Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (2): 172-185.DOI: 10.11686/cyxb2019207
Previous Articles Next Articles
GAO Jin-long, LIU Jie, YIN Jian-peng, GE Jing, HOU Meng-jing, FENG Qi-sheng, LIANG Tian-gang*
Received:
2019-03-25
Revised:
2019-07-08
Online:
2020-02-20
Published:
2020-02-20
Contact:
E-mail: tgliang@lzu.edu.cn
GAO Jin-long, LIU Jie, YIN Jian-peng, GE Jing, HOU Meng-jing, FENG Qi-sheng, LIANG Tian-gang. Hyperspectral remote sensing progress for forage nutritional quality and quantity in natural grassland[J]. Acta Prataculturae Sinica, 2020, 29(2): 172-185.
[1] Xu P. Grassland resource survey and planning. Beijing: China Agriculture Press, 2000. 许鹏. 草地资源调查规划学. 北京: 中国农业出版社, 2000. [2] Ren J Z. Research methods of grassland science. Beijing: China Agriculture Press, 1998: 319-322. 任继周. 草业科学研究方法. 北京: 中国农业出版社, 1998: 319-322. [3] Pu R L, Gong P. Hyperspectral remote sensing and aplication. Beijing: Higher Education Press, 2000. 浦瑞良, 宮鹏. 高光谱遥感及其应用. 北京: 高等教育出版社, 2000. [4] Tong Q X, Xue Y Q, Zhang L F. Progress in hyperspectral remote sensing science and technology in China over the past three decades. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 70-91. [5] Guo Y J, Long R J, Zhang D G, 郭彦军, 龙瑞军, 张德罡, 等. 东部祁连山高寒草甸灌木和牧草营养成分含量季节变化动态. 草业科学, 2001, 18(6): 36-39. [6] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 2003, 40(3): 523-534. [7] Houborg R, Fisher J B, Skidmore A K. Advances in remote sensing of vegetation function and traits. International Journal of Applied Earth Observation and Geoinformation, 2015, 43: 1-6. [8] Thenkabail P S, Enclona E A, Ashton M S, [9] Jafari R, Lewis M M. Arid land characterisation with EO-1 Hyperion hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 298-307. [10] Blanco P D, Valle H F, Bouza P J, [11] Christian B, Joshi N, Saini M, [12] Marshall M, Thenkabail P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 205-218. [13] Zhang C Y. Multiscale quantification of urban composition from EO-1/Hyperion data using object-based spectral unmixing. International Journal of Applied Earth Observation and Geoinformation, 2016, 47: 153-162. [14] Cheng Q, Huang J F, Wang R C, 程乾, 黄敬峰, 王人潮, 等. 水稻叶面积指数与MODIS植被指数、红边位置之间的相关分析. 农业工程学报, 2003, 19(5): 104-108. [15] Wang X Z, Huang J F, Li Y M, 王秀珍, 黄敬峰, 李云梅, 等. 水稻叶面积指数的高光谱遥感估算模型. 遥感学报, 2004, 8(1): 81-88. [16] Yi Q X, Huang J F, Wang X Z. Hyperspectral estimation models for crude fiber concentration of corn. Journal of Infrared and Millimeter Waves, 2007, 26(5): 393-395. 易秋香, 黄敬峰, 王秀珍. 玉米粗纤维含量高光谱估算模型研究. 红外与毫米波学报, 2007, 26(5): 393-395. [17] Mirik M, Norland J E, Crabtree R L, [18] Beeri O, Phillips R, Hendrickson J, [19] Skidmore A K, Ferwerda J G, Mutanga O. Forage quality of savannas-simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sensing of Environment, 2010, 114(1): 64-72. [20] Ferner J, Linstadter A, Südekum K H, [21] Wu F L, Wang Z S, Yang Q, 吴发莉, 王之盛, 杨勤, 等. 甘南碌曲和合作地区冬夏季高寒天然牧草生产特性、营养成分和饲用价值分析. 草业学报, 2014, 23(4): 31-38. [22] Tong Q X, Zhang B, Zheng L F. Hyperspectral remote sensing theory, technology and application. Beijing: Higher Education Press, 2006. 童庆禧, 张兵, 郑兰芬. 高光谱遥感: 原理, 技术与应用. 北京: 高等教育出版社, 2006. [23] Grossman Y L, Ustin S L, Jacquemoud S, [24] Dawson T P, Curran P J, North P R J, [25] Feng Y, Miller J R. Vegetation green reflectance at high spectral resolution as a measure of leaf chlorophyll content. Calgary Alberta: Proceedings of the 14th Canadian Symposium on Remote Sensing, 1991: 351-355. [26] Mutanga O. Hyperspectral remote sensing of tropical grass quality and quantity. Wageningen, the Netherlands: International Institute for Geoinformation Science and Earth Observation and Wageningen University, 2004. [27] Mutanga O, Skidmore A K. Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 34-42. [28] Tian Q, Tong Q, Pu R, [29] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environmental, 2002, 81(2/3): 337-354. [30] Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 2002, 81(1): 45-47. [31] Haboudane D, Miller J R, Tremblay N, [32] Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of [33] Datt B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using eucalyptus leaves. Journal of Plant Physiology, 1999, 154(1): 30-36. [34] Clevers J G P W. Imaging Spectrometry in agriculture-plant vitality and yield indicators//Imaging spectrometry—a tool for environmental observations. Springer Netherlands, 1994: 193-219. [35] Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 1993, 14(8): 1563-1575. [36] Fourty T, Baret F, Jacquemoud S. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sensing of Environment, 1996, 56(2): 104-117. [37] Serrano L, Peñuelas J, Ustin S L. Remote sensing of nitrogen and lignin in mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sensing of Environment, 2002, 81(2/3): 355-364. [38] Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992, 41(1): 35-44. [39] Gamon J A, Serrano L, Surfus J S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 1997, 112(4): 492-501. [40] Penuelas J, Baret F, Filella I. Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31(2): 221-230. [41] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107. [42] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information (by gray mapping of Landsat MSS data). Photogrammetric Engineering and Remote Sensing, 1997, 43(12): 1541-1552. [43] Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 1996, 148(supplement 3/4): 494-500. [44] Marshak A, Knyazikhin Y, Davis A B, [45] Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environmental, 1988, 25(3): 295-309. [46] Huete A, Didan K, Miura T, [47] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 2003, 86(4): 542-553. [48] Schleicher T D, Bausch W C, Delgado J A, [49] Inoue Y, Sakaiya E, Zhu Y, [50] Nagler P L, Inoue Y, Glenn E P, [51] Galvao L S, Formaggio A R, Tisot D A. Discrimination of surface varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 2005, 94(4): 523-534. [52] Baret F, Fourty T. Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements. Agronomie, 1997, 17(9/10): 455-464. [53] Colombo R, Merom M, Marchesi A, [54] Darvishzadeh R, Skidmore A, Schlerf M, [55] Feret J B, Francois C, Asner G P, [56] Omari K, White H P, Staenz K, [57] Riano D, Vaughan P, Chuvieco E, [58] Malenovsky Z, Albrechtova J, Lhotakova Z, [59] Moorthy I, Miller J R, Noland T L. Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level. Remote Sensing of Environment, 2008, 112(6): 2824-2838. [60] Zarco-Tejada P J, Miller J R, Harron J, [61] Fourty T, Baret F, Jacquemoud S, [62] Jacquemoud S, Ustin S L, Verdebout J, [63] Mutanga O, Skidmore A K, Kumar L, [64] Mutanga O, Skidmore A K. Continuum-removed absorption features estimate tropical savanna grass quality in situ. Earsel Workshop on Imaging Spectroscopy, 2003, (3): 13-16. [65] Thulin S, Hill M J, Held A, [66] Mutanga O, Skidmore A K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment, 2004b, 90(1): 104-115. [67] Ramoelo A, Wolff E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. International Journal of Applied Earth Observation and Geoinformation, 2015, 43: 43-54. [68] Ramoelo A, Cho M A, Mathieu R, [69] Capolupo A, Kooistra L, Berendonk C, [70] Villamuelas M, Fernández N, Albanell E, [71] Gao J L, Meng B P, Liang T G, [72] Douman S, Tohuta sheng, Zheng F L, 塞里克. 都曼, 托乎塔生, 郑逢令, 等. 高分遥感在新疆草地资源与生态研究中的应用前景. 草食家畜, 2009, (4): 12-14. [73] Lin Y, Li Q, Wang H B, 林毅, 李倩, 王宏博, 等. 高光谱反演植被水分含量研究综述. 中国农学通报, 2015, 31(3): 167-172. [74] Thomas J R, Namken L N, Oerther G F, [75] Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment, 1989, 30(3): 271-278. [76] Carter G A. Primary and secondary effects of water content of the spectral reflectance of leaves. American Journal of Botany, 1996, 78(7): 916-924. [77] Dobrowski S Z, Pushnik J C, Zarco-Tejada P J, [78] Feng X W, Chen X, Bao A M, 冯先伟, 陈曦, 包安明, 等. 水分胁迫条件下棉花生理变化及其高光谱响应分析. 干旱区地理, 2004, 27(2): 250-255. [79] Zhou S L, Xie R Z, Jiang H R, 周顺利, 谢瑞芝, 蒋海荣, 等. 用反射率、透射率和吸收率分析玉米叶片水分含量时的峰值波长选择. 农业工程学报, 2006, 22(5): 28-31. [80] Fu Y B, Fan Y M, Sheng J D, 付彦博, 范燕敏, 盛建东, 等. 紫花苜蓿冠层反射光谱与叶片含水率关系研究. 光谱学与光谱分析, 2013, 33(3): 766-769. [81] Liu L Y, Wang J H, Zhang Y J, 刘良云, 王纪华, 张永江, 等. 叶片辐射等效水厚度计算与叶片水分定量反演研究. 遥感学报, 2007, 11(3): 289-295. [82] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999, 67(3): 267-287. [83] Wang X, Liu S J, Jia H F, 王迅, 刘书杰, 贾海峰, 等. 基于高光谱数据的高寒草地营养状况的研究. 光谱学与光谱分析, 2012, 32(10): 2780-2784. [84] Ma W W, Gong C L, Hu Y, 马维维, 巩彩兰, 胡勇, 等. 牧草品质的高光谱遥感监测模型研究. 光谱学与光谱分析, 2015, 35(10): 2851-2855. [85] Zhang A W, Yan W Y, Guo C F. Inversion model of pasture crude protein content based on hyperspectral image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 188-194. 张爱武, 鄢文艳, 郭超凡. 基于高光谱图像的牧草粗蛋白含量反演模型. 农业工程学报, 2018, 34(3): 188-194. [86] Mutanga O, Skidmore A K. Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrusciliaris) measured under controlled laboratory conditions. International Journal of Applied Earth Observation and Geoinformation, 2004, 5(2): 87-96. [87] Ramoelo A, Skidmore A K, Cho M A, [88] Knox N M, Skidmore A K, Prins H H T, [89] Na Q. Hyperspectral and nutrition of 纳钦. 紫花苜蓿和缘毛雀麦高光谱与营养成分的相关性研究. 呼和浩特: 内蒙古农业大学, 2010. [90] Gao J L, Hou Y C, Bai Y F, 高金龙, 侯尧宸, 白彦福, 等. 基于高光谱数据的高寒草甸氮磷钾含量估测方法研究—以青海省贵南县及玛沁县高寒草甸为例. 草业学报, 2016, 25(3): 9-21. [91] Gao J L, Meng B P, Yang S X, 高金龙, 孟宝平, 杨淑霞, 等. 基于HJ-1A卫星数据的高寒草地氮素评估-以青海省贵南县及玛沁县高寒草地为例. 草业学报, 2016, 25(10): 11-20. [92] Xiong Y, Liu B, Yue Y M. Inversion of nitrogen content of plant leaves based on ASD and FISS. Ecology and Environmental Sciences, 2013, 22(4): 582-587. 熊鹰, 刘波, 岳跃民. 基于ASD和FISS的植被叶片氮素含量反演研究. 生态环境学报, 2013, 22(4): 582-587. [93] Fan Y M, Wu H Q, Jin G L. Hyperspectral properties analysis of grassland types in Xinjiang. Pratacultural Sinence, 2006, 23(6): 15-18. 范燕敏, 武红旗, 靳瑰丽. 新疆草地类型高光谱特征分析. 草业科学, 2006, 23(6): 15-18. [94] Zhang K, Guo N, Wang R Y, 张凯, 郭铌, 王润元, 等. 西北荒漠草甸植被光谱反射特征研究. 地球科学进展, 2006, 21(10): 1063-1069. [95] Zhang K, Guo N, Wang R Y, 张凯, 郭铌, 王润元, 等. 甘肃省两种主要草地类型的光谱反射特征比较. 农业工程学报, 2009, 25(S2): 142-148. [96] Gai Y Y, Fan W J, Xu X R, 盖颖颖, 范闻捷, 徐希孺, 等. 基于高光谱数据的呼伦贝尔草原花期物种识别和覆盖度估算. 光谱学与光谱分析, 2011, 31(10): 2778-2783. [97] Liu B, Sheng W S, Li R, 刘波, 沈渭寿, 李儒, 等. 雅鲁藏布江源区高寒草地退化光谱响应变化研究. 光谱学与光谱分析, 2013, 33(6): 1598-1602. [98] Xu L H, Xie D T, Wei C F, 徐丽华, 谢德体, 魏朝富, 等. 紫色土土壤全氮和全磷含量的高光谱遥感预测. 光谱学与光谱分析, 2013, (3): 723-727. [99] Hu Y N, Cui X, Meng B P, 胡远宁, 崔霞, 孟宝平, 等. 甘南高寒草甸主要毒杂草光谱特征分析. 草业科学, 2015, 32(2): 160-167. [100] Hu X B. Correlation analysis of grass spectrum and forage yield. Grass-feeding Livestock, 1996, 93(4): 43-47. 胡新博. 草地光谱与牧草产量的相关分析. 草食家畜, 1996, 93(4): 43-47. [101] Liu Z Y, Huang J F, Wu X H, 刘占宇, 黄敬峰, 吴新宏, 等. 草地生物量的高光谱遥感估算模型. 农业工程学报, 2006, 22(2): 111-115. [102] Xu H, Bao Y H, Bao G, 胥慧, 包玉海, 包刚, 等. 内蒙古典型草原干草生物量高光谱遥感估算研究. 阴山学刊(自然科学版), 2014, 28(4): 22-27. |
[1] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[2] | Xin-you WANG, Wen-xia CAO, Xiao-jun WANG, Yu-zhen LIU, Rui GAO, Shi-lin WANG, Hai-tao AN, Xiu-xia DENG, Wen-hu WANG. Herbage production and forage quality responses to cutting height and fertilization of legume-grass mixtures in the Hexi region [J]. Acta Prataculturae Sinica, 2021, 30(4): 99-110. |
[3] | Yu-lei JIA, Zhen LIAO, Li-fang WANG, Jian-chao BU, Biao-sheng LIN, Hui LIN, De-wei SU, Guo-dong LU, Zhan-xi LIN. Effects of chemical fertilizer reduction and co-application with a JUNCAO nitrogen-fixing biofertilizer on growth and nutritional quality of Pennisetum giganteum and soil nutrient status [J]. Acta Prataculturae Sinica, 2021, 30(3): 215-223. |
[4] | Sheng-wei ZHANG, Xiao-ping WANG, Zhan-hai ZHANG, You-ji MA, Shuang-bao GUN, Qiao-li YANG, Xiao-li GAO, Bao-jun ZHANG. Effects of Broussonetia papyrifera silage on growth performance, serum biochemical indexes and meat quality of Dorper×Hu crossbred sheep [J]. Acta Prataculturae Sinica, 2021, 30(3): 89-99. |
[5] | Bai-ping SHA, Ying-zhong XIE, Xue-qin GAO, Wei CAI, Bing-zhe FU. Effects of coupling of drip irrigation water and fertilizer on yield and quality of alfalfa in the yellow river irrigation district [J]. Acta Prataculturae Sinica, 2021, 30(2): 102-114. |
[6] | Ji-qing WANG, Ji-yuan SHEN, Xiu LIU, Shao-bin LI, Yu-zhu LUO, Meng-li ZHAO, Zhi-yun HAO, Na KE, Yi-ze SONG, Li-rong QIAO. Comparative analysis of meat production traits, meat quality, and muscle nutrient and fatty acid contents between Ziwuling black goats and Liaoning cashmere goats [J]. Acta Prataculturae Sinica, 2021, 30(2): 166-177. |
[7] | Hui-xin JIANG, Shan-shan BAI, Bo WU, Jing-yi SONG, Guo-liang WANG. A multivariate evaluation of agronomic straits and forage quality of 22 oat varieties in the Huang-Huai-Hai area of China [J]. Acta Prataculturae Sinica, 2021, 30(1): 140-149. |
[8] | Shuang WU, Yu-xiang ZHOU, Rou JIA, Ya-dong JIN, Wan-zong YANG. Effects of cellulase treatment of buckwheat straw on fiber structure and meat quality of Tan sheep [J]. Acta Prataculturae Sinica, 2021, 30(1): 170-180. |
[9] | Hong-tao XIANG, Dian-feng ZHENG, Ning HE, Wan LI, Man-li WANG, Shi-ya WANG. Research progress on the physiological response of plants to low temperature and the amelioration effcectiveness of exogenous ABA [J]. Acta Prataculturae Sinica, 2021, 30(1): 208-219. |
[10] | Bo JI, Jian-long HE, Xu-dong WU, Zhan-jun WANG, Ying-zhong XIE, Qi JIANG. Characteristics of soil organic carbon and active organic carbon in typical natural grassland in Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(1): 24-35. |
[11] | ZHANG Tong-rui, LI Fu-cui, LI Hui, JI Shuang-xuan, FAN Zhi-hao, CHEN Yu-feng, CHAO Yue-hui, HAN Lie-bao. Effect of carpet mesh implantation on hybrid turf stability and performance quality [J]. Acta Prataculturae Sinica, 2020, 29(8): 27-36. |
[12] | LU Jiao-yun, XIONG Jun-bo, ZHANG He-shan, TIAN Hong, YANG Hui-min, LIU Yang. Effects of water stress on yield, quality and trace element composition of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
[13] | YUE Ke-xin, GONG Ji-rui, YU Shang-yuan, BAOYIN Taogetao, YANG Bo, WANG Biao, ZHU Chen-chen, ZHANG Zi-he, SHI Jia-yu. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition [J]. Acta Prataculturae Sinica, 2020, 29(6): 71-82. |
[14] | ZHANG Li-li, SHI Min, LI Yan-zhong. Effect of anthracnose infection on alfalfa yield and quality in the Shaerqin area [J]. Acta Prataculturae Sinica, 2020, 29(6): 117-126. |
[15] | LIU Jiang, LV Tao, ZHANG Li-xin, YE Li-na, LIU Xiang-yang, DAI Xiang-rong, WANG Wei-wei, DING Ru. Soil quality assessment by principal component analysis in Glycyrrhiza uralensis stands of differing ages [J]. Acta Prataculturae Sinica, 2020, 29(6): 162-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||