Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (7): 34-43.DOI: 10.11686/cyxb2020516
Previous Articles Next Articles
Xu-dong WU(), Qi JIANG(), Xiao-bin REN, Hong-qian YU, Zhan-jun WANG, Jian-long HE, Bo JI, Jian-min DU
Received:
2020-11-24
Revised:
2021-01-14
Online:
2021-07-20
Published:
2021-06-03
Contact:
Qi JIANG
Xu-dong WU, Qi JIANG, Xiao-bin REN, Hong-qian YU, Zhan-jun WANG, Jian-long HE, Bo JI, Jian-min DU. Effects of precipitation on carbon, nitrogen and microbial characteristics of biological soil crusts in a desert steppe of Northern China[J]. Acta Prataculturae Sinica, 2021, 30(7): 34-43.
降水水平 Precipitation levels | 结皮厚度 Biocrust thickness (mm) | 结皮盖度 Biocrust cover (%) | 结皮组成 Biocrust composition |
---|---|---|---|
+50% | 10.25 | 45.5 | 苔藓Moss;藻类Algae |
CK | 8.33 | 40.0 | 藻类Algae;地衣Lichen |
-50% | 7.18 | 31.7 | 地衣Lichen |
Table 1 Growth and development of biological soil crusts under different precipitation levels
降水水平 Precipitation levels | 结皮厚度 Biocrust thickness (mm) | 结皮盖度 Biocrust cover (%) | 结皮组成 Biocrust composition |
---|---|---|---|
+50% | 10.25 | 45.5 | 苔藓Moss;藻类Algae |
CK | 8.33 | 40.0 | 藻类Algae;地衣Lichen |
-50% | 7.18 | 31.7 | 地衣Lichen |
降水水平Precipitation levels | 土层Soil layer | 有机碳SOC (g·kg-1) | 全氮TN (g·kg-1) | 碳氮比C∶N |
---|---|---|---|---|
+50% | CL | 5.20±0.03Ca | 0.40±0.01Ba | 13.00±0.27Ba |
ML | 4.48±0.08Cb | 0.39±0.01Ba | 11.58±0.09Cb | |
DL | 4.07±0.08Cc | 0.36±0.02Ab | 11.33±0.55Cb | |
CK | CL | 5.77±0.09Ba | 0.41±0.01Ba | 14.20±0.46Aa |
ML | 4.99±0.08Bb | 0.36±0.00Cb | 13.87±0.22Aa | |
DL | 4.57±0.00Bc | 0.36±0.01Ab | 12.70±0.36Bb | |
-50% | CL | 8.05±0.09Aa | 0.54±0.02Aa | 15.02±0.59Aa |
ML | 6.38±0.08Ab | 0.50±0.02Ab | 12.68±0.52Bb | |
DL | 5.65±0.03Ac | 0.37±0.01Ac | 15.27±0.48Aa |
Table 2 Soil SOC and TN contents in soil layers under different precipitation levels
降水水平Precipitation levels | 土层Soil layer | 有机碳SOC (g·kg-1) | 全氮TN (g·kg-1) | 碳氮比C∶N |
---|---|---|---|---|
+50% | CL | 5.20±0.03Ca | 0.40±0.01Ba | 13.00±0.27Ba |
ML | 4.48±0.08Cb | 0.39±0.01Ba | 11.58±0.09Cb | |
DL | 4.07±0.08Cc | 0.36±0.02Ab | 11.33±0.55Cb | |
CK | CL | 5.77±0.09Ba | 0.41±0.01Ba | 14.20±0.46Aa |
ML | 4.99±0.08Bb | 0.36±0.00Cb | 13.87±0.22Aa | |
DL | 4.57±0.00Bc | 0.36±0.01Ab | 12.70±0.36Bb | |
-50% | CL | 8.05±0.09Aa | 0.54±0.02Aa | 15.02±0.59Aa |
ML | 6.38±0.08Ab | 0.50±0.02Ab | 12.68±0.52Bb | |
DL | 5.65±0.03Ac | 0.37±0.01Ac | 15.27±0.48Aa |
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
有机碳SOC | 降水水平Precipitation level | 2444.785 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 1309.664 | 0.000 | 0.993 | ||
降水水平×土层Precipitation level×soil depth | 94.629 | 0.000 | 0.955 | ||
全氮TN | 降水水平Precipitation level | 168.775 | 0.000 | 0.949 | 0.975 |
土层Soil depth | 110.800 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 34.900 | 0.000 | 0.886 | ||
碳氮比C∶N | 降水水平Precipitation level | 72.639 | 0.000 | 0.890 | 0.935 |
土层Soil depth | 24.582 | 0.000 | 0.732 | ||
降水水平×土层Precipitation level×soil depth | 16.657 | 0.000 | 0.787 |
Table 3 Effects of precipitation levels, soil depth and their interaction on the contents of soil SOC, TN and C∶N
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
有机碳SOC | 降水水平Precipitation level | 2444.785 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 1309.664 | 0.000 | 0.993 | ||
降水水平×土层Precipitation level×soil depth | 94.629 | 0.000 | 0.955 | ||
全氮TN | 降水水平Precipitation level | 168.775 | 0.000 | 0.949 | 0.975 |
土层Soil depth | 110.800 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 34.900 | 0.000 | 0.886 | ||
碳氮比C∶N | 降水水平Precipitation level | 72.639 | 0.000 | 0.890 | 0.935 |
土层Soil depth | 24.582 | 0.000 | 0.732 | ||
降水水平×土层Precipitation level×soil depth | 16.657 | 0.000 | 0.787 |
降水水平 Precipitation levels | 土层 Soil layer | 土壤微生物生物量碳 SMB-C (mg·kg-1) | 土壤微生物生物量氮 SMB-N (mg·kg-1) | 微生物量碳氮比 SMB-C∶SMB-N |
---|---|---|---|---|
+50% | CL | 886.07±113.69Ca | 93.13±1.10Ba | 9.51±1.21Ca |
ML | 683.29±0.01Cb | 86.89±0.81Bb | 7.86±0.07Cb | |
DL | 327.32±0.08Cc | 64.74±0.40Ac | 5.06±0.03Cc | |
CK | CL | 2532.44±107.77Ba | 81.58±1.02Ca | 31.35±1.37Aa |
ML | 1055.19±143.92Bb | 76.32±2.14Cb | 13.86±2.22Bb | |
DL | 807.96±46.87Bc | 57.50±1.08Bc | 14.06±1.07Bb | |
-50% | CL | 2799.79±151.34Aa | 98.86±0.51Aa | 28.32±1.39Ba |
ML | 1609.68±103.85Ab | 92.57±0.82Ab | 17.39±1.09Ab | |
DL | 1347.04±107.77Ac | 47.28±0.69Cc | 28.51±2.57Aa |
Table 4 Soil microbial biomass carbon and nitrogen contents in soil layers under different precipitation levels
降水水平 Precipitation levels | 土层 Soil layer | 土壤微生物生物量碳 SMB-C (mg·kg-1) | 土壤微生物生物量氮 SMB-N (mg·kg-1) | 微生物量碳氮比 SMB-C∶SMB-N |
---|---|---|---|---|
+50% | CL | 886.07±113.69Ca | 93.13±1.10Ba | 9.51±1.21Ca |
ML | 683.29±0.01Cb | 86.89±0.81Bb | 7.86±0.07Cb | |
DL | 327.32±0.08Cc | 64.74±0.40Ac | 5.06±0.03Cc | |
CK | CL | 2532.44±107.77Ba | 81.58±1.02Ca | 31.35±1.37Aa |
ML | 1055.19±143.92Bb | 76.32±2.14Cb | 13.86±2.22Bb | |
DL | 807.96±46.87Bc | 57.50±1.08Bc | 14.06±1.07Bb | |
-50% | CL | 2799.79±151.34Aa | 98.86±0.51Aa | 28.32±1.39Ba |
ML | 1609.68±103.85Ab | 92.57±0.82Ab | 17.39±1.09Ab | |
DL | 1347.04±107.77Ac | 47.28±0.69Cc | 28.51±2.57Aa |
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
土壤微生物生物量碳SMB-C | 降水水平Precipitation level | 371.898 | 0.000 | 0.976 | 0.989 |
土层Soil depth | 371.087 | 0.000 | 0.976 | ||
降水水平×土层Precipitation level×soil depth | 39.902 | 0.000 | 0.899 | ||
土壤微生物生物量氮SMB-N | 降水水平Precipitation level | 212.080 | 0.000 | 0.959 | 0.996 |
土层Soil depth | 2733.098 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 188.386 | 0.000 | 0.877 | ||
微生物量碳氮比SMB-C∶SMB-N | 降水水平Precipitation level | 332.507 | 0.000 | 0.974 | 0.983 |
土层Soil depth | 110.336 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 45.483 | 0.000 | 0.910 |
Table 5 Effects of precipitation levels, soil depth and their interaction on the contents of SMB-C, SMB-N and SMB-C∶SMB-N
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
土壤微生物生物量碳SMB-C | 降水水平Precipitation level | 371.898 | 0.000 | 0.976 | 0.989 |
土层Soil depth | 371.087 | 0.000 | 0.976 | ||
降水水平×土层Precipitation level×soil depth | 39.902 | 0.000 | 0.899 | ||
土壤微生物生物量氮SMB-N | 降水水平Precipitation level | 212.080 | 0.000 | 0.959 | 0.996 |
土层Soil depth | 2733.098 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 188.386 | 0.000 | 0.877 | ||
微生物量碳氮比SMB-C∶SMB-N | 降水水平Precipitation level | 332.507 | 0.000 | 0.974 | 0.983 |
土层Soil depth | 110.336 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 45.483 | 0.000 | 0.910 |
降水水平 Precipitation levels | 土层 Soil layer | 真菌数量 Number of fungi (×103 cfu·g-1) | 细菌数量 Number of bacteria (×106 cfu·g-1) | 真菌∶细菌 Fungi∶bacteria (×10-3) |
---|---|---|---|---|
+50% | CL | 4.68±0.11Ca | 25.37±1.10Aa | 0.18±0.01Cc |
ML | 3.26±0.03Cb | 15.57±0.59Ab | 0.21±0.01Cb | |
DL | 1.04±0.02Cc | 1.59±0.40Ac | 0.69±0.20Ca | |
CK | CL | 5.23±0.14Ba | 10.18±0.23Ba | 0.51±0.03Bb |
ML | 4.37±0.13Bb | 4.46±0.10Bb | 0.98±0.03Bb | |
DL | 4.35±0.10Ab | 0.54±0.02Bc | 8.01±0.15Aa | |
-50% | CL | 9.34±0.12Aa | 4.49±0.10Ca | 2.08±0.08Ab |
ML | 4.98±0.04Ab | 0.79±0.02Cb | 6.28±0.09Aa | |
DL | 3.43±0.02Bc | 0.60±0.01Bc | 5.69±0.10Ba |
Table 6 Effects of precipitation levels on the quantity of soil microorganisms
降水水平 Precipitation levels | 土层 Soil layer | 真菌数量 Number of fungi (×103 cfu·g-1) | 细菌数量 Number of bacteria (×106 cfu·g-1) | 真菌∶细菌 Fungi∶bacteria (×10-3) |
---|---|---|---|---|
+50% | CL | 4.68±0.11Ca | 25.37±1.10Aa | 0.18±0.01Cc |
ML | 3.26±0.03Cb | 15.57±0.59Ab | 0.21±0.01Cb | |
DL | 1.04±0.02Cc | 1.59±0.40Ac | 0.69±0.20Ca | |
CK | CL | 5.23±0.14Ba | 10.18±0.23Ba | 0.51±0.03Bb |
ML | 4.37±0.13Bb | 4.46±0.10Bb | 0.98±0.03Bb | |
DL | 4.35±0.10Ab | 0.54±0.02Bc | 8.01±0.15Aa | |
-50% | CL | 9.34±0.12Aa | 4.49±0.10Ca | 2.08±0.08Ab |
ML | 4.98±0.04Ab | 0.79±0.02Cb | 6.28±0.09Aa | |
DL | 3.43±0.02Bc | 0.60±0.01Bc | 5.69±0.10Ba |
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
真菌数量Number of fungi | 降水水平Precipitation level | 2238.349 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 3224.841 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 644.944 | 0.000 | 0.993 | ||
细菌数量Number of bacteria | 降水水平Precipitation level | 1822.518 | 0.000 | 0.995 | 0.998 |
土层Soil depth | 1748.892 | 0.000 | 0.995 | ||
降水水平×土层Precipitation level×soil depth | 415.545 | 0.000 | 0.989 | ||
真菌∶细菌Fungi∶bacteria | 降水水平Precipitation level | 4424.640 | 0.000 | 0.998 | 0.999 |
土层Soil depth | 3483.242 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 1763.891 | 0.000 | 0.997 |
Table 7 Effects of precipitation levels, soil depth and their interaction on the quantity of soil microorganisms’ number
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
真菌数量Number of fungi | 降水水平Precipitation level | 2238.349 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 3224.841 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 644.944 | 0.000 | 0.993 | ||
细菌数量Number of bacteria | 降水水平Precipitation level | 1822.518 | 0.000 | 0.995 | 0.998 |
土层Soil depth | 1748.892 | 0.000 | 0.995 | ||
降水水平×土层Precipitation level×soil depth | 415.545 | 0.000 | 0.989 | ||
真菌∶细菌Fungi∶bacteria | 降水水平Precipitation level | 4424.640 | 0.000 | 0.998 | 0.999 |
土层Soil depth | 3483.242 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 1763.891 | 0.000 | 0.997 |
1 | Knapp A K, Ciais P, Smith M D. Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change. New Phytologist, 2017, 214(1): 41-47. |
2 | Cregger M A, McDowell N G, Pangle R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Functional Ecology, 2014, 28(6): 1534-1544. |
3 | Gherardi L A, Sala O E. Enhanced precipitation variability decreases grass-and increases shrub-productivity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12735-12740. |
4 | Wang Y F, Yu S X, Wang J. Biomass-dependent susceptibility to drought in experimental grassland communities. Ecology Letters, 2007, 10(5): 401-410. |
5 | Sun Y, He M Z, Wang L. Effects of precipitation control on plant diversity and biomass in a desert region. Acta Ecologica Sinica, 2018, 38(7): 2425-2433. |
孙岩, 何明珠, 王立. 降水控制对荒漠植物群落物种多样性和生物量的影响. 生态学报, 2018, 38(7): 2425-2433. | |
6 | Li X R, Zhang Y M, Zhao Y G. A study of biological soil crusts: Recent development, trend and prospect. Advances in Earth Science, 2009, 24(1): 11-24. |
李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 2009, 24(1): 11-24. | |
7 | Li X R, Zhang P, Su Y G, et al. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. Catena, 2012, 97: 119-126. |
8 | Chamizo S, Cantón Y, Miralles I, et al. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 2012, 49(6): 96-105. |
9 | Kuske C R, Carney T D, Housman D C, et al. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Glob Change Biology, 2012, 18(8): 2583-2593. |
10 | Gao L Q, Zhao Y G, Xu M X, et al. The effects of biological soil crust succession on soil ecological stoichiometry characteristics. Acta Ecologica Sinica, 2018, 38(2): 678-688. |
高丽倩, 赵允格, 许明祥, 等. 生物土壤结皮演替对土壤生态化学计量特征的影响. 生态学报, 2018, 38(2): 678-688. | |
11 | Belnap J, Phillips S L, Miller M E. Response of desert biological soil crusts to alteration in precipitation frequency. Oecologia, 2004, 141(2): 306-316. |
12 | Tang Y S, Wei C F, Yan T M, et al. Biological indicator of soil quality: A review. Soils, 2007, 39(2): 157-163. |
唐玉姝, 魏朝富, 颜廷梅, 等. 土壤质量生物学指标研究进展. 土壤, 2007, 39(2): 157-163. | |
13 | Noah F. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15: 579-590. |
14 | Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289. |
15 | Wu N, Pan B R, Zhang Y M, et al. Vertical distribution patterns of soil microorganisms relating to biological crusts in the Gurbantunggut Desert, Xinjiang. Chinese Journal of Applied & Environmental Biology, 2005, 11(3): 349-353. |
吴楠, 潘伯荣, 张元明, 等. 古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征. 应用与环境生物学报, 2005, 11(3): 349-353. | |
16 | Xu H, He M Z, Tang L, et al. Response of changes of microbial biomass carbon and nitrogen to precipitation in desert soil. Acta Ecologica Sinica, 2020, 40(4): 1295-1304. |
许华, 何明珠, 唐亮, 等. 荒漠土壤微生物量碳、氮变化对降水的响应.生态学报, 2020, 40(4): 1295-1304. | |
17 | Knapp A K, Beier C, Briske D D, et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 2008, 58(9): 811-821. |
18 | Shao Y Q, Zhao J, Bao Q H. Vertical distribution of soil microbial biomass in the stabilized sand dune of the Hobq desert. Journal of Desert Research, 2001, 21(1): 88-92. |
邵玉琴, 赵吉, 包青海. 库布齐固定沙丘土壤微生物生物量的垂直分布研究. 中国沙漠, 2001, 21(1): 88-92. | |
19 | Liu Y, Cui Z, Huang Z, et al. The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem. Hydrology and Earth System Sciences, 2019, 23(5): 2481-2490. |
20 | Li X R, Tan H J, Hui R, et al. Researches in biological soil crust of China: A review. Chinese Science Bulletin, 2018, 63: 2320-2334. |
李新荣, 谭会娟, 回嵘, 等. 中国荒漠与沙地生物土壤结皮研究. 科学通报, 2018, 63: 2320-2334. | |
21 | Yin R P, Wu Y S, Zhang X, et al. Effects of biological crusts on dew deposition and evaporation in the southern edge of the Mu Us Sandy Land, Northern China. Acta Ecologica Sinica, 2013, 33(19): 6173-6180. |
尹瑞平, 吴永胜, 张欣, 等. 毛乌素沙地南缘沙丘生物结皮对凝结水形成和蒸发的影响. 生态学报, 2013, 33(19): 6173-6180. | |
22 | Zhang H, Liu W J, Kang X M, et al. Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. Journal of Arid Land, 2019, 11(1): 97-110. |
23 | Ren C J, Chen J, Lu X J, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 2018, 116: 4-10. |
24 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
25 | Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. |
26 | Xu G H, Zheng H Y. Handbook of soil microbial analysis methods. Beijing: China Agriculture Press, 1986. |
许光辉, 郑洪元. 土壤微生物分析方法手册. 北京: 中国农业出版社, 1986. | |
27 | Yao H Y, Huang C Y. Soil microbial ecology and its experimental technology. Beijing: Science Press, 2006. |
姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006. | |
28 | Lu R K. Methods of soil agricultural chemistry analysis. Beijing: China Agricultural Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业出版社, 2000. | |
29 | Cable J M, Huxman T E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia, 2004, 141(2): 317-324. |
30 | Yang X H, Zhang K B, Zhao Y J. Microbiotic soil crust-A research forefront in desertification-prone areas. Acta Ecologica Sinica, 2001, 21(3): 474-480. |
杨晓晖, 张克斌, 赵云杰. 生物土壤结皮——荒漠化地区研究的热点问题. 生态学报, 2001, 21(3): 474-480. | |
31 | Rodriguez-Caballero E, Belnap J, Büdel B, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 2018, 11(3): 185. |
32 | Zhao H L, Guo Y R, Zhou R L, et al. Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China. Catena, 2010, 82(2): 70-76. |
33 | Lu P, Wang L H, Wu F Q. Effect of soil crust strength on erosion under different rainfall intensity. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 141-146. |
路培, 王林华, 吴发启. 不同降雨强度下土壤结皮强度对侵蚀的影响. 农业工程学报, 2017, 33(8): 141-146. | |
34 | Manzoni S, Schimel J P, Porporato A. Response of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 2012, 93(4): 930-938. |
35 | Su Y Z, Zhou Z B, Liu Y B, et al. Carbon flux in deserts depends on soil cover type: A case study in the Gurbantunggute Desert, North China. Soil Biology Biochemistry, 2013, 58: 332-340. |
36 | Xiao B, Zhao Y G, Xu M X, et al. Soil nutrients accumulation and their loss risk under effects of biological soil crust in Loess Plateau of Northern Shaanxi Province, China. Chinese Journal of Applied Ecology, 2008, 19(5): 1019-1026. |
肖波, 赵允格, 许明祥, 等. 陕北黄土区生物结皮条件下土壤养分的积累及流失风险. 应用生态学报, 2008, 19(5): 1019-1026. | |
37 | Zhang B C, Zhou X B, Zang Z M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang. Journal of Arid Land, 2015, 7(1): 101-109. |
[1] | Ying MA, Zhi-hao XU, Qiao-hong ZENG, Jian-long MENG, Ya-hu HU, Jie-qiong SU. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
[2] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Lei SUN, Xue-hong WEI. Effects of nitrogen and phosphorus addition on production performance and nutritive value of pasture species in Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(5): 52-64. |
[3] | Zhi-min WEI, Bin SUN, Cheng FANG, Zi-wen DAI, Man-qiang LIU, Jia-guo JIAO, Feng HU, Hui-xin LI, Li XU. Co-inoculation with rhizobia and azotobacter affects the growth of Vicia villosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 94-102. |
[4] | Zhong-ju MENG, Yan-jie CHEN, Si-qin BAO. Characteristics of community patches under three grazing modes in Sunite Desert-steppe [J]. Acta Prataculturae Sinica, 2021, 30(4): 13-23. |
[5] | Zi-xin WANG, Guo-zheng HU, Hong-wei SHUI, Yi-qing GE, Ling HAN, Qing-zhu GAO, Ganjurjav HASBAGAN, Luo-bu DANJIU. Effect of seasonal timing of drought on carbon exchange in the alpine meadow ecosystem of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(4): 24-33. |
[6] | Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57. |
[7] | Chao ZHANG, Rui-rui YAN, Qing-wei LIANG, Ri-su NA, Tong LI, Xiu-fang YANG, Yu-hai BAO, Xiao-ping XIN. Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes [J]. Acta Prataculturae Sinica, 2021, 30(4): 90-98. |
[8] | Shuai-nan LIU, Guang LI, Jiang-qi WU, Wei-wei MA, Chuan-jie YANG, Shi-kang ZHANG, Yao YAO, Yan-hua LU, Xing-xing WEI, Juan ZHANG. Characteristics of soil nutrients under different land types in the loess hill region based on ecological chemometrics [J]. Acta Prataculturae Sinica, 2021, 30(3): 200-207. |
[9] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
[10] | Yu-lei JIA, Zhen LIAO, Li-fang WANG, Jian-chao BU, Biao-sheng LIN, Hui LIN, De-wei SU, Guo-dong LU, Zhan-xi LIN. Effects of chemical fertilizer reduction and co-application with a JUNCAO nitrogen-fixing biofertilizer on growth and nutritional quality of Pennisetum giganteum and soil nutrient status [J]. Acta Prataculturae Sinica, 2021, 30(3): 215-223. |
[11] | Mei XIONG, Ji-rong QIAO, Yang YANG, Feng ZHANG, Jia-hua ZHENG, Jian-xin WU, Meng-li ZHAO. Stocking rate effects on stoichiometric characteristics of the steppe grassland pioneer species Stipabreviflora and its underlying soil [J]. Acta Prataculturae Sinica, 2021, 30(2): 212-219. |
[12] | Xiao-jiao WANG, Li-qun CAI, Peng QI, Ya-zhi Wang, Xiao-long CHEN, Jun Wu, Ren-zhi ZHANG. Effects of alternative fertilizer options on soil CO2 emission and carbon pool management index in a dryland soil [J]. Acta Prataculturae Sinica, 2021, 30(2): 32-45. |
[13] | Hua-fang SUN, Xi-lai LI, Li-qun JIN, Cheng-yi LI, Jing ZHANG. Change over time in soil microbial diversity of artificial grassland in the Yellow River source zone [J]. Acta Prataculturae Sinica, 2021, 30(2): 46-58. |
[14] | Jing-jing ZHANG, Zun-chi LIU, Chuang YAN, Yun-xia WANG, Kai LIU, Xin-rong SHI, Zhi-you YUAN. Effects of soil pH on soil carbon, nitrogen, and phosphorus ecological stoichiometry in three types of steppe [J]. Acta Prataculturae Sinica, 2021, 30(2): 69-81. |
[15] | Hai-feng HE, Cheng-hong YAN, Na WU, Ji-li LIU, Yu-han JIA. Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum) [J]. Acta Prataculturae Sinica, 2021, 30(1): 107-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||