Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (5): 13-24.DOI: 10.11686/cyxb2020458
Previous Articles Next Articles
Xue-hua PUYANG1,2(), Yue-ling WANG2, Zhi-jie ZHAO1, Juan HUANG2, Yu YANG2
Received:
2020-10-14
Revised:
2020-12-14
Online:
2021-05-20
Published:
2021-04-16
Contact:
Xue-hua PUYANG
Xue-hua PUYANG, Yue-ling WANG, Zhi-jie ZHAO, Juan HUANG, Yu YANG. Coupling relationships between vegetation and soil in different vegetation restoration models in the Loess region of Northern Shaanxi Province[J]. Acta Prataculturae Sinica, 2021, 30(5): 13-24.
植被恢复模式 Vegetation restoration model | 植被类型 Vegetation type | 海拔 Altitude (m) | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 栽植密度 Planting density (plant·hm-2) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 油松、侧柏 P. tabuliformis, P. orientalis | 1405~1447 | 21~25 | 半阳坡 Half sunny slope | 53~71 | 1450~2225 |
阔叶纯林 Hardwood forest | 刺槐、山杏、小叶杨 R. pseudoacacia, A. sibirica, P. simonii | 1412~1443 | 16~27 | 半阳坡 Half sunny slope | 57~78 | 875~1550 |
针阔混交林 Theropencedrymion | 山杏×油松、小叶杨×油松 A. sibirica×P. tabuliformis, P. simonii × P. tabuliformis | 1424~1452 | 15~24 | 半阳坡 Half sunny slope | 61~77 | 1325~1625 |
乔灌复层林 Arbor-shrub forest | 侧柏+沙棘、山杏+沙棘 P. orientalis+H. rhamnoides, A. sibirica+H. rhamnoides | 1406~1430 | 20~25 | 半阳坡 Half sunny slope | 71~85 | 3825~4675 |
灌木林 Shrubwood | 沙棘、柠条 H. rhamnoides, C. korshinskii | 1409~1455 | 20~28 | 半阳坡 Half sunny slope | 64~85 | 6400~9600 |
天然草地 Natural grassland | - | 1404~1438 | 19~24 | 半阳坡 Half sunny slope | - | - |
Table 1 Information of the study area
植被恢复模式 Vegetation restoration model | 植被类型 Vegetation type | 海拔 Altitude (m) | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 栽植密度 Planting density (plant·hm-2) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 油松、侧柏 P. tabuliformis, P. orientalis | 1405~1447 | 21~25 | 半阳坡 Half sunny slope | 53~71 | 1450~2225 |
阔叶纯林 Hardwood forest | 刺槐、山杏、小叶杨 R. pseudoacacia, A. sibirica, P. simonii | 1412~1443 | 16~27 | 半阳坡 Half sunny slope | 57~78 | 875~1550 |
针阔混交林 Theropencedrymion | 山杏×油松、小叶杨×油松 A. sibirica×P. tabuliformis, P. simonii × P. tabuliformis | 1424~1452 | 15~24 | 半阳坡 Half sunny slope | 61~77 | 1325~1625 |
乔灌复层林 Arbor-shrub forest | 侧柏+沙棘、山杏+沙棘 P. orientalis+H. rhamnoides, A. sibirica+H. rhamnoides | 1406~1430 | 20~25 | 半阳坡 Half sunny slope | 71~85 | 3825~4675 |
灌木林 Shrubwood | 沙棘、柠条 H. rhamnoides, C. korshinskii | 1409~1455 | 20~28 | 半阳坡 Half sunny slope | 64~85 | 6400~9600 |
天然草地 Natural grassland | - | 1404~1438 | 19~24 | 半阳坡 Half sunny slope | - | - |
目标层 Target layer | 准则层 Criteria layer | 权重值 Weight value | 指标层 Indicator layer | 综合权重值 Composite weight value | |
---|---|---|---|---|---|
表征指标 Characteristic index | 权重值 Weight value | ||||
植被群落 Vegetation community | 生长特性 Growth characteristic | 0.185 | 郁闭度 Canopy density | 0.584 | 0.108 |
生物量 Biomass | 0.416 | 0.077 | |||
养分效应 Nutrient effect | 0.334 | 全氮 Total N | 0.374 | 0.125 | |
全磷 Total P | 0.300 | 0.100 | |||
全钾 Total K | 0.326 | 0.109 | |||
物种多样性 Biodiversity | 0.481 | 物种丰富度 Species richness | 0.224 | 0.108 | |
Shannon-Wiener指数Shannon-Wiener index | 0.335 | 0.161 | |||
Pielou指数Pielou index | 0.252 | 0.121 | |||
Simpson指数Simpson index | 0.189 | 0.091 | |||
土壤环境 Soil environment | 物理性状 Physical characteristic | 0.309 | 容重 Bulk density | 0.265 | 0.082 |
含水量 Water content | 0.735 | 0.227 | |||
养分水平 Nutrient level | 0.691 | pH值 pH value | 0.103 | 0.071 | |
有机质 Organic matter | 0.236 | 0.163 | |||
全氮 Total N | 0.178 | 0.123 | |||
碱解氮 Alkali hydrolyzed N | 0.127 | 0.088 | |||
有效磷 Available P | 0.175 | 0.121 | |||
速效钾 Available K | 0.181 | 0.125 |
Table 2 Evaluation index system and weight value of coupling relationship between vegetation and soil
目标层 Target layer | 准则层 Criteria layer | 权重值 Weight value | 指标层 Indicator layer | 综合权重值 Composite weight value | |
---|---|---|---|---|---|
表征指标 Characteristic index | 权重值 Weight value | ||||
植被群落 Vegetation community | 生长特性 Growth characteristic | 0.185 | 郁闭度 Canopy density | 0.584 | 0.108 |
生物量 Biomass | 0.416 | 0.077 | |||
养分效应 Nutrient effect | 0.334 | 全氮 Total N | 0.374 | 0.125 | |
全磷 Total P | 0.300 | 0.100 | |||
全钾 Total K | 0.326 | 0.109 | |||
物种多样性 Biodiversity | 0.481 | 物种丰富度 Species richness | 0.224 | 0.108 | |
Shannon-Wiener指数Shannon-Wiener index | 0.335 | 0.161 | |||
Pielou指数Pielou index | 0.252 | 0.121 | |||
Simpson指数Simpson index | 0.189 | 0.091 | |||
土壤环境 Soil environment | 物理性状 Physical characteristic | 0.309 | 容重 Bulk density | 0.265 | 0.082 |
含水量 Water content | 0.735 | 0.227 | |||
养分水平 Nutrient level | 0.691 | pH值 pH value | 0.103 | 0.071 | |
有机质 Organic matter | 0.236 | 0.163 | |||
全氮 Total N | 0.178 | 0.123 | |||
碱解氮 Alkali hydrolyzed N | 0.127 | 0.088 | |||
有效磷 Available P | 0.175 | 0.121 | |||
速效钾 Available K | 0.181 | 0.125 |
耦合协调度 Coupling coordination degree | 耦合协调类型 Coupling coordination type | 耦合协调等级 Coupling coordination level | P (x)/S (y) | 耦合协调特征 Coupling coordination characteristic |
---|---|---|---|---|
0<D≤0.1 | 失调型 Imbalance type | 极度失调 Extreme imbalance | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤损益型 Soil loss type 共损衰退型 Both loss recession type 植被损益型 Vegetation loss type |
0.1<D≤0.2 | 严重失调 Serious imbalance | |||
0.2<D≤0.3 | 中度失调 Moderate imbalance | |||
0.3<D≤0.4 | 轻度失调 Mild imbalance | |||
0.4<D≤0.5 | 濒临失调 Endangered imbalance | |||
0.5<D≤0.6 | 协调型 Coordination type | 勉强协调 Barely coordination | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤滞后型 Soil lag type 同步发展型 Synchronous development type 植被滞后型 Vegetation lag type |
0.6<D≤0.7 | 初级协调 Primary coordination | |||
0.7<D≤0.8 | 中级协调 Intermediate coordination | |||
0.8<D≤0.9 | 良好协调 Good coordination | |||
0.9<D≤1.0 | 优质协调 Superior coordination |
Table 3 Classification standard of coupling coordination type between vegetation and soil
耦合协调度 Coupling coordination degree | 耦合协调类型 Coupling coordination type | 耦合协调等级 Coupling coordination level | P (x)/S (y) | 耦合协调特征 Coupling coordination characteristic |
---|---|---|---|---|
0<D≤0.1 | 失调型 Imbalance type | 极度失调 Extreme imbalance | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤损益型 Soil loss type 共损衰退型 Both loss recession type 植被损益型 Vegetation loss type |
0.1<D≤0.2 | 严重失调 Serious imbalance | |||
0.2<D≤0.3 | 中度失调 Moderate imbalance | |||
0.3<D≤0.4 | 轻度失调 Mild imbalance | |||
0.4<D≤0.5 | 濒临失调 Endangered imbalance | |||
0.5<D≤0.6 | 协调型 Coordination type | 勉强协调 Barely coordination | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤滞后型 Soil lag type 同步发展型 Synchronous development type 植被滞后型 Vegetation lag type |
0.6<D≤0.7 | 初级协调 Primary coordination | |||
0.7<D≤0.8 | 中级协调 Intermediate coordination | |||
0.8<D≤0.9 | 良好协调 Good coordination | |||
0.9<D≤1.0 | 优质协调 Superior coordination |
植被恢复模式 Vegetation restoration model | pH值 pH value | 有机质 Organic matter (%) | 全氮 Total N (g·kg-1) | 碱解氮 Alkali hydrolyzed N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 8.40±0.11abc | 0.58±0.21ab | 0.28±0.08ab | 35.79±4.10b | 1.80±0.63b | 78.30±13.36bc |
阔叶纯林 Hardwood forest | 8.44±0.08ab | 0.54±0.14ab | 0.34±0.12ab | 34.83±3.70b | 2.90±0.82a | 107.39±18.61a |
针阔混交林 Theropencedrymion | 8.30±0.09c | 0.61±0.12a | 0.39±0.08a | 36.95±4.67b | 2.93±0.75a | 98.87±22.53ab |
乔灌复层林 Arbor-shrub forest | 8.47±0.12a | 0.41±0.10b | 0.26±0.10b | 31.95±3.39b | 2.03±0.80ab | 112.70±19.40a |
灌木林 Shrubwood | 8.34±0.07bc | 0.44±0.10ab | 0.29±0.05ab | 34.89±3.12b | 1.97±0.44b | 83.71±11.80bc |
天然草地 Natural grassland | 8.34±0.06bc | 0.52±0.08ab | 0.37±0.07ab | 43.97±7.48a | 1.78±0.54b | 66.32±12.40c |
Table 4 Comparison of soil nutrient index contents in different vegetation restoration models
植被恢复模式 Vegetation restoration model | pH值 pH value | 有机质 Organic matter (%) | 全氮 Total N (g·kg-1) | 碱解氮 Alkali hydrolyzed N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 8.40±0.11abc | 0.58±0.21ab | 0.28±0.08ab | 35.79±4.10b | 1.80±0.63b | 78.30±13.36bc |
阔叶纯林 Hardwood forest | 8.44±0.08ab | 0.54±0.14ab | 0.34±0.12ab | 34.83±3.70b | 2.90±0.82a | 107.39±18.61a |
针阔混交林 Theropencedrymion | 8.30±0.09c | 0.61±0.12a | 0.39±0.08a | 36.95±4.67b | 2.93±0.75a | 98.87±22.53ab |
乔灌复层林 Arbor-shrub forest | 8.47±0.12a | 0.41±0.10b | 0.26±0.10b | 31.95±3.39b | 2.03±0.80ab | 112.70±19.40a |
灌木林 Shrubwood | 8.34±0.07bc | 0.44±0.10ab | 0.29±0.05ab | 34.89±3.12b | 1.97±0.44b | 83.71±11.80bc |
天然草地 Natural grassland | 8.34±0.06bc | 0.52±0.08ab | 0.37±0.07ab | 43.97±7.48a | 1.78±0.54b | 66.32±12.40c |
植被恢复模式 Vegetation restoration model | 全氮 Total N (%) | 全磷 Total P (mg·kg-1) | 全钾 Total K (g·kg-1) |
---|---|---|---|
针叶纯林 Coniferous forest | 0.99±0.11c | 867.95±55.18d | 5.49±0.87d |
阔叶纯林 Hardwood forest | 2.41±0.89b | 1686.96±200.98b | 27.62±8.36a |
针阔混交林 Theropencedrymion | 1.46±0.22c | 1270.82±267.02c | 19.99±6.91ab |
乔灌复层林 Arbor-shrub forest | 2.29±0.45b | 1738.57±394.12b | 18.28±11.38bc |
灌木林 Shrubwood | 3.21±0.32a | 2040.83±206.31a | 13.54±3.76bcd |
天然草地 Natural grassland | 1.00±0.10c | 714.37±32.55d | 9.73±1.10cd |
Table 5 Comparison of vegetation nutrient contents in different vegetation restoration models
植被恢复模式 Vegetation restoration model | 全氮 Total N (%) | 全磷 Total P (mg·kg-1) | 全钾 Total K (g·kg-1) |
---|---|---|---|
针叶纯林 Coniferous forest | 0.99±0.11c | 867.95±55.18d | 5.49±0.87d |
阔叶纯林 Hardwood forest | 2.41±0.89b | 1686.96±200.98b | 27.62±8.36a |
针阔混交林 Theropencedrymion | 1.46±0.22c | 1270.82±267.02c | 19.99±6.91ab |
乔灌复层林 Arbor-shrub forest | 2.29±0.45b | 1738.57±394.12b | 18.28±11.38bc |
灌木林 Shrubwood | 3.21±0.32a | 2040.83±206.31a | 13.54±3.76bcd |
天然草地 Natural grassland | 1.00±0.10c | 714.37±32.55d | 9.73±1.10cd |
植被恢复模式 Vegetation restoration model | 物种丰富度 Species richness | Shannon-Wiener指数 Shannon-Wiener index | Pielou指数 Pielou index | Simpson指数 Simpson index |
---|---|---|---|---|
针叶纯林 Coniferous forest | 8.33±2.50b | 1.887±0.345a | 0.905±0.041ab | 0.810±0.073a |
阔叶纯林 Hardwood forest | 6.33±1.23b | 1.518±0.188b | 0.830±0.047cd | 0.739±0.027b |
针阔混交林 Theropencedrymion | 7.00±1.90b | 1.756±0.277ab | 0.916±0.031a | 0.799±0.062ab |
乔灌复层林 Arbor-shrub forest | 6.67±1.63b | 1.610±0.166ab | 0.863±0.041bc | 0.753±0.026ab |
灌木林 Shrubwood | 6.33±1.37b | 1.572±0.224ab | 0.859±0.036bc | 0.748±0.049ab |
天然草地 Natural grassland | 10.67±2.08a | 1.871±0.178a | 0.794±0.036d | 0.758±0.037ab |
Table 6 Comparison of vegetation biodiversity in different vegetation restoration models
植被恢复模式 Vegetation restoration model | 物种丰富度 Species richness | Shannon-Wiener指数 Shannon-Wiener index | Pielou指数 Pielou index | Simpson指数 Simpson index |
---|---|---|---|---|
针叶纯林 Coniferous forest | 8.33±2.50b | 1.887±0.345a | 0.905±0.041ab | 0.810±0.073a |
阔叶纯林 Hardwood forest | 6.33±1.23b | 1.518±0.188b | 0.830±0.047cd | 0.739±0.027b |
针阔混交林 Theropencedrymion | 7.00±1.90b | 1.756±0.277ab | 0.916±0.031a | 0.799±0.062ab |
乔灌复层林 Arbor-shrub forest | 6.67±1.63b | 1.610±0.166ab | 0.863±0.041bc | 0.753±0.026ab |
灌木林 Shrubwood | 6.33±1.37b | 1.572±0.224ab | 0.859±0.036bc | 0.748±0.049ab |
天然草地 Natural grassland | 10.67±2.08a | 1.871±0.178a | 0.794±0.036d | 0.758±0.037ab |
指标 Index | 容重 Bulk density | 含水量 Water content | pH值 pH value | 有机质 Organic matter | 全氮 Total N | 碱解氮 Alkali hydrolyzed N | 有效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|---|
郁闭度 Canopy density | -0.242 | 0.247 | -0.314 | -0.060 | 0.243 | 0.194 | 0.090 | 0.193 |
生物量 Biomass | 0.178 | -0.690** | 0.269 | -0.018 | 0.119 | -0.146 | 0.357* | 0.465** |
全氮 Total N | -0.036 | -0.168 | -0.027 | -0.308 | 0.161 | -0.117 | 0.243 | 0.472** |
全磷 Total P | -0.101 | -0.358* | 0.005 | -0.216 | 0.063 | -0.233 | 0.279 | 0.569** |
全钾 Total K | -0.100 | -0.484** | 0.052 | 0.163 | 0.214 | -0.092 | 0.590** | 0.641** |
物种丰富度 Species richness | -0.363* | 0.570** | -0.385* | 0.478** | 0.447** | 0.552** | 0.204 | 0.110 |
Shannon-Wiener指数 Shannon-Wiener index | -0.442** | 0.379* | -0.354* | 0.540** | 0.402* | 0.399* | 0.243 | 0.168 |
Pielou指数Pielou index | -0.168 | -0.229 | -0.019 | 0.277 | -0.022 | -0.136 | 0.036 | 0.043 |
Simpson指数Simpson index | -0.471** | 0.168 | -0.293 | 0.457** | 0.353* | 0.137 | 0.265 | 0.255 |
Table 7 Correlation analysis of indexes between vegetation community and soil environment
指标 Index | 容重 Bulk density | 含水量 Water content | pH值 pH value | 有机质 Organic matter | 全氮 Total N | 碱解氮 Alkali hydrolyzed N | 有效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|---|
郁闭度 Canopy density | -0.242 | 0.247 | -0.314 | -0.060 | 0.243 | 0.194 | 0.090 | 0.193 |
生物量 Biomass | 0.178 | -0.690** | 0.269 | -0.018 | 0.119 | -0.146 | 0.357* | 0.465** |
全氮 Total N | -0.036 | -0.168 | -0.027 | -0.308 | 0.161 | -0.117 | 0.243 | 0.472** |
全磷 Total P | -0.101 | -0.358* | 0.005 | -0.216 | 0.063 | -0.233 | 0.279 | 0.569** |
全钾 Total K | -0.100 | -0.484** | 0.052 | 0.163 | 0.214 | -0.092 | 0.590** | 0.641** |
物种丰富度 Species richness | -0.363* | 0.570** | -0.385* | 0.478** | 0.447** | 0.552** | 0.204 | 0.110 |
Shannon-Wiener指数 Shannon-Wiener index | -0.442** | 0.379* | -0.354* | 0.540** | 0.402* | 0.399* | 0.243 | 0.168 |
Pielou指数Pielou index | -0.168 | -0.229 | -0.019 | 0.277 | -0.022 | -0.136 | 0.036 | 0.043 |
Simpson指数Simpson index | -0.471** | 0.168 | -0.293 | 0.457** | 0.353* | 0.137 | 0.265 | 0.255 |
植被恢复模式 Vegetation restoration model | P (x) | S (y) | C | D | P (x)/S (y) | 耦合协调类型 Coupling coordination type |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 0.481 | 0.373 | 0.923 | 0.628 | 1.288 | 初级协调土壤滞后型 Primary coordination soil lag type |
阔叶纯林 Hardwood forest | 0.415 | 0.488 | 0.968 | 0.661 | 0.850 | 初级协调同步发展型 Primary coordination synchronous development type |
针阔混交林 Theropencedrymion | 0.557 | 0.695 | 0.941 | 0.767 | 0.801 | 中级协调同步发展型 Intermediate coordination synchronous development type |
乔灌复层林 Arbor-shrub forest | 0.524 | 0.151 | 0.162 | 0.234 | 3.466 | 中度失调土壤损益型 Moderate imbalance soil loss type |
灌木林 Shrubwood | 0.475 | 0.396 | 0.959 | 0.646 | 1.201 | 初级协调土壤滞后型 Primary coordination soil lag type |
天然草地 Natural grassland | 0.413 | 0.581 | 0.865 | 0.655 | 0.711 | 初级协调植被滞后型 Primary coordination vegetation lag type |
平均值 Mean | 0.477 | 0.447 | 0.995 | 0.678 | 1.067 | 初级协调同步发展型 Primary coordination synchronous development type |
Table 8 Comparison of coupling relationship between vegetation and soil in different vegetation restoration models
植被恢复模式 Vegetation restoration model | P (x) | S (y) | C | D | P (x)/S (y) | 耦合协调类型 Coupling coordination type |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 0.481 | 0.373 | 0.923 | 0.628 | 1.288 | 初级协调土壤滞后型 Primary coordination soil lag type |
阔叶纯林 Hardwood forest | 0.415 | 0.488 | 0.968 | 0.661 | 0.850 | 初级协调同步发展型 Primary coordination synchronous development type |
针阔混交林 Theropencedrymion | 0.557 | 0.695 | 0.941 | 0.767 | 0.801 | 中级协调同步发展型 Intermediate coordination synchronous development type |
乔灌复层林 Arbor-shrub forest | 0.524 | 0.151 | 0.162 | 0.234 | 3.466 | 中度失调土壤损益型 Moderate imbalance soil loss type |
灌木林 Shrubwood | 0.475 | 0.396 | 0.959 | 0.646 | 1.201 | 初级协调土壤滞后型 Primary coordination soil lag type |
天然草地 Natural grassland | 0.413 | 0.581 | 0.865 | 0.655 | 0.711 | 初级协调植被滞后型 Primary coordination vegetation lag type |
平均值 Mean | 0.477 | 0.447 | 0.995 | 0.678 | 1.067 | 初级协调同步发展型 Primary coordination synchronous development type |
1 | Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017, 45: 223-243. |
2 | Yang L, Zhang Z H, Li Z S. Effects of large-scale re-vegetation on soil desiccation in the Loess Plateau: Problems and perspectives. Acta Ecologica Sinica, 2019, 39(20): 7382-7388. |
杨磊, 张子豪, 李宗善. 黄土高原植被建设与土壤干燥化: 问题与展望. 生态学报, 2019, 39(20): 7382-7388. | |
3 | Jiao F, Wen Z M, An S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena, 2011, 86(2): 110-116. |
4 | Wang Y Q, Shao M A, Zhang C C, et al. Choosing an optimal land-use pattern for restoring eco-environments in a semiarid region of the Chinese Loess Plateau. Ecological Engineering, 2015, 74: 213-222. |
5 | Tian N N, Zhang J J, Ru H, et al. Soil moisture and nutrient characteristics of soil and water conservation forests in Loess Plateau of Western Shanxi Province. Science of Soil and Water Conservation, 2015, 13(6): 61-67. |
田宁宁, 张建军, 茹豪, 等. 晋西黄土区水土保持林地的土壤水分和养分特征. 中国水土保持科学, 2015, 13(6): 61-67. | |
6 | Wang N, Bi H X, Kong L X, et al. Soil water compensation characteristic of Robinia pseudoacacia forestlands with different densities in the Loess region of Western Shanxi Province. Journal of Soil and Water Conservation, 2019, 33(4): 255-262. |
王宁, 毕华兴, 孔凌霄, 等. 晋西黄土区不同密度刺槐林地土壤水分补偿特征. 水土保持学报, 2019, 33(4): 255-262. | |
7 | Ge J M, Wang S, Fan J, et al. Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China’s Loess Plateau. Catena, 2020, 184: 104243. |
8 | Fan J, Wang Q J, Jones S B, et al. Soil water depletion and recharge under different land cover in China’s Loess Plateau. Ecohydrology, 2016, 9(3): 396-406. |
9 | Wang C, Wang S, Fu B J, et al. Soil moisture variations with land use along the precipitation gradient in the North-South transect of the Loess Plateau. Land Degradation & Development, 2017, 28(3): 926-935. |
10 | Zhao Y L, Wang Y Q, Wang L, et al. Exploring the role of land restoration in the spatial patterns of deep soil water at watershed scales. Catena, 2019, 172: 387-396. |
11 | Zhang H, Liu J J. Distribution of soil nutrient under different land use and relationship between soil nutrient and soil granule composition in Loess hilly region. Journal of Central South University of Forestry & Technology, 2016, 36(11): 80-85. |
张宏, 刘建军. 黄土沟壑区不同土地利用方式下土壤养分及其与土壤颗粒组成关系. 中南林业科技大学学报, 2016, 36(11): 80-85. | |
12 | Cui X H, Hao Y, Qiu Y. Spatial heterogeneity of soil nutrients in Danangou catchment in the Loess Plateau. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 472-478. |
崔旭辉, 郝羽, 邱扬. 黄土高原大南沟小流域土壤养分空间分异特征. 北京师范大学学报(自然科学版), 2016, 52(4): 472-478. | |
13 | Ma Q H, Zhang G H, Gen R, et al. Evaluation on soil quality of different land use types in Zhifanggou watershed of the Loess Plateau. Research of Soil and Water Conservation, 2018, 25(4): 30-35, 42. |
马芊红, 张光辉, 耿韧, 等. 黄土高原纸坊沟流域不同土地利用类型土壤质量评价. 水土保持研究, 2018, 25(4): 30-35, 42. | |
14 | Cortois R, Schröder G T, Weigelt A, et al. Plant-soil feedbacks: Role of plant functional group and plant traits. Journal of Ecology, 2016, 104(6): 1608-1617. |
15 | Liang X H, Zhang K B, Qiao X. Relationship between soil moisture and nutrients and plant diversity of Caragana microphylla community in semi-arid loess region. Ecology and Environmental Sciences, 2019, 28(9): 1748-1756. |
梁香寒, 张克斌, 乔厦. 半干旱黄土区柠条林土壤水分和养分与群落多样性关系. 生态环境学报, 2019, 28(9): 1748-1756. | |
16 | Liu D H, Yang Y C. Coupling coordinative degree of regional economy-tourism-ecological environment: A case study of Anhui Province. Resources and Environment in the Yangtze Basin, 2011, 20(7): 892-896. |
刘定惠, 杨永春. 区域经济-旅游-生态环境耦合协调度研究—以安徽省为例. 长江流域资源与环境, 2011, 20(7): 892-896. | |
17 | Peng W X, Song T Q, Zeng F P, et al. Models of vegetation and soil coupling coordinative degree in grain for green project in depressions between Karst hills. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 305-310. |
彭晚霞, 宋同清, 曾馥平, 等. 喀斯特峰丛洼地退耕还林还草工程的植被土壤耦合协调度模型. 农业工程学报, 2011, 27(9): 305-310. | |
18 | Liu Y B, Song X F. Coupling degree model and its forecasting model of urbanization and ecological environment. Journal of China University of Mining & Technology, 2005, 34(1): 91-96. |
刘耀彬, 宋学峰. 城市化与生态环境的耦合度及其预测模型研究. 中国矿业大学学报, 2005, 34(1): 91-96. | |
19 | Zhang Q F, Wu F Q, Wang L, et al. Coupling coordinated development of ecological-economic system in Loess Plateau. Chinese Journal of Applied Ecology, 2011, 22(6): 1531-1536. |
张青峰, 吴发启, 王力, 等. 黄土高原生态与经济系统耦合协调发展状况. 应用生态学报, 2011, 22(6): 1531-1536. | |
20 | Xu M, Zhang J, Liu G B, et al. Analysis on vegetation-soil coupling relationship in gullies with different vegetation restoration patterns. Journal of Natural Resources, 2016, 31(12): 2137-2146. |
徐明, 张健, 刘国彬, 等. 不同植被恢复模式沟谷地植被-土壤系统耦合关系评价. 自然资源学报, 2016, 31(12): 2137-2146. | |
21 | Luo Q H, Ning H S, Chen Q M. Relation between vegetation and soil of Haloxylon ammodendron plantation in the process of sand-fixation. Journal of Desert Research, 2018, 38(4): 780-790. |
罗青红, 宁虎森, 陈启民. 人工梭梭(Haloxylon ammodendron)林固沙过程中植被与土壤耦合关系. 中国沙漠, 2018, 38(4): 780-790. | |
22 | Li H, Lu J Y, Wei T X, et al. Evaluation on coupling characteristics of vegetation and soil systems under different microrelief in Loess Plateau of Northern Shaanxi Province. Journal of Sichuan Agricultural University, 2019, 37(2): 192-198, 214. |
李豪, 卢纪元, 魏天兴, 等. 陕北黄土高原不同微地形下植被-土壤系统耦合特征研究. 四川农业大学学报, 2019, 37(2): 192-198, 214. | |
23 | Bao S D. Soil agrochemical analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
24 | Puyang X H, Wang C C, Gou Q P, et al. Relationship between vegetation community and soil moisture in the loess region of Northern Shaanxi Province. Acta Prataculturae Sinica, 2019, 28(11): 184-191. |
濮阳雪华, 王春春, 苟清平, 等. 陕北黄土区植被群落特征与土壤水分关系研究. 草业学报, 2019, 28(11): 184-191. | |
25 | Yang L, Wei W, Chen L D, et al. Soil desiccation in deep soil layers under different vegetation types in the semi-arid loess hilly region. Geographical Research, 2012, 31(1): 71-81. |
杨磊, 卫伟, 陈利顶, 等. 半干旱黄土丘陵区人工植被深层土壤干化效应. 地理研究, 2012, 31(1): 71-81. | |
26 | Lu X Y, Zhang H J, Cheng J H, et al. Study on soil nutrients under different plantations in loess hilly region in Western Shanxi. Journal of Henan Agricultural Sciences, 2012, 41(8): 81-84. |
陆晓宇, 张洪江, 程金花, 等. 晋西黄土丘陵区不同人工林下土壤养分性质研究. 河南农业科学, 2012, 41(8): 81-84. | |
27 | Ehrenfeld J G, Ravit B, Elgersma K. Feedback in the plant-soil system. Annual Review of Environment and Resources, 2005, 30: 75-115. |
28 | Zhang Z N, Wu G L, Wang D, et al. Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau. Acta Prataculturae Sinica, 2014, 23(6): 313-319. |
张志南, 武高林, 王冬, 等. 黄土高原半干旱区天然草地群落结构与土壤水分关系. 草业学报, 2014, 23(6): 313-319. | |
29 | Li N N, Zhang G H, Wang H, et al. Properties of vegetation succession on shallow landslide deposits in loess hilly and gully region and the related response of soil nutrient. Mountain Research, 2018, 36(5): 669-678. |
李宁宁, 张光辉, 王浩, 等. 黄土丘陵沟壑区浅层滑坡堆积体植被演替特征及土壤养分响应. 山地学报, 2018, 36(5): 669-678. | |
30 | Ru H L, Zhang H D, Jiao F, et al. Relation analysis of herbaceous community characteristics and soil moisture and nutrients on micro-scale topography typical section in the Hilly Loess Plateau region, China. Acta Agrestia Sinica, 2016, 24(4): 776-782. |
汝海丽, 张海东, 焦峰, 等. 黄土丘陵区微地形条件下草本群落特征与土壤水分及养分关系分析. 草地学报, 2016, 24(4): 776-782. | |
31 | Yang J, Sun Z J, Bademu Q Q G, et al. Effects of enclosure years on vegetation functional groups diversity and soil total nutrients characters of sandy desert grassland. Chinese Journal of Grassland, 2018, 40(4): 102-110. |
杨静, 孙宗玖, 巴德木其其格, 等. 封育对草地植被功能群多样性及土壤养分特征的影响. 中国草地学报, 2018, 40(4): 102-110. |
[1] | Xiao-ding LIN, Le CHANG, Dan FENG. Remote-sensing estimation of vegetation gross primary productivity and its spatiotemporal changes in Qinghai Province from 2000 to 2019 [J]. Acta Prataculturae Sinica, 2021, 30(6): 16-27. |
[2] | Xiao-e LIU, Shi-ping SU, Yi LI. Soil physical and chemical properties under four typical shrubs found on the Northern and Southern Mountains of Lanzhou City, Northwest China [J]. Acta Prataculturae Sinica, 2021, 30(6): 28-39. |
[3] | Ying MA, Zhi-hao XU, Qiao-hong ZENG, Jian-long MENG, Ya-hu HU, Jie-qiong SU. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
[4] | Zhong-chao SUN, Tian-dou GUO, Lu YU, Yan-ping MA, Ya-nan ZHAO, Xue-ying LI, Hong-mei WANG. Changes in soil particle size distribution and fractal characteristics across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 34-45. |
[5] | Yi-ran ZHANG, Ting-xi LIU, Xin TONG, Li-min DUAN, Yu-chen WU. Hyperspectral remote sensing inversion of meadow aboveground biomass based on an XGBoost algorithm [J]. Acta Prataculturae Sinica, 2021, 30(4): 1-12. |
[6] | Zi-xin WANG, Guo-zheng HU, Hong-wei SHUI, Yi-qing GE, Ling HAN, Qing-zhu GAO, Ganjurjav HASBAGAN, Luo-bu DANJIU. Effect of seasonal timing of drought on carbon exchange in the alpine meadow ecosystem of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(4): 24-33. |
[7] | Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57. |
[8] | Ru ZHANG, Jian-ping LI, Wen-dong PENG, Fang WANG, Zhi-gang LI. Effects of mulching with caragana (Caragana intermedia) branches on soil moisture content and temperature and reseeded forage biomass in desertified grassland in Ningxia Province, China [J]. Acta Prataculturae Sinica, 2021, 30(4): 58-67. |
[9] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[10] | Qiao-yu LUO, Yan-long WANG, Lei DU, Nian LIU, Li LI, Yu-shou MA. Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in the source region of the Yellow River [J]. Acta Prataculturae Sinica, 2021, 30(4): 80-89. |
[11] | Chao ZHANG, Rui-rui YAN, Qing-wei LIANG, Ri-su NA, Tong LI, Xiu-fang YANG, Yu-hai BAO, Xiao-ping XIN. Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes [J]. Acta Prataculturae Sinica, 2021, 30(4): 90-98. |
[12] | Chen CHEN, Chang-qing JING, Wen-yuan XING, Xiao-jin DENG, Hao-yu FU, Wen-zhang GUO. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(3): 1-14. |
[13] | Jin-wei HOU, Tao CHEN, Zhi-biao NAN. Effects of fungicide and sowing treatments on seed survival of three plant species on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 129-136. |
[14] | Shuai-nan LIU, Guang LI, Jiang-qi WU, Wei-wei MA, Chuan-jie YANG, Shi-kang ZHANG, Yao YAO, Yan-hua LU, Xing-xing WEI, Juan ZHANG. Characteristics of soil nutrients under different land types in the loess hill region based on ecological chemometrics [J]. Acta Prataculturae Sinica, 2021, 30(3): 200-207. |
[15] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||