草业学报 ›› 2021, Vol. 30 ›› Issue (5): 155-164.DOI: 10.11686/cyxb2020203
余肖飞1(), 郭晓农1,2,3(), 张妍1, 刘子威1, 张喜闻1, 徐可新1, 吴治勇1
收稿日期:
2020-05-11
修回日期:
2020-09-03
出版日期:
2021-05-20
发布日期:
2021-04-16
通讯作者:
郭晓农
作者简介:
Corresponding author. E-mail: gxnwww@126.com基金资助:
Xiao-fei YU1(), Xiao-nong GUO1,2,3(), Yan ZHANG1, Zi-wei LIU1, Xi-wen ZHANG1, Ke-xin XU1, Zhi-yong Wu1
Received:
2020-05-11
Revised:
2020-09-03
Online:
2021-05-20
Published:
2021-04-16
Contact:
Xiao-nong GUO
摘要:
研究乳酸菌、乳酸菌与酵母菌混合菌剂以及黑曲霉对藜麦秸秆发酵饲料品质的影响,为藜麦秸秆在饲用方面的开发利用提供参考。利用微生物发酵以期改善藜麦秸秆的营养价值。乳酸菌单一发酵时,设定发酵时间、含水量和菌剂添加量3个试验因子,乳酸菌与酵母菌混合菌剂发酵藜麦秸秆试验中设定发酵时间、含水量和混合比例3个试验因子,均采用L9(34)正交原理设计试验,对粗纤维、粗蛋白、粗脂肪和可溶性糖4个营养指标做响应面法处理。同时做了黑曲霉对藜麦秸秆发酵饲料的对比试验。1)相同发酵条件下,混合制剂降解纤维素的作用比单一发酵剂明显;2)发酵处理后的藜麦秸秆饲料较未发酵的藜麦秸秆粗蛋白平均含量提高了约2.70%;3)发酵过程中粗脂肪含量变化较小,在0.24%~0.31%;4)发酵处理后,藜麦秸秆可溶性糖含量提高了约3%;5)黑曲霉具有明显的降解纤维素和提高可溶性糖含量的作用,但黑曲霉发酵的饲料感官品质较差。微生物发酵对藜麦秸秆饲料品质具有一定的提升作用,一定条件下,混合菌协同发酵优于单一菌株发酵。
余肖飞, 郭晓农, 张妍, 刘子威, 张喜闻, 徐可新, 吴治勇. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报, 2021, 30(5): 155-164.
Xiao-fei YU, Xiao-nong GUO, Yan ZHANG, Zi-wei LIU, Xi-wen ZHANG, Ke-xin XU, Zhi-yong Wu. Optimization of fermentation technology for production of quinoa straw feed using response surface methodology[J]. Acta Prataculturae Sinica, 2021, 30(5): 155-164.
水平 Level | 发酵时间 Fermentation time (h) | 含水量 Moisture content (%) | 菌剂添加量 Amount of bacteria added (g) |
---|---|---|---|
1 | 72 | 50 | 0.75 |
2 | 120 | 60 | 1.00 |
3 | 168 | 70 | 1.25 |
表1 乳酸菌发酵藜麦秸秆饲料正交试验因素水平
Table 1 Levels of factors in orthogonal experiment of lactic acid bacteria fermenting quinoa straw feed
水平 Level | 发酵时间 Fermentation time (h) | 含水量 Moisture content (%) | 菌剂添加量 Amount of bacteria added (g) |
---|---|---|---|
1 | 72 | 50 | 0.75 |
2 | 120 | 60 | 1.00 |
3 | 168 | 70 | 1.25 |
水平 Level | 发酵时间 Fermentation time (h) | 含水量 Moisture content (%) | 酵母菌∶乳酸菌 Saccharomycetes∶Lactobacillus |
---|---|---|---|
1 | 72 | 50 | 1∶1 |
2 | 120 | 60 | 1∶2 |
3 | 168 | 70 | 2∶1 |
表2 混合菌发酵藜麦秸秆饲料正交试验因素水平
Table 2 Factors of orthogonal experiment on fermentation of quinoa straw feed by mixed bacteria
水平 Level | 发酵时间 Fermentation time (h) | 含水量 Moisture content (%) | 酵母菌∶乳酸菌 Saccharomycetes∶Lactobacillus |
---|---|---|---|
1 | 72 | 50 | 1∶1 |
2 | 120 | 60 | 1∶2 |
3 | 168 | 70 | 2∶1 |
试验组别Pilot group | 菌剂添加量Amount of bacteria added (g) | 含水量 Moisture content (%) | 发酵时间 Fermentation time (h) | 黑曲霉添加量 Amount of A.niger (g) | 酵母菌∶乳酸菌 Saccharomycetes∶ Lactobacillus | |
---|---|---|---|---|---|---|
乳酸菌 Saccharomycetes | 酵母菌 Lactobacillus | |||||
1 | 0.75 | - | 60 | 120 | - | - |
2 | 0.75 | - | 70 | 168 | - | - |
3 | 1.25 | - | 50 | 168 | - | - |
4 | 1.00 | - | 70 | 72 | - | - |
5 | 1.25 | - | 70 | 120 | - | - |
6 | 1.00 | - | 60 | 168 | - | - |
7 | 1.00 | - | 50 | 120 | - | - |
8 | 1.25 | - | 60 | 72 | - | - |
9 | 0.75 | - | 50 | 72 | - | - |
10 | 1.00 | 1.00 | 60 | 120 | - | 1∶1 |
11 | 1.00 | 1.00 | 70 | 168 | - | 1∶1 |
12 | 1.00 | 2.00 | 50 | 168 | - | 2∶1 |
13 | 1.00 | 0.50 | 70 | 72 | - | 1∶2 |
14 | 1.00 | 2.00 | 70 | 120 | - | 2∶1 |
15 | 1.00 | 0.50 | 60 | 168 | - | 1∶2 |
16 | 1.00 | 0.50 | 50 | 120 | - | 1∶2 |
17 | 1.00 | 2.00 | 60 | 72 | - | 2∶1 |
18 | 1.00 | 1.00 | 50 | 72 | - | 1∶1 |
19 | 1.00 | - | 70 | 72 | 0.075 | - |
表3 1~19组试验处理
Table 3 Pilot group 1-19 test treatment
试验组别Pilot group | 菌剂添加量Amount of bacteria added (g) | 含水量 Moisture content (%) | 发酵时间 Fermentation time (h) | 黑曲霉添加量 Amount of A.niger (g) | 酵母菌∶乳酸菌 Saccharomycetes∶ Lactobacillus | |
---|---|---|---|---|---|---|
乳酸菌 Saccharomycetes | 酵母菌 Lactobacillus | |||||
1 | 0.75 | - | 60 | 120 | - | - |
2 | 0.75 | - | 70 | 168 | - | - |
3 | 1.25 | - | 50 | 168 | - | - |
4 | 1.00 | - | 70 | 72 | - | - |
5 | 1.25 | - | 70 | 120 | - | - |
6 | 1.00 | - | 60 | 168 | - | - |
7 | 1.00 | - | 50 | 120 | - | - |
8 | 1.25 | - | 60 | 72 | - | - |
9 | 0.75 | - | 50 | 72 | - | - |
10 | 1.00 | 1.00 | 60 | 120 | - | 1∶1 |
11 | 1.00 | 1.00 | 70 | 168 | - | 1∶1 |
12 | 1.00 | 2.00 | 50 | 168 | - | 2∶1 |
13 | 1.00 | 0.50 | 70 | 72 | - | 1∶2 |
14 | 1.00 | 2.00 | 70 | 120 | - | 2∶1 |
15 | 1.00 | 0.50 | 60 | 168 | - | 1∶2 |
16 | 1.00 | 0.50 | 50 | 120 | - | 1∶2 |
17 | 1.00 | 2.00 | 60 | 72 | - | 2∶1 |
18 | 1.00 | 1.00 | 50 | 72 | - | 1∶1 |
19 | 1.00 | - | 70 | 72 | 0.075 | - |
感官指标 Sensory indicators | 总配分 Total distribution | 感官指标及评分值Sensory indicators and scoring values | |||
---|---|---|---|---|---|
优等Top | 良好Good | 一般General | 劣等Inferior | ||
气味Smell | 3.0 | 甘酸香味Sweet sour flavor (2.5~3.0) | 酒酸香味Fragrant wine sour (2.0~2.5) | 刺鼻酸味Pungent sour (1.0~2.0) | 腐败味Decayed (0~1.0) |
色泽Color | 3.0 | 亮黄色Bright yellow (2.5~3.0) | 暗黄色Dark yellow (2.0~2.5) | 黄褐色Tawny (1.0~2.0) | 暗褐色Dun (0~1.0) |
质地Texture | 3.0 | 质地松软Floppy (2.5~3.0) | 略带粘性Slightly sticky (2.0~2.5) | 发粘Sticky (1.0~2.0) | 结块Cake-shaped (0~1.0) |
总评分Total rating | 9.0 | 7.5~9.0 | 6.0~7.5 | 3.0~6.0 | 0~3.0 |
表4 感官质量评定标准
Table 4 Criteria for sensory quality assessment
感官指标 Sensory indicators | 总配分 Total distribution | 感官指标及评分值Sensory indicators and scoring values | |||
---|---|---|---|---|---|
优等Top | 良好Good | 一般General | 劣等Inferior | ||
气味Smell | 3.0 | 甘酸香味Sweet sour flavor (2.5~3.0) | 酒酸香味Fragrant wine sour (2.0~2.5) | 刺鼻酸味Pungent sour (1.0~2.0) | 腐败味Decayed (0~1.0) |
色泽Color | 3.0 | 亮黄色Bright yellow (2.5~3.0) | 暗黄色Dark yellow (2.0~2.5) | 黄褐色Tawny (1.0~2.0) | 暗褐色Dun (0~1.0) |
质地Texture | 3.0 | 质地松软Floppy (2.5~3.0) | 略带粘性Slightly sticky (2.0~2.5) | 发粘Sticky (1.0~2.0) | 结块Cake-shaped (0~1.0) |
总评分Total rating | 9.0 | 7.5~9.0 | 6.0~7.5 | 3.0~6.0 | 0~3.0 |
图2 藜麦秸秆饲料粗纤维三维响应面曲线a和b为乳酸发酵中响应面图和等高线图a and b is response surface diagram and contour map in lactic acid fermentation; c和d为混合发酵中响应面图和等高线图c and d is response surface diagram and contour map in mixed fermentation.下同 The same below.
Fig.2 Three-dimensional response surface curve of crude fiber of quinoa straw feed
图6 黑曲霉发酵对各营养指标的影响CF:粗纤维Crude fiber; EE:粗脂肪Ether extract; CP:粗蛋白Crude protein; SS:可溶性糖Soluble sugar.
Fig.6 The effect of Aspergillus Niger fermentation on the nutritional indexes
1 | Koziol M J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd). Journal of Food Composition and Analysis, 1992, 5(1): 35. |
2 | Schilick G, Bubenheim D L. Quinoa: An emerging new crop with potential for Celss. Washington: National Aeronautics and Space Administration, Ames Research Center, 1993. |
3 | Li J K, Wang J L, Shang C, et al. Adaptability of different quinoa materials in Harbin. Acta Prataculturae Sinica, 2019, 28(9): 202-208. |
李佶恺, 王建丽, 尚晨, 等. 不同藜麦材料在哈尔滨地区的适应性研究. 草业学报, 2019, 28(9): 202-208. | |
4 | Zhang W J. Study and application of the rational and chemical properties of quinoa whole powder and starch. Zhengzhou : Zhengzhou Institute of Light Industry, 2016. |
张文杰. 藜麦全粉与淀粉的理化性质与结构研究及应用. 郑州: 郑州轻工业学院, 2016. | |
5 | Kang Z Q, Chen Q. 2017 quinoa industry market development status report. China Reporting Network, 2017. |
康智琪, 陈权. 2017年藜麦行业市场发展现状报告. 中国报告网, 2017. | |
6 | Gongbu Z X, Wang M, Zhang C X, et al. Studies on the biological characteristics of quinoa in Tibet. Acta Agriculturae Boreali-Occidentalis Sinica, 1994, 3(4): 81. |
贡布扎西, 旺姆, 张崇玺, 等. 南美藜在西藏的生物学特性研究. 西北农业学报, 1994, 3(4): 81. | |
7 | Ren G X. The status and development prospects of quinoa industry in China. Shanghai: Institute of Crop Science, Chinese Academy of Agricultural Sciences, 2019. |
任贵兴. 中国藜麦产业现状与发展前景. 上海: 中国农业科学院作物科学研究所, 2019. | |
8 | Ding Y S, Zeng Y W, Min K, et al. Comprehensive study and utilization of functional components of quinoa. Current Biotechnology, 2015, 5(5): 340-346. |
丁云双, 曾亚文, 闵康, 等. 藜麦功能成分综合研究与利用. 生物技术进展, 2015, 5(5): 340-346. | |
9 | Wei A C, Yang X S, Me Y, et al. Advances in the study of the nutritional function of quinoa and biological activity. Food Science, 2015, 36(15): 272-276. |
魏爱春, 杨修仕, 么杨, 等. 藜麦营养功能成分及生物活性研究进展. 食品科学, 2015, 36(15): 272-276. | |
10 | Xu X M. Extraction, separation purification and biological activity of quinoa saponlygin. Hohhot: Inner Mongolia Agricultural University, 2017. |
徐晓敏. 藜麦皂苷的提取、分离纯化及生物活性研究. 呼和浩特: 内蒙古农业大学, 2017. | |
11 | Hou Z H, Fu M R, Zhang W Y, et al. Advances in the study of quinoa saponin. Journal of Food Safety & Quality, 2018, 9(19): 5146-5152. |
侯召华, 傅茂润, 张威毅, 等. 藜麦皂苷研究进展. 食品安全质量检测学报, 2018, 9(19): 5146-5152. | |
12 | Hu Y C, Zhao G, Qin P Y, et al. Advances in the study of quinoa active ingredients. Acta Agronomica Sinica, 2018, 44(11): 1579-1591. |
胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展. 作物学报, 2018, 44(11): 1579-1591. | |
13 | Yang F R. The current situation of quinoa research and development and industrial development proposal steamin in Gansu. Lanzhou: Gansu Academy of Agricultural Sciences, 2019. |
杨发荣. 甘肃藜麦研发现状与产业发展建议. 兰州: 甘肃省农业科学院, 2019. | |
14 | Liu J J. Effect and mechanism of biological additives on switchgrass silage. Beijing: China Agricultural University, 2015. |
刘晶晶. 生物添加剂对柳枝稷青贮的作用及机理研究. 北京: 中国农业大学, 2015. | |
15 | Nie Q, Dai J J, Hu J P, et al. The strains and functions of yeast-derived biological feed. China Feed, 2018(11): 89-93. |
聂琴, 戴晋军, 胡骏鹏, 等. 酵母源生物饲料的菌种与功能. 中国饲料, 2018(11): 89-93. | |
16 | Weinberg Z G, Muck R E. New trends and opportunities in the development and use of inoculants for silage. Femsm Icrobiology Reviews, 1996, 19: 53-68. |
17 | Chen G, Sun Y, Wang G, et al. Comprehensive utilization and development prospect of quinoa. Journal of Jilin Agricultural University, 2018, 40(1): 1-6. |
陈光, 孙旸, 王刚, 等. 藜麦全植株的综合利用及开发前景. 吉林农业大学学报, 2018, 40(1): 1-6. | |
18 | Li F L, Fan M X, Bian C Z. Characteristics of Aspergillus niger producing enzyme and its application in animal production. Modern Animal Husbandry, 2018, 2(4): 47-49. |
李凤玲, 范明夏, 边传周. 黑曲霉菌的产酶特性及在动物生产中的应用. 现代牧业, 2018, 2(4): 47-49. | |
19 | Li W G, Zhou S Y, Bi J, et al. GB 12316-1990, Sensory analysis “a” is not “a” test. Beijing: Standards Press of China,1990. |
李伟格, 周苏玉, 毕健, 等. GB 12316-1990, 感官分析“a”非“a”检验. 北京: 中国标准出版社, 1990. | |
20 | Bi Y Y. Research on the evaluation and utilization of straw resources. Beijing: Chinese Academy of Agricultural Sciences, 2010. |
毕于运. 秸秆资源评价与利用研究. 北京: 中国农业科学院, 2010. | |
21 | Wang R H, Yu X H. On the application of coarse fiber in animal production. Jiangxi Feed, 2015(2): 7-8. |
王仁华, 于学红. 浅谈粗纤维在动物生产中的应用. 江西饲料, 2015(2): 7-8. | |
22 | Ge D J. Effect of dietary fiber on the nutritional physiological effect and reproductive performance of producing sows. Fuzhou: Fujian Agricultural and Forestry University, 2009. |
葛德军. 日粮纤维对经产母猪的营养生理作用及繁殖性能的影响. 福州: 福建农林大学, 2009. | |
23 | Yang Y F. Study on the digestive physiology and production performance of pig in different stages of growth. Hohhot: Inner Mongolia Agricultural University, 2001. |
杨玉芬. 日粮纤维对于猪不同生长阶段消化生理和生产性能的研究. 呼和浩特: 内蒙古农业大学, 2001. | |
24 | Guo D S. Effect of ruminant diet combination on rumen fermentation and available crude protein. Beijing: China Agricultural University, 2004. |
郭冬生. 反刍动物日粮组合效应对瘤胃发酵和可利用粗蛋白的影响研究. 北京: 中国农业大学, 2004. | |
25 | Huang K W. Effect of protein source and composition on growth and immune index of pre weaning calves. Alaer: Tarim University, 2016. |
黄开武. 蛋白质来源和组成对断奶前犊牛生长发育及免疫指标的影响. 阿拉尔: 塔里木大学, 2016. | |
26 | Li L, Gu L Q, He H, et al. Some problems in the determination of crude protein in feed by Kjeldahl method. Guizhou Journal of Animal Husbandry and Veterinary Medicine, 2010, 34(5): 43. |
李雷, 顾丽群, 何虎, 等. 凯氏定氮法测定饲料中粗蛋白质应注意的几个问题. 贵州畜牧兽医, 2010, 34(5):43. | |
27 | Han H W, Sun L N, Yao T, et al. Effects of different combinations of growth promoting strains on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013, 22(5): 104-112. |
韩华雯, 孙丽娜, 姚拓, 等. 不同促生菌株组合对紫花苜蓿产量和品质的影响. 草业学报, 2013, 22(5): 104-112. | |
28 | Tao X W. Fermentation processes and equipment. Beijing: Chemical Industry Press, 2011: 84-85. |
陶兴无. 发酵工艺与设备. 北京: 化学工业出版社, 2011: 84-85. | |
29 | Wang J B, Fan S J, Liu J B, et al. Application of bacterial inoculants and enzyme preparations in straw silage. Feed Review, 1999, 11(4): 17-20. |
王建兵, 范石军, 刘静波, 等. 细菌接种剂和酶制剂在秸秆类饲料青贮中的应用. 饲料博览, 1999, 11(4): 17-20. |
[1] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[2] | 吕竑建, 郭香, 陈德奎, 陈晓阳, 张庆. 植物乳酸菌和贮藏温度对辣木叶青贮品质的影响[J]. 草业学报, 2021, 30(3): 121-128. |
[3] | 陈鑫珠, 张建国. 不同茬次和高度热研四号王草的乳酸菌分布及青贮发酵品质[J]. 草业学报, 2021, 30(1): 150-158. |
[4] | 付锦涛, 王学凯, 倪奎奎, 杨富裕. 添加乳酸菌和糖蜜对全株构树和稻草混合青贮的影响[J]. 草业学报, 2020, 29(4): 121-128. |
[5] | 万学瑞, 豆思远, 李玉, 何轶群, 王川, 张小丽, 雷赵民. 复合乳酸菌对全株玉米青贮及有氧暴露后微生物及饲料品质的影响[J]. 草业学报, 2020, 29(11): 83-90. |
[6] | 毛翠, 刘方圆, 宋恩亮, 王亚芳, 王永军, 战翔, 李原, 成海建, 姜富贵. 不同乳酸菌添加量和发酵时间对全株玉米青贮营养价值及发酵品质的影响[J]. 草业学报, 2020, 29(10): 172-181. |
[7] | 琚泽亮, 赵桂琴, 柴继宽, 贾志峰, 梁国玲. 不同燕麦品种在甘肃中部的营养价值及青贮发酵品质综合评价[J]. 草业学报, 2019, 28(9): 77-86. |
[8] | 王成, 王益, 周玮, 骈瑞琪, 张庆, 陈晓阳. 植物乳杆菌和含水量对辣木叶青贮品质和单宁含量的影响[J]. 草业学报, 2019, 28(6): 109-118. |
[9] | 李小铃, 关皓, 帅杨, 李小梅, 彭安琪, 李昌华, 蒲棋, 闫艳红, 张新全. 单一和复合乳酸菌添加剂对扁穗牛鞭草青贮品质的影响[J]. 草业学报, 2019, 28(6): 119-127. |
[10] | 李菲菲, 张凡凡, 王旭哲, 苗芳, 马春晖. 同/异型发酵乳酸菌对全株玉米青贮营养成分和瘤胃降解特征的影响[J]. 草业学报, 2019, 28(6): 128-136. |
[11] | 杨大盛, 汪水平, 韩雪峰, 汤少勋, 谭支良, 尹梦洁, 骆东梅. 乳酸菌和烷基多糖苷对玉米秸秆黄贮品质及其体外发酵特性影响研究[J]. 草业学报, 2019, 28(5): 109-120. |
[12] | 代寒凌, 田新会, 杜文华, 吴建平. 不同添加剂处理对小黑麦和黑麦青贮营养品质和发酵品质的影响[J]. 草业学报, 2019, 28(12): 211-219. |
[13] | 王建福, 雷赵民, 万学瑞, 姜辉, 李洁, 吴建平. 5株乳酸菌复合物与CaCO3,酶及尿素不同组合对全株玉米青贮品质影响[J]. 草业学报, 2018, 27(3): 90-97. |
[14] | 苗芳, 张凡凡, 唐开婷, 贾舒安, 王旭哲, 马春晖. 同/异质型乳酸菌添加对全株玉米青贮发酵特性、营养品质及有氧稳定性的影响[J]. 草业学报, 2017, 26(9): 167-175. |
[15] | 郭海明, 夏天婵, 朱雯, 张勇, 叶均安. 青贮添加剂对稻草青贮品质和有氧稳定性的影响[J]. 草业学报, 2017, 26(2): 190-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||