Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (5): 13-24.DOI: 10.11686/cyxb2020458

Previous Articles     Next Articles

Coupling relationships between vegetation and soil in different vegetation restoration models in the Loess region of Northern Shaanxi Province

Xue-hua PUYANG1,2(), Yue-ling WANG2, Zhi-jie ZHAO1, Juan HUANG2, Yu YANG2   

  1. 1.College of Environmental Sciences and Engineering,Peking University,Beijing 100871,China
    2.Shenzhen Techand Ecology & Environment Co. ,Ltd,Shenzhen 518040,China
  • Received:2020-10-14 Revised:2020-12-14 Online:2021-05-20 Published:2021-04-16
  • Contact: Xue-hua PUYANG

Abstract:

The coupling coordination relationship between vegetation and soil is an important basis for the efficient implementation and sustainable development of the Grain for Green Project. Based on investigations and analyses of vegetation and soil in six different vegetation restoration models (coniferous forest, hardwood forest, coniferous and broad-leaved mixed forest [theropencedrymion], arbor-shrub forest, shrubwood, and natural grassland) in the Loess region of Northern Shaanxi Province, an evaluation index system of the coupling relationship between vegetation and soil was established. The weight value of each index was determined by an analytic hierarchy process and entropy method, then models for the degree of coupling coordination between vegetation and soil were constructed. It was found that different vegetation restoration models had significantly different effects on soil moisture and nutrient contents. The comprehensive evaluations indicated that the soil environment in theropencedrymion was the best, and that in arbor-shrub forest was the worst. We detected significant differences in vegetation canopy density, biomass, nutrient element contents, and biodiversity indexes among different vegetation restoration models. The comprehensive evaluations showed that the vegetation community in theropencedrymion showed the fastest development, and that in natural grassland showed the slowest development. Soil environmental factors were significantly correlated with vegetation biomass, nutrient elements, and biodiversity. The vegetation-soil coupling coordination index of theropencedrymion, hardwood forest, natural grassland, shrubwood, coniferous forest, and arbor-shrub forest was 0.767, 0.661, 0.655, 0.646, 0.628, and 0.234, respectively. The development of vegetation and soil in theropencedrymion exhibited an intermediate synchronously coordinated type, while that in the arbor-shrub forest exhibited a moderately imbalanced soil-loss type. The vegetation-soil coupling coordination in other vegetation restoration models was at the primary coordination level. The development of vegetation and soil in hardwood forest was of a synchronous type. Vegetation development in natural grassland lagged behind soil development, while soil development lagged behind vegetation development in shrubwood and coniferous forest. Therefore, theropencedrymion should be selected preferentially for vegetation restoration and reconstruction in the Loess region of Northern Shaanxi Province, while arbor-shrub forest should be avoided. The level of vegetation and soil management should be enhanced in the Grain for Green Project.

Key words: Northern Shaanxi Province, vegetation, soil, coupling relationship, restoration models