Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (3): 28-40.DOI: 10.11686/cyxb2020161
Previous Articles Next Articles
Jie LI1(), Pan PAN2, Chang-ting WANG2(), Lei HU2, Ke-yu CHEN2, Wen-gao YANG2
Received:
2020-04-08
Revised:
2020-06-29
Online:
2021-03-20
Published:
2021-03-09
Contact:
Chang-ting WANG
Jie LI, Pan PAN, Chang-ting WANG, Lei HU, Ke-yu CHEN, Wen-gao YANG. Root dynamics of artificial grassland for swards of differing ages in the ‘Three-River Source’ region[J]. Acta Prataculturae Sinica, 2021, 30(3): 28-40.
土层 Soil layer (cm) | 建植年限 Cultivation year (a) | pH | SM (%) | SOC (g·kg-1) | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
0~10 | 5 | 6.73± 0.01Bb | 13.68± 0.65Ab | 44.70± 0.44Ab | 7.84± 0.31Aab | 0.54± 0.03Ac | 19.18± 0.21Aa | 213.25± 4.08Ac | 2.55± 0.43Ac | 28.22± 0.76Ac |
6 | 7.34± 0.02Ba | 19.29± 0.90Aa | 48.78± 1.85Aa | 8.56± 0.27Aa | 0.73± 0.01Ab | 19.35± 0.20Aa | 316.25± 4.08Aa | 6.25± 0.76Ab | 33.54± 0.29Ab | |
9 | 6.28± 0.03Bc | 7.82± 0.11Ac | 30.47± 0.75Ac | 5.45± 0.17Ac | 0.54± 0.05Ac | 18.84± 0.21Aa | 263.91± 26.02Ab | 3.73± 0.38Ac | 29.76± 0.24Ac | |
13 | 6.13± 0.02Bd | 16.50± 1.51Aab | 45.50± 1.01Aab | 7.32± 0.31Ab | 0.87± 0.01Aa | 19.13± 0.16Ba | 286.86± 3.30Aab | 10.35± 0.54Aa | 49.38± 1.53Aa | |
10~20 | 5 | 7.16± 0.03Ac | 14.58± 3.55Aa | 38.61± 0.33Ba | 7.48± 0.18Aa | 0.63± 0.03Ab | 19.15± 0.10Ab | 174.01± 4.08Bc | 3.65± 0.42Aab | 12.62± 0.44Bd |
6 | 7.93± 0.04Aa | 14.32± 0.96Ba | 39.78± 0.34Ba | 7.28± 0.18Ba | 0.67± 0.02Bab | 18.86± 0.20Ab | 232.76± 4.08Bb | 3.68± 0.41Bab | 16.17± 0.65Bc | |
9 | 7.72± 0.06Ab | 7.12± 0.66Bc | 23.54± 0.24Ac | 5.09± 0.26Ac | 0.63± 0.06Ab | 19.26± 0.22Ab | 234.11± 3.17Ab | 3.08± 0.40Ab | 22.62± 0.92Bb | |
13 | 6.97± 0.02Ad | 10.58± 0.45Bb | 28.01± 1.46Bb | 5.99± 0.06Bb | 0.85± 0.21Aa | 20.38± 0.03Aa | 282.67± 4.09Aa | 4.81± 0.42Ba | 32.74± 0.91Ba |
Table 1 Soil physical and chemical property in artificial grassland of different cultivation years
土层 Soil layer (cm) | 建植年限 Cultivation year (a) | pH | SM (%) | SOC (g·kg-1) | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
0~10 | 5 | 6.73± 0.01Bb | 13.68± 0.65Ab | 44.70± 0.44Ab | 7.84± 0.31Aab | 0.54± 0.03Ac | 19.18± 0.21Aa | 213.25± 4.08Ac | 2.55± 0.43Ac | 28.22± 0.76Ac |
6 | 7.34± 0.02Ba | 19.29± 0.90Aa | 48.78± 1.85Aa | 8.56± 0.27Aa | 0.73± 0.01Ab | 19.35± 0.20Aa | 316.25± 4.08Aa | 6.25± 0.76Ab | 33.54± 0.29Ab | |
9 | 6.28± 0.03Bc | 7.82± 0.11Ac | 30.47± 0.75Ac | 5.45± 0.17Ac | 0.54± 0.05Ac | 18.84± 0.21Aa | 263.91± 26.02Ab | 3.73± 0.38Ac | 29.76± 0.24Ac | |
13 | 6.13± 0.02Bd | 16.50± 1.51Aab | 45.50± 1.01Aab | 7.32± 0.31Ab | 0.87± 0.01Aa | 19.13± 0.16Ba | 286.86± 3.30Aab | 10.35± 0.54Aa | 49.38± 1.53Aa | |
10~20 | 5 | 7.16± 0.03Ac | 14.58± 3.55Aa | 38.61± 0.33Ba | 7.48± 0.18Aa | 0.63± 0.03Ab | 19.15± 0.10Ab | 174.01± 4.08Bc | 3.65± 0.42Aab | 12.62± 0.44Bd |
6 | 7.93± 0.04Aa | 14.32± 0.96Ba | 39.78± 0.34Ba | 7.28± 0.18Ba | 0.67± 0.02Bab | 18.86± 0.20Ab | 232.76± 4.08Bb | 3.68± 0.41Bab | 16.17± 0.65Bc | |
9 | 7.72± 0.06Ab | 7.12± 0.66Bc | 23.54± 0.24Ac | 5.09± 0.26Ac | 0.63± 0.06Ab | 19.26± 0.22Ab | 234.11± 3.17Ab | 3.08± 0.40Ab | 22.62± 0.92Bb | |
13 | 6.97± 0.02Ad | 10.58± 0.45Bb | 28.01± 1.46Bb | 5.99± 0.06Bb | 0.85± 0.21Aa | 20.38± 0.03Aa | 282.67± 4.09Aa | 4.81± 0.42Ba | 32.74± 0.91Ba |
Fig.5 The changes of cumulative root production, cumulative root mortality and mean root standing crop of artificial grassland with different cultivation years
因子 Factor | 根系生产量 Root production | 根系死亡量 Root mortality | 根系现存量 Root standing crop | 根系寿命 Root longevity |
---|---|---|---|---|
地上生物量 Aboveground biomass | -0.462** | -0.478** | -0.402* | -0.010 |
丰富度 Richness | -0.103 | 0.037 | 0.138 | 0.228 |
Table 2 Correlation between root characteristics and plant community characteristics
因子 Factor | 根系生产量 Root production | 根系死亡量 Root mortality | 根系现存量 Root standing crop | 根系寿命 Root longevity |
---|---|---|---|---|
地上生物量 Aboveground biomass | -0.462** | -0.478** | -0.402* | -0.010 |
丰富度 Richness | -0.103 | 0.037 | 0.138 | 0.228 |
土层Soil layer | 因子Factor | pH | SM | SOC | TN | TP | TK | AN | AP | AK |
---|---|---|---|---|---|---|---|---|---|---|
0~10 cm | 根系生产量Root production | -0.103 | 0.292 | 0.317 | 0.063 | 0.695** | 0.249 | 0.123 | 0.533* | 0.529* |
根系死亡量Root mortality | -0.251 | 0.095 | 0.148 | -0.126 | 0.601* | 0.342 | 0.153 | 0.522* | 0.490 | |
根系现存量Root standing crop | -0.375 | 0.156 | 0.028 | -0.286 | 0.533* | 0.186 | 0.336 | 0.535* | 0.476 | |
根系寿命Root longevity | -0.435 | 0.330 | 0.258 | 0.098 | 0.633** | 0.019 | 0.258 | 0.726** | 0.759** | |
10~20 cm | 根系生产量Root production | -0.398 | 0.146 | -0.333 | -0.248 | 0.491 | 0.629** | 0.678** | 0.565* | 0.753** |
根系死亡量Root mortality | -0.369 | -0.228 | -0.235 | -0.537* | 0.509* | 0.651** | 0.782** | 0.804** | 0.811** | |
根系现存量Root standing crop | 0.142 | -0.026 | -0.217 | -0.204 | 0.311 | 0.152 | 0.638** | -0.026 | 0.462 | |
根系寿命Root longevity | 0.437 | -0.158 | -0.308 | -0.378 | 0.030 | -0.136 | 0.395 | -0.188 | 0.220 |
Table 3 Correlation between root characteristics and soil physical and chemical property
土层Soil layer | 因子Factor | pH | SM | SOC | TN | TP | TK | AN | AP | AK |
---|---|---|---|---|---|---|---|---|---|---|
0~10 cm | 根系生产量Root production | -0.103 | 0.292 | 0.317 | 0.063 | 0.695** | 0.249 | 0.123 | 0.533* | 0.529* |
根系死亡量Root mortality | -0.251 | 0.095 | 0.148 | -0.126 | 0.601* | 0.342 | 0.153 | 0.522* | 0.490 | |
根系现存量Root standing crop | -0.375 | 0.156 | 0.028 | -0.286 | 0.533* | 0.186 | 0.336 | 0.535* | 0.476 | |
根系寿命Root longevity | -0.435 | 0.330 | 0.258 | 0.098 | 0.633** | 0.019 | 0.258 | 0.726** | 0.759** | |
10~20 cm | 根系生产量Root production | -0.398 | 0.146 | -0.333 | -0.248 | 0.491 | 0.629** | 0.678** | 0.565* | 0.753** |
根系死亡量Root mortality | -0.369 | -0.228 | -0.235 | -0.537* | 0.509* | 0.651** | 0.782** | 0.804** | 0.811** | |
根系现存量Root standing crop | 0.142 | -0.026 | -0.217 | -0.204 | 0.311 | 0.152 | 0.638** | -0.026 | 0.462 | |
根系寿命Root longevity | 0.437 | -0.158 | -0.308 | -0.378 | 0.030 | -0.136 | 0.395 | -0.188 | 0.220 |
1 | Jiang C, Zhang L B. Climate change and its impact on the eco-environment of the Three-Rivers Headwater region on the Tibetan Plateau, China. International Journal of Environmental Research and Public Health, 2015, 12(10): 12057-12081. |
2 | Xu M, Kang S C, Che X L, et al. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source region of the Tibetan Plateau. Science of the Total Environment, 2018, 639: 1220-1232. |
3 | Chu H B, Wei J H, Qiu J, et al. Identification of the impact of climate change and human activities on rainfall-runoff relationship variation in the Three-River Headwaters region. Ecological Indicators, 2019, 106(11): 1-13. |
4 | Shao Q, Cao W, Fan J, et al. Effects of an ecological conservation and restoration project in the Three-River Source region, China. Journal of Geographical Sciences, 2017, 27(2): 183-204. |
5 | Wang X X, Dong S K, Li Y Y, et al. Effects of grassland degradation and artificial restoration on soil physicochemical properties in Three-River Headwater. Journal of Soil and Water Conservation, 2012, 26(4): 115-119, 124. |
王学霞, 董世魁, 李媛媛, 等. 三江源区草地退化与人工恢复对土壤理化性状的影响. 水土保持学报, 2012, 26(4): 115-119, 124. | |
6 | Ma Y S, Zhang Z H, Dong Q M, et al. Application of restoration ecology in “black soil type” degraded grassland rebuilding. Journal of Gansu Agricultural University, 2007, 42(2): 91-97. |
马玉寿, 张自和, 董全民, 等. 恢复生态学在 “黑土型” 退化草地植被改建中的应用. 甘肃农业大学学报, 2007, 42(2): 91-97. | |
7 | Cao G M, Long R J. The bottleneck and its resolutions to the natural recovery of black soil type degraded grassland in the Three River Source region. Acta Agrestia Sinica, 2009, 17(1): 4-9. |
曹广民, 龙瑞军. 三江源区 “黑土滩” 型退化草地自然恢复的瓶颈及解决途径. 草地学报, 2009, 17(1): 4-9. | |
8 | Zhang R, Wang Y, Ma L N, et al. Species diversities of plant communities of degraded artificial grassland, “Heitutan” and natural grassland in the “Three-River Headwaters” region. Acta Agrestia Sinica, 2014, 22(6): 1171-1178. |
张蕊, 王媛, 马丽娜, 等. 三江源区退化人工草地、“黑土滩” 和天然草地植物群落物种多样性. 草地学报, 2014, 22(6): 1171-1178. | |
9 | Yang X Z, Wang C T, Zi H B, et al. Soil microbial community structure characteristics in artificial grassland with different cultivation years in the headwater region of Three Rivers, China. Chinese Journal of Applied & Environmental Biology, 2015, 21(2): 341-349. |
杨希智, 王长庭, 字洪标, 等. 三江源区不同建植年限人工草地土壤微生物群落结构特征. 应用与环境生物学报, 2015, 21(2): 341-349. | |
10 | Zhu L, Li Y Y, Wang X X, et al. Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Science Society of America Journal, 2012, 76(6): 2256-2264. |
11 | Wang C T, Wang G X, Liu W, et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow. Israel Journal of Ecology & Evolution, 2013, 59(3): 141-153. |
12 | Hu L, Zi H B, Wu P F, et al. Soil bacterial communities in grasslands revegetated using Elymus nutans are largely influenced by soil pH and total phosphorus across restoration time. Land Degradation and Development, 2019, 30(18): 2243-2256. |
13 | Zhang Y K, Zhang L F, Zhang X Z, et al. Effects of different range restorations on the root traits of vegetation in the alpine meadow. Journal of Lanzhou University (Natural Sciences), 2014, 50(1): 107-111. |
张燕堃, 张灵菲, 张新中, 等. 不同草地恢复措施对高寒草甸根系特征的影响. 兰州大学学报(自然科学版), 2014, 50(1): 107-111. | |
14 | Wang C T, Wang G X, Liu W, et al. Vegetation roots and soil physical and chemical characteristics in degeneration succession of the Kobresia pygmaea meadow. Ecology and Environment Sciences, 2012, 21(3): 409-416. |
王长庭, 王根绪, 刘伟, 等. 植被根系及其土壤理化特征在高寒小嵩草草甸退化演替过程中的变化. 生态环境学报, 2012, 21(3): 409-416. | |
15 | Gang H, Padilla F M, Xue Y Z, et al. Fine root dynamics and longevity of Artemisia halodendron reflect plant growth strategy in two contrasting habitats. Journal of Arid Environments, 2012, 79(4): 1-7. |
16 | Sullivan P F, Sommerkorn M, Rueth H M, et al. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia, 2007, 153(3): 643-652. |
17 | Bai W M, Zhou M, Fang Y, et al. Differences in spatial and temporal root lifespan of three Stipa grasslands in Northern China. Biogeochemistry, 2017, 132(3): 293-306. |
18 | Eissenstat D M, Wells C E, Yanai R D, et al. Building roots in a changing environment: Implications for root longevity. New Phytologist, 2000, 147(1): 33-42. |
19 | Brunner I, Bakker M R, Bjork R G, et al. Fine-root turnover rates of European forests revisited: An analysis of data from sequential coring and ingrowth cores. Plant and Soil, 2013, 362(1/2): 357-372. |
20 | Shi J W, Yu S Q, Yu L Z, et al. Application of minirhizotron in fine root studies. Chinese Journal of Applied Ecology, 2006, 17(4): 715-719. |
史建伟, 于水强, 于立忠, 等. 微根管在细根研究中的应用. 应用生态学报, 2006, 17(4): 715-719. | |
21 | Zi H B, Chen Y, Hu L, et al. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 2018, 42(1): 38-49. |
字洪标, 陈焱, 胡雷, 等. 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 2018, 42(1): 38-49. | |
22 | Bao S D. Analysis of agricultural chemistry. Beijing: China Agriculture Press, 2000: 25-82. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 25-82. | |
23 | Wells C E, Glenn D M, Eissenstat D M. Changes in the risk of fine‐root mortality with age: A case study in peach, Prunus persica (Rosaceae). American Journal of Botany, 2002, 89(1): 79-87. |
24 | Burton A J, Hendrick K S P L. Relationships between fine root dynamics and nitrogen availability in Michigan Northern hardwood forests. Oecologia, 2000, 125(3): 389-399. |
25 | Majdi H, Andersson P. Fine root production and turnover in a Norway spruce stand in Northern Sweden: Effects of nitrogen and water manipulation. Ecosystems, 2005, 8(2): 191-199. |
26 | Wu Y B, Che R X, Ma S, et al. Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods. Acta Ecologica Sinica, 2014, 34(13): 3529-3537. |
吴伊波, 车荣晓, 马双, 等. 高寒草甸植被根系生产和周转的比较研究. 生态学报, 2014, 34(13): 3529-3537. | |
27 | Sanders J L, Brown D A A J. A new fiber optic technique for measuring root growth of soybeans under field conditions. Agronomy Journal, 1978, 70(6): 259-273. |
28 | Wang M B, Xun J J, Chen J W, et al. The net growth rate of fine roots of Caragana korshinskii seedlings in the Loess Plateau region, Northwest Shanxi. Acta Ecologica Sinica, 2010, 30(5): 1117-1124. |
王孟本, 荀俊杰, 陈建文, 等. 晋西北黄土区幼龄柠条根系的净生长速率. 生态学报, 2010, 30(5): 1117-1124. | |
29 | Ade L J, Zi H B, Liu M, et al. Response of belowground root growth dynamics to snow cover change in alpine meadow. Acta Ecologica Sinica, 2017, 37(20): 6773-6784. |
阿的鲁骥, 字洪标, 刘敏, 等. 高寒草甸地下根系生长动态对积雪变化的响应. 生态学报, 2017, 37(20): 6773-6784. | |
30 | Zi H B, Liu M, Ade L J, et al. Effects of cultivation duration on soil microbial functional diversity of artificial grassland in the Three-River Headwater region. Chinese Journal of Ecology, 2017, 36(4): 978-987. |
字洪标, 刘敏, 阿的鲁骥, 等. 三江源区不同建植年限对人工草地土壤微生物功能多样性的影响. 生态学杂志, 2017, 36(4): 978-987. | |
31 | Xing Y F, Wang X L, Liu Y Q, et al. Characteristics of plant community and soil organic carbon and nitrogen in artificial grassland with different establishment years. Acta Agrestia Sinica, 2020, 28(2): 521-528. |
邢云飞, 王晓丽, 刘永琦, 等. 不同建植年限人工草地植物群落和土壤有机碳氮特征. 草地学报, 2020, 28(2): 521-528. | |
32 | Kirk J L, Beaudette L A, Hart M, et al. Methods of studying soil microbial diversity. Journal of Microbiological Methods, 2004, 58(2): 169-188. |
33 | Geng Y P, Pan X Y, Xu C Y, et al. Plasticity and ontogenetic drift of biomass allocation in response to above-and below-ground resource availabilities in perennial herbs: A case study of Alternanthera philoxeroides. Ecological Research, 2007, 22(2): 255-260. |
34 | Gedroc J J, McConnaughay K D M, Coleman J S. Plasticity in root/shoot partitioning: Optimal, ontogenetic, or both? Functional Ecology, 1996, 10(1): 44-50. |
35 | Ghestem M, Veylon G, Bernard A, et al. Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil, 2014, 377(1/2): 43-61. |
36 | Paetsch L, Mueller C W, Kogel-Knabner I, et al. Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Scientific Reports, 2018, 8(1): 6852-6862. |
37 | Yang Y, Fang J, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biology, 2009, 15(11): 2723-2729. |
38 | Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310. | |
39 | Change J J, Xu L, Xue J Y, et al. Effects of grazing intensity on soil organic matter and microorganisms in the Zoige alpine meadow. Acta Prataculturae Sinica, 2018, 27(1): 25-34. |
常晶晶, 徐丽, 薛晶月, 等. 放牧强度对若尔盖高寒草甸土壤有机质和微生物的影响. 草业学报, 2018, 27(1): 25-34. | |
40 | Cammeraat E L H, Risch A C. The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 2010, 132(4): 285-294. |
41 | Wang Q L, Wang C T, Liu W, et al. Changes in plant communities and soil microbial physiological groups of artificial grasslands established for different years in headwater region of Yangtze River and Yellow River. Chinese Journal of Applied Ecology, 2009, 20(11): 2646-2651. |
王启兰, 王长庭, 刘伟, 等. 三江源区不同建植年限人工草地植物群落与土壤微生物生理类群的变化. 应用生态学报, 2009, 20(11): 2646-2651. | |
42 | Li A, Gu M H, Zhang S T, et al. Effects of species richness on weed invasion in an artificial grassland ecosystem in eastern Tibetan Plateau. Chinese Journal of Ecology, 2009, 28(2): 177-181. |
李昂, 顾梦鹤, 张世挺, 等. 青藏高原东缘人工草地群落物种丰富度对杂草入侵的影响. 生态学杂志, 2009, 28(2): 177-181. | |
43 | Wang C T, Long R J, Wang Q L, et al. Community succession of differently aged artificial grasslands and their soil nutrient changes in Three Rivers’ Source Regions in Qinghai, China. Chinese Journal of Applied & Environmental Biology, 2009, 15(6): 3-10. |
王长庭, 龙瑞军, 王启兰, 等. 三江源区不同建植年代人工草地群落演替与土壤养分变化. 应用与环境生物学报, 2009, 15(6): 3-10. | |
44 | McCormack M L, Guo D L. Impacts of environmental factors on fine root lifespan. Frontiers in Plant Science, 2014, 5(6): 1-11. |
45 | Xu W J, Wang Z Q, Fan Z Q, et al. Effect of shading on the senescence of fine roots of Fraxinus mandshurica seedlings. Acta Phytoecologica Sinica, 2006, 30(1): 104-111. |
46 | Rong L, Li S J, Li X W, et al. Carbon dynamics of fine root (grass root) decomposition and active soil organic carbon in various models of land use conversion from agricultural lands into forest lands. Acta Ecologica Sinica, 2010, 31(1): 137-144. |
荣丽, 李守剑, 李贤伟, 等. 不同退耕模式细根(草根)分解过程中C动态及土壤活性有机碳的变化. 生态学报, 2010, 31(1): 137-144. | |
47 | Zhang Y Y, Liu B Y, Wang Y F, et al. Research progress of plant roots. Tianjin Agricultural Sciences, 2016, 22(11): 11-18. |
张鋆鋆, 刘冰洋, 王一凡, 等. 植物根系研究进展. 天津农业科学, 2016, 22(11): 11-18. | |
48 | Yavitt J B, Harms K E, Garcia M N, et al. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology, 2011, 36(4): 433-445. |
49 | Zhao X C, Lai L M, Zhu L H, et al. Fine root biomass, decomposition and turnover of Reaumuria soongorica communities in the Sangong River basin. Acta Ecologica Sinica, 2014, 34(15): 4295-4303. |
赵学春, 来利明, 朱林海, 等. 三工河流域两种琵琶柴群落根系生物量、分解与周转. 生态学报, 2014, 34(15): 4295-4303. | |
50 | Xu M H, Liu M, Xue X, et al. Effects of warming and clipping on the growth of aboveground vegetation in an alpine meadow. Ecology and Environmental Sciences, 2015, 24(2): 231-236. |
徐满厚, 刘敏, 薛娴, 等. 增温、刈割对高寒草甸地上植被生长的影响. 生态环境学报, 2015, 24(2): 231-236. | |
51 | Zhang X P, Yin Y, Yu L Z, et al. Influence of water and soil nutrients on biomass and productivity of fine tree roots: A review. Journal of Zhejiang Forestry College, 2010, 27(4): 606-613. |
张小朋, 殷有, 于立忠, 等. 土壤水分与养分对树木根系生物量及生产力的影响. 浙江林学院学报, 2010, 27(4): 606-613. | |
52 | Lopez B, Sabate S, Gracia C A. Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant and Soil, 2001, 230(1): 125-134. |
53 | Pei Z Q, Zhou Y, Zheng Y R. Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1182-1191. |
54 | Leppalammi K J, Salemaa M, Kleja D B, et al. Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment. Plant and Soil, 2014, 374(1/2): 73-88. |
55 | Searles P S, Saravia D A, Rousseaux M C. Root length density and soil water distribution in drip-irrigated olive orchards in Argentina under arid conditions. Crop and Pasture Science, 2009, 60(3): 280-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||