Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (9): 105-116.DOI: 10.11686/cyxb2020327

Previous Articles    

Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow

Li-tao TANG(), Rui MAO, Chang-ting WANG(), Jie LI, Lei HU, Hong-biao ZI   

  1. Institute of Qinghai-Tibetan Plateau,Southwest Minzu University,Chengdu 610041,China
  • Received:2020-07-07 Revised:2020-11-02 Online:2021-08-30 Published:2021-08-30
  • Contact: Chang-ting WANG

Abstract:

This research studied root characteristics, including standing root biomass, root mortality, root production and root life span in alpine meadow in Northwest Sichuan. Our methodology combined ‘minirhizotron’ root viewing tubes and indoor analysis to evaluate effects of nitrogen and phosphorus (NP) addition. The fertilization gradients were 0 (CK), 10 (NP10), 20 (NP20) and 30 g·m-2 (NP30), respectively. We also discuss the relationships between root characteristics and soil physical and chemical properties. It was found that nitrogen and phosphorus addition increased the levels of total phosphorus, available phosphorus and available nitrogen in the 0-10 cm soil layer, decreased the pH and C∶P, but had little effect on soil total nitrogen and organic carbon levels. Also, N and P addition prolonged root life. Compared to CK, standing root length increased by 8.79 and 13.21 mm·cm-3 in NP20 and NP30 treatments, respectively and the production and mortality increased by 3.17 mm·cm-3 and 2.92 mm·cm-3, respectively, for NP30. However, in the deep soil layer (10-20 cm), the standing root length decreased by 8.85 mm·cm-3 for NP10 and 5.37 mm·cm-3 for NP30, the production decreased by 1.63 mm·cm-3 for NP10 and 1.43 mm·cm-3 for NP20, and the mortality decreased by 2.14 mm·cm-3 for NP10 and 1.78 mm·cm-3 for NP30. In addition, there was a significant correlation between standing root length, root production, root mortality and soil available nutrients (P<0.01). In summary, NP addition made the distribution of plant roots shallower through change in the content of soil available nitrogen and phosphorus. Addition of NP slowed down root turnover by prolonging root life, reduced the carbon consumption of the root system and enhanced its carbon sink function, thus changing the carbon distribution pattern of the studied alpine meadow ecosystem.

Key words: alpine meadow, nitrogen and phosphorus addition, root characteristics, soil physical and chemical properties, minirhizotron