Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (5): 25-33.DOI: 10.11686/cyxb2020431

Previous Articles     Next Articles

Effects of green manure return regimes on soil greenhouse gas emissions

Xue-liang ZHANG1(), Yu-ting ZHANG1, Rui LIU1, Jun XIE1, Jian-wei ZHANG1, Wen-jing XU1, Xiao-jun SHI1,2()   

  1. 1.College of Resources and Environment,Southwest University,Chongqing 400715,China
    2.Academy of Agricultural Science,Southwest University,Chongqing 400716,China
  • Received:2020-09-27 Revised:2020-11-30 Online:2021-05-20 Published:2021-04-16
  • Contact: Xiao-jun SHI

Abstract:

There is little published data on the impact on subsequent greenhouse gas emissions of different green manure types and return regimes. To address this knowledge gap, a 91-day laboratory incubation experiment was conducted to explore the greenhouse gas emission impacts of green manure types and return regimes. In this study, two green manure species (vetch and ryegrass) with contrasting herbage C∶N ratios were incubated in two different return regimes (surface mulching and burial) to compare soil greenhouse gas emission of the four treatment combinations. Green manure return significantly increased soil CO2 and N2O emissions at all stages of the 91-day incubation period, and soil CO2 and N2O gas emissions also differed significantly between return regimes (surface mulching or burial) and plant species (vetch or ryegrass). The CO2 emissions associated with surface mulching were significantly lower than those following burial. During the incubation period, surface mulching reduced the CO2 emission rate and cumulative total emission by 17.07%-18.55% and 8.15%-9.79%, respectively, and reduced N2O emission rate and cumulative emission by 22.91%-38.35% and 17.97%-34.39%, respectively, compared to burial. For a given return method, green manure species significantly affected CO2 and N2O emissions. The cumulative emissions of CO2 and N2O following leguminous green manure return were 8.87%-10.85% and 21.90%-52.42% higher, respectively, than those of Poaceous green manure. There was a significant positive correlation between greenhouse gas emissions and soil microbial biomass carbon and nitrogen (MBC, MBN) in each treatment. Compared with surface mulching, green manure burial increased MBC by 21.42%-40.52% and MBN by 28.22%-34.23% (P<0.05). To sum up, green manure mulching can reduce greenhouse gas emissions more effectively than ploughing, and is thus conducive to protecting the ecological environment and saving labor costs, but the impact on crop growth and yield needs to be verified by field experiments.

Key words: green manure, returning regimes, greenhouse gas