinoa genotypes and investigation of P. farinosa growth using scanning electron microscopy. UTah: Brigham Young University, 2008. |
| [23] | Khalifa W, Thabet M. Variation in downy mildew (Peronospora variabilis Gäum.) resistance of some quinoa (Chenopodium quinoa Willd.) cultivars under Egyptian conditions. Middle East Journal of Agriculture Research, 2018, 7(2): 671-682. |
| [24] | Danielsen S, Bonifacio A, Ames T. Diseases of quinoa (Chenopodium quinoa). Food Reviews International, 2003, 19(1/2): 43-59. |
| [25] | Danielsen S, Munk L. Evaluation of disease assessment methods in quinoa for their ability to predict yield loss caused by downy mildew. Crop Protection, 2004, 23(3): 219-228. |
| [26] | Garcia R G. Fitopatología agrícola del Perú. Lima, Perú: Estación Experimental Agrícola La Molina, 1947. |
| [27] | Arago´n L, Gutie´rrez W. El mildiu en cuatro especies de Chenopodium. Fitopatologia, 1991, 27: 104-109. |
| [28] | Mhada M, Ezzahiri B, Benlhabib O. Assessment of downy mildew resistance (Peronospora farinosa) in a quinoa (Chenopodium quinoa Willd.) germplasm. International Journal of Agricultural and Biosystems Engineering, 2014, 8(3): 277-280. |
| [29] | Testen A L, McKemy J M, Backman P A. First report of quinoa downy mildew caused by Peronospora variabilis in the United States. Plant Disease, 2012, 96(1): 146. |
| [30] | Danielsen S, Jacobsen S E, Hockenhull J. First report of downy mildew of quinoa caused by Peronospora farinosa f. sp. Chenopodii in Denmark. Plant Disease, 2002, 86(10): 1175. |
| [31] | Tewari J P, Boyetchko S M. Occurrence of Peronospora farinosa f.sp. Chenopodii on quinoa in Canadian. Plant Disease Survey, 1990, 70(2): 127-128. |
| [32] | Bonifacio A. Chenopodium sp.: Genetic resources, ethnobotany, and geographic distribution. Food Reviews International, 2003, 19(1/2): 1-7. |
| [33] | Garcia-Blazquez G, Constantinescu O, Telleria M T, et al. Preliminary check list of Albuginales and Peronosporales (Chromista) reported from the Iberian Peninsula and Balearic Islands. Mycotaxon, 2006, 98: 185-188. |
| [34] | El-assiuty E M, Bekheet F M, Fahmy Z M. First record of downy mildew of quinoa in Egypt. Egyptian Journal of Agricultural Research, 2014, 92(3): 871-872. |
| [35] | Kamoun S. Molecular genetics of pathogenic oomycetes. Eukaryot Cell, 2003, 2(2): 191-199. |
| [36] | Beakes G W, Glockling S L, Sekimoto S. The evolutionary phylogeny of the oomycete “fungi”. Protoplasma, 2012, 249: 3-19. |
| [37] | Dick M W. Towards an understanding of the evolution of the downy mildews//Advances of downy mildew research. The Netherlands: Kluwer Academic Publishers, 2002: 1-57. |
| [38] | Thines M, Choi Y J. Evolution, diversity and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology, 2016, 106(1): 6-18. |
| [39] | Dick M W. Sexual reproduction in the Peronosporomycetes (chromistan fungi). Canadian Journal of Botany, 1995, 73(S1): S712-S724. |
| [40] | Latijnhouwers M, Pjgmd W, Govers F. Oomycetes and fungi: Similar weaponry to attack plants. Trends in Microbiology, 2003, 11(10): 462-469. |
| [41] | Yerkes W D, Shaw C G. Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology, 1959, 49: 499-507. |
| [42] | Baiswar P, Chandra S, Kumar R, et al. Peronospora variabilis on Chenopodium murale in India. Australasian Plant Disease Notes, 2010, 5(1): 45-47. |
| [43] | Alexopoulos C J, Mims C W, Blackwell M. Introductory mycology (4th edition). New York: John Wiley & Sons, 1996: 868. |
| [44] | Carzaniga R, Bowyer P, O’Connell R J. Production of extracellular matrices during development of infection structures by the downy mildew Peronospora parasitica. New Phytologist, 2001, 149(1): 83-93. |
| [45] | Danielsen S, Mercado V H, Ames T, et al. Seed transmission of downy mildew (Peronospora farinosa f. sp Chenopodii) in quinoa and effect of relative humidity on seedling infection. Seed Science and Technology, 2004, 32(1): 91-98. |
| [46] | Danielsen S. Heterothallism in Peronospora farinosa f.sp. Chenopodii, the causal agent of downy mildew of quinoa (Chenopodium quinoa). Journal of Basic Microbiology, 2001, 41(5): 305-308. |
| [47] | Koch E S A. Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 1990, 2(5): 437-445. |
| [48] | Alandia S, Otazu V, Salas B. Enfermedades//Quinuay kaniwa. Bogota Colombia: Inter-American Institute for Cooperation on Agriculture, 1979: 137-148. |
| [49] | Lange O L, Lo¨sch R, Schulze E D, et al. Responses of stomata to changes in humidity. Planta, 1971, 100: 76-86. |
| [50] | Mcdonald B A, Mcdermott J M, Goodwin S B, et al. The population biology of host-pathogen interactions. Annual Review of Phytopathology, 1989, 27(1): 77-94. |
| [51] | Danielsen S, Lubeck M. Universally primed-PCR indicates geographical variation of Peronospora farinosa ex. Chenopodium quinoa. Journal of Basic Microbiology, 2010, 50(1): 104-109. |
| [52] | Spring O, Bachofer M, Thines M, et al. Intraspecific relationship of Phytophthora halstedii isolates differing in pathogenicity and geographic origin based on ITS sequence data. European Journal of Plant Pathology, 2006, 114(3): 309-315. |
| [53] | Lindqvist H, Koponen H, Valkonen J P T. Variability of Peronospora sparsa (syn. P. rubi) in Finland as measured by amplified fragment length polymorphism. European Journal of Plant Pathology, 2002, 108(4): 327-335. |
| [54] | Sukno S A, Taylor A M, Farman M L. Genetic uniformity among isolates of Peronospora tabacina, the tobacco blue mold pathogen. Phytopathology, 2002, 92(11): 1236-1244. |
| [55] | Ilott T W, Durgan M E, Michelmore R W. Genetics of virulence in Californian populations of Bremia lactucae (lettuce downy mildew). Phytopathology, 1987, 77(10): 1381-1386. |
| [56] | Ochoa J, Frinking H D, Jacobs T. Postulation of virulence groups and resistance factors in the quinoa downy mildew pathosystem using material from Ecuador. Plant Pathology, 1999, 48(3): 425-430. |
| [57] | Kamoun S, Furzer O, Jones J D G, et al. The top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16(4): 413-434. |
| [58] | Yadeta K A, Thomma B P J. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science, 2013, 4: 97. |
| [59] | Choudhury R A, McRoberts N. Temperature and light effects on in vitro germination of Peronospora effusa sporangia. Tropical Plant Pathology, 2018, 43(6): 572-576. |
| [60] | Catanzariti A M, Dodds P N, Ellis J G. Avirulence proteins from haustoria-forming pathogens. FEMS Microbiology Letters, 2007, 269(2): 181-188. |
| [61] | Penaloza O M R. Molecular interactions between quinoa, the biocontrol agent trichoderma and the pathogen Peronospora variabilis. Spain: University of Salamanca, 2019. |
| [62] | Assiuty E M, Taha E M, Fahmy Z M, et al. Histological and molecular detections of Peronospora variabilis Gäum oospores in seeds of quinoa (Chenopodium quinoa L.). The Egyptian Journal of Experimental Biology (Botany), 2019, 15(2): 197-203. |
| [63] | Burrieza H P, López-Fenadez M P, Maldonado S. Analogous reserve distribution and tissue characteristics on quinoa and grass seeds suggest convergent evolution. Front in Plant Science, 2014, 5: 546. |
| [64] | Pratt R G, Janke G D. Oospores of Sclerospora sorghi in soils of south Texas and their relationships to the incidence of downy mildew in grain sorghum. Phytopathology, 1978, 68(11): 1600-1605. |
| [65] | Jiang Y, Caldwell C D. Effect of nitrogen fertilization on camelina seed yield, yield components, and downy mildew infection. Canadian Journal of Plant Science, 2016, 96(1): 17-26. |
| [66] | Zarafi A, Emechebe A M, Akpa A D, et al. Effect of fertilizer levels on grain yield, incidence and severity of downy mildew in pearl millet. Archives of Phytopathology and Plant Protection, 2005, 38(1): 11-17. |
| [67] | Judelson H S, Michelmore R W. Temperature and genotype interactions in the expression of host resistance in lettuce downy mildew. Physiological and Molecular Plant Pathology, 1992, 40(4): 233-245. |
| [68] | Ding X T, Jiang Y P, Hao T, et al. Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber (Cucumis sativus L.). PLos One, 2016, 11(4): 1-15. |
| [69] | Bernardo R, Jesús A. Respuesta de una población m3 de quinua (Chenopodium quinoa Willd.) var. Amarilla marangani al mildiu (Peronospora variabilis) en la molina. Lima: Universidad Nacional Agraria la Molina Facultad de AgronomÍa, 2020. |
| [70] | Ortuño N, Castillo J, Claros M, et al. Enhancing the sustainability of quinoa production and soil resilience by using bioproducts made with native microorganisms. Agronomy, 2013, 3(4): 732-746. |
| [71] | Harman G E. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 2000, 84(4): 377-393. |
| [72] | Perazzolli M, Moretto M, Fontana P, et al. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 2012, 13(1): 660. |
| [73] | Bargabus R L, Zidack N K, Sherwood J E, et al. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 2002, 61(5): 289-298. |
| [74] | Chen W, Delmotte F, Richard-Cervera S, et al. At least two origins of fungicide resistance in grapevine downy mildew population. Applied and Environmental Microbiology, 2007, 73(16): 5162-5172. |
| [75] | Aegerter B J, Nuñez J J, Davis R M. Detection and management of downy mildew in rose rootstocks. Plant Disease, 2002, 86(12): 1363-1368. |
| [76] | Swenson E M. Genetic diversity of Bolivian Peronospora farinosa f.sp. Chenopodii (downy mildew) and quinoa’s resistance response. Provo, Utah: Brigham Young University, 2006: 29-47. |
| [77] | Dekker J. Countermeasures for avoiding fungicide resistance//Fungicide resistance in crop protection. The Netherlands: Centre for Agricultural Publication and Documentation (PUDOC), 1982: 149-159. |
| [78] | Wang C, Yang F R, Li M Q, et al. Research progress on downy mildew and disease resistance of quinoa. Grassland and Turf, 2024, 44(2): 1-12. |
| 王昶, 杨发荣, 李敏权, 等. 藜麦霜霉病与抗病性研究进展. 草原与草坪, 2024, 44(2): 1-12. | |
| [79] | Ruiz K B, Biondi S, Oses R, et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 2014, 34(2): 349-359. |
| [1] | 朱倩丽, 何翔, 张洋洋, 聂江山, 王常清, 芦光新. 甘肃省当归霜霉病病原鉴定[J]. 草业学报, 2024, 33(7): 142-150. |
| [2] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
| [3] | 侯丽媛, 贾举庆, 姜晓东, 王育川, 赵菁, 陈禺怀, 黄胜雄, 吴慎杰, 董艳辉. 藜麦WRKY基因的进化与多胁迫条件下的转录应答[J]. 草业学报, 2022, 31(9): 168-182. |
| [4] | 李彦忠, 喻军强, 李明. 48个苜蓿品种对3种病害抗性的初步评价[J]. 草业学报, 2021, 30(9): 62-75. |
| [5] | 余肖飞, 郭晓农, 张妍, 刘子威, 张喜闻, 徐可新, 吴治勇. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报, 2021, 30(5): 155-164. |
| [6] | 杜蕙, 蒋晶晶, 王春明, 郭建国, 漆永红, 吕和平, 陈明. 天水地区葡萄霜霉病田间病情、孢子囊数量动态及病害始发关键因子分析[J]. 草业学报, 2020, 29(5): 191-197. |
| [7] | 赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(4): 92-101. |
| [8] | 李佶恺, 王建丽, 尚晨, 张海玲, 刘杰淋, 陈积山, 潘多锋, 刘凯. 不同藜麦材料在哈尔滨地区的适应性研究[J]. 草业学报, 2019, 28(9): 202-208. |
| [9] | 赵颖, 魏小红, 赫亚龙, 赵枭飞, 韩厅, 岳凯, 辛夏青, 宿梅飞, 马文静, 骆巧娟. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响[J]. 草业学报, 2019, 28(2): 156-167. |
| [10] | 杨宏伟, 刘文瑜, 沈宝云, 李朝周. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响[J]. 草业学报, 2017, 26(8): 146-153. |
| [11] | 杨发荣, 刘文瑜, 黄杰, 魏玉明, 金茜. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价[J]. 草业学报, 2017, 26(12): 77-88. |
| [12] | 黄杰, 杨发荣, 李敏权, 魏玉明, 顾娴, 漆永红. 13个藜麦材料在甘肃临夏旱作区适应性的初步评价[J]. 草业学报, 2016, 25(3): 191-201. |
| [13] | 陈泰祥,杨小利,陈秀蓉,李春杰,王涵琦,王艳. 甘肃省黄芪霜霉病发病规律及防治经济阈值研究[J]. 草业学报, 2015, 24(9): 113-120. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||