Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (4): 102-112.DOI: 10.11686/cyxb2021078
Hong-jian WEI(), Jie DING, Ju-ming ZHANG, Wen YANG, Yong-qi WANG, Tian-zeng LIU()
Received:
2021-03-01
Revised:
2021-04-12
Online:
2022-04-20
Published:
2022-01-25
Contact:
Tian-zeng LIU
Hong-jian WEI, Jie DING, Ju-ming ZHANG, Wen YANG, Yong-qi WANG, Tian-zeng LIU. Changes in soil fungal community structure under bermudagrass turf in response to traffic stress[J]. Acta Prataculturae Sinica, 2022, 31(4): 102-112.
1 | Huang D F, Ji C D, Zhao Y L. Research progress of trampling tolerant in turf grass. Journal of Anhui Agricultural Sciences, 2008, 36(8): 3216-3218. |
黄登峰, 姬承东, 赵运林. 草坪草耐践踏性研究进展. 安徽农业科学, 2008, 36(8): 3216-3218. | |
2 | Martiniello P. Effect of traffic stress on cool-season turfgrass under a Mediterranean climate. Agronomy for Sustainable Development, 2007, 27(4): 293-301. |
3 | Chen G, Weil R R. Penetration of cover crop roots through compacted soils. Plant and Soil, 2010, 331(1): 31-43. |
4 | Glab T, Szewczyk W. The effect of traffic on turfgrass root morphological features. Scientia Horticulturae, 2015, 197: 542-554. |
5 | Li D D, Zong J Q, Guo H L, et al. Effect of different turf-bed soil ratios on the traffic resistance of ‘Yangjiang’ bermudagrass sports turf. Acta Prataculturae Sinica, 2019, 28(8): 72-83. |
李丹丹, 宗俊勤, 郭海林, 等. 不同坪床配比对‘阳江’狗牙根草坪耐践踏性的影响. 草业学报, 2019, 28(8): 72-83. | |
6 | Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota. Science, 2004, 304: 1629-1633. |
7 | Siciliano S D, Palmer A S, Winsley T, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry, 2014, 78: 10-20. |
8 | Wang L D, Chai X H, Yao T, et al. Studying on vegetation restoration and soil microbial characteristics on secondary grassland in the downstream of Shiyang River. Grassland and Turf, 2015, 35(6): 14-21. |
王理德, 柴晓虹, 姚拓, 等. 石羊河下游绿洲边缘次生草地自然恢复过程及微生物特性的研究. 草原与草坪, 2015, 35(6): 14-21. | |
9 | Aira M, Gómez-Brandón M, Lazcano C, et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biology and Biochemistry, 2010, 42(12): 2276-2281. |
10 | Qian Q P, Yang T Y, Cheng L R, et al. Differential responses of rhizosphere microbial communities to the planting of different soybean varieties. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(5): 1-6. |
钱秋平, 杨统一, 程林润, 等. 不同大豆品种对根际土壤微生物群落影响的差异. 南京林业大学学报(自然科学版), 2010, 34(5): 1-6. | |
11 | Newsham K K, Hopkins D W, Carvalhais L C, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nature Climate Change, 2016, 6(2): 182-186. |
12 | Fierer N, Jackson R B, Fierer N. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 2006, 103(3): 626-631. |
13 | Zhang Y, Cao C, Peng M, et al. Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land, Northeast China. Ecological Engineering, 2014(71): 71-79. |
14 | Yao Y J, Liang T, Ma Y, et al. Response of soil microbial community diversity to degradation degree of alpine meadow. Acta Agrestia Sinica, 2020, 28(6): 1489-1497. |
姚玉娇, 梁婷, 马源, 等. 土壤微生物群落多样性对高寒草甸退化程度的响应.草地学报, 2020, 28(6): 1489-1497. | |
15 | Clay G D, Worrall F. The response of CO2 fluxes from a peat soil to variation in simulated sheep trampling. Geoderma, 2013, 197/198: 59-66. |
16 | Hamza M A, Anderson W K. Soil compaction in cropping systems-A review of the nature, causes and possible solutions. Soil & Tillage Research, 2005, 82(2): 121-145. |
17 | Guo J R, Song Z W, Zhu P, et al. Long-term effects of cropping regimes on soil microbial community and soil properties in black soil region of Northeast China. Chinese Journal of Soil Science, 2016, 47(2): 353-359 |
郭金瑞, 宋振伟, 朱平, 等. 长期不同种植模式对东北黑土微生物群落结构与土壤理化性质的影响.土壤通报, 2016, 47(2): 353-359. | |
18 | Cui Y, Bing H, Fang L, et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 2019(338): 118-127. |
19 | Zhang F C, Shi Y T, Li H Y, et al. Effect of different stocking rates on soil physical properties and nutrients. Grassland and Turf, 2013, 33(1): 5-10. |
张风承, 史印涛, 李洪影, 等. 放牧强度对土壤物理性状和速效养分的影响. 草原与草坪, 2013, 33(1): 5-10. | |
20 | Hou F J, Ren J Z. Evaluation on trampling of grazed Gansu wapiti (Cervus elaphus kansuensis Pocock) and its effects on soil property in winter grazing land. Acta Ecologica Sinica, 2003, 23(3): 486-495. |
侯扶江, 任继周. 甘肃马鹿冬季放牧践踏作用及其对土壤理化性质影响的评价. 生态学报, 2003, 23(3): 486-495. | |
21 | Liu X Y. Effects of grazing on soil fungi of Youyu grassland ecosystem in Shanxi Province. Beijing: China University of Geosciences, 2020. |
刘孝颖. 放牧强度对山西右玉草地生态系统土壤真菌多样性的影响. 北京: 中国地质大学, 2020. | |
22 | Zhou C, Song G L. Climate regionalization and application of turf grass in soccer fields of the world. China Flowers & Horticulture, 2020(14): 56-58. |
周畅, 宋桂龙. 世界足球场草坪草种气候区划及应用. 中国花卉园艺, 2020(14): 56-58. | |
23 | Zhang W, Liu J, Huo P, et al.Curvularia malina causes a foliar disease on hybrid Bermudagrass in China. European Journal of Plant Pathology, 2018, 151(2): 557-562. |
24 | Liu T Z, Wang X S, Zhang J M. Development of a novel traffic simulator and evaluation of warm-season turfgrass traffic tolerance in field experiments. Acta Prataculturae Sinica, 2019, 28(12): 41-52. |
刘天增, 王旭盛, 张巨明. 新型草坪模拟践踏器的研制及暖季型草坪草耐践踏性评价. 草业学报, 2019, 28(12): 41-52. | |
25 | Chen G, Ma Q D. Application of NTEP in turfgrass evaluation. Pratacultural Science, 2000, 17(1): 63-69. |
陈谷, 马其东. NTEP评价体系在草坪草评价中的应用. 草业科学, 2000, 17(1): 63-69. | |
26 | Bastian F, Bouziri L, Nicolardot B, et al. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology and Biochemistry, 2009, 41(2): 262-275. |
27 | Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native agave species. New Phytologist, 2016, 209(2): 798-811. |
28 | Treseder K K, Maltz M R, Hawkins B A, et al. Evolutionary histories of soil fungi are reflected in their large-scale biogeography. Ecology Letters, 2014, 17(9): 1086-1093. |
29 | Wang Y, Zhang Y, Su B B, et al. Study on microbial diversity of rhizosphere soil of oat in different areas in alpine region. Acta Agrestia Sinica, 2020, 28(2): 358-366. |
汪焱, 张英, 苏贝贝, 等. 高寒区不同地域燕麦根际土壤微生物多样性研究. 草地学报, 2020, 28(2): 358-366. | |
30 | Yao Q, Liu J, Yu Z, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biology and Biochemistry, 2017, 110: 56-67. |
31 | Beck J, Echtenacher B, Ebel F. Woronin bodies, their impact on stress resistance and virulence of the pathogenic Mould Aspergillus fumigatus and their anchoring at the septal pore of filamentous Ascomycota. Molecular Microbiology, 2013, 89(5): 857-871. |
32 | Chai J L, Xu C L, Yang H L, et al. Effect of simulated trampling and rainfall on soil physical properties and microorganism abundance in an alpine meadow. Acta Prataculturae Sinica, 2017, 26(2): 30-42. |
柴锦隆, 徐长林, 杨海磊, 等. 模拟践踏和降水对高寒草甸土壤物理特性和微生物数量的影响. 草业学报, 2017, 26(2): 30-42. | |
33 | Lundell T K, Makela M R, Hilden K. Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. Basic Microbiology, 2010, 50(1): 5-20. |
34 | Yele D J, Ralph J. Evidence for cleavage of lignin by a brown rot Basidiomycete. Environmental Microbiology, 2008, 10(7): 1844-1849. |
35 | Blackwood C B, Waldrop M P, Zak D R, et al. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environmental Microbiology, 2007, 9(5): 1306-1316. |
36 | Ma A, Zhuang X, Wu J, et al. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS One, 2013, 8(6): e66146. |
37 | Wang X S. Development of traffic simulator and study on turfgrass traffic tolerance. Guangzhou: South China Agricultural University, 2018. |
王旭盛. 草坪践踏器的研制及草坪草耐践踏性研究. 广州: 华南农业大学, 2018 | |
38 | Grice E A, Kong H H, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324(5931): 1190-1192. |
39 | Wang Y T, Fu L N, Ji G H, et al. A study of the microbial community diversity of corn rhizosphere in Yunnan Province based on high-throughput sequencing technique. Acta Agriculturae Universitatis Jiangxiensis (Natural Science Edition), 2019, 41(3): 491-500. |
汪娅婷, 付丽娜, 姬广海, 等. 基于高通量测序技术研究云南玉米根际微生物群落多样性. 江西农业大学学报(自然科学版), 2019, 41(3): 491-500. | |
40 | Lin H L, Ren J Z. Quantitative studies of the effects of trampling on typical steppe of Huanxian in Eastern Gansu, China. Acta Agrestia Sinica, 2008, 16(1): 97-99. |
林慧龙, 任继周. 环县典型草原放牧家畜践踏的模拟研究. 草地学报, 2008, 16(1): 97-99. | |
41 | Zhou P, Han G D, Wang C J, et al. Effects of stocking rates on carbon flux in the desert grassland ecological system of Inner Mongolia. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2011, 32(4): 59-64. |
周培, 韩国栋, 王成杰, 等. 不同放牧强度对内蒙古荒漠草地生态系统含碳温室气体交换的影响. 内蒙古农业大学学报(自然科学版), 2011, 32(4): 59-64. | |
42 | Zhang X J, Han G D, Ding H J, et al. Relationship between soil respiration and plant belowground biomass under different stocking rates in Stipa breviflora desert steppe. Acta Agrestia Sinica, 2015, 23(3): 483-488. |
张新杰, 韩国栋, 丁海君, 等. 短花针茅荒漠草原不同载畜率的土壤呼吸与植物地下生物量的关系. 草地学报, 2015, 23(3): 483-488. | |
43 | Chen D D, Sun D S, Zhang S H, et al. Effect of grazing intensity on soil microbial characteristics of an alpine meadow on the Tibetan Plateau. Journal of Lanzhou University (Natural Science Edition), 2011, 47(1): 73-77. |
陈懂懂, 孙大帅, 张世虎, 等. 放牧对青藏高原东缘高寒草甸土壤微生物特征的影响. 兰州大学学报(自然科学版), 2011, 47(1): 73-77. | |
44 | Wendu R L, Zhang J N, Li G, et al. Effect of grazing disturbance on soil microorganisms and soil enzyme activities of Stipa baicalensis Rosev. steppe. Acta Agrestia Sinica, 2010, 18(4): 517-522. |
文都日乐, 张静妮, 李刚, 等. 放牧干扰对贝加尔针茅草原土壤微生物与土壤酶活性的影响.草地学报, 2010, 18(4): 517-522. | |
45 | Zhao W, Yin Y L, Li S X, et al. Soil fungal community characteristics to alpine meadow degradation in the Three River Source Region. Chinese Journal of Applied Ecology, 2021, 32(3): 869-877. |
赵文, 尹亚丽, 李世雄, 等. 三江源区退化高寒草甸土壤真菌群落特征. 应用生态学报, 2021, 32(3): 869-877. | |
46 | Rousk J, Brookes P C, Baath E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied & Environmental Microbiology, 2009, 75(6): 1589-1596. |
47 | Tedersoo L, Bahram M, Polme S, et al. Global diversity and geography of soil fungi. Science, 2014, 346: 1079-1088. |
48 | Wang Y Q, Yin Y L, Li S X. Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees. Ecology and Environmental Sciences, 2019, 28(6): 1108-1116. |
王玉琴, 尹亚丽, 李世雄. 不同退化程度高寒草甸土壤理化性质及酶活性分析. 生态环境学报, 2019, 28(6): 1108-1116. | |
49 | Paungfoo-Lonhienne C, Yeoh Y K, Kasinadhuni N R P, et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 2015, 5: 8678. |
50 | Hou Y, Chen Y M, Jiao X G, et al. Characteristics of fungal community structure in arable mollisols with different organic matter content under two climatic conditions. Microbiology China, 2020, 47(9): 2822-2832. |
侯萌, 陈一民, 焦晓光, 等.两种气候条件下不同有机质含量农田黑土真菌群落结构特征. 微生物学通报, 2020, 47(9): 2822-2832. | |
51 | Smith A P, Marin-Spiotta E, De Graaff M A, et al. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biology & Biochemistry, 2014, 77: 292-303. |
[1] | Xue-feng REN, Ya-bo DENG, Guo-zhang ZANG, Yi-qi ZHENG. A SSR marker analysis of genetic diversity and population genetic structure of bermudagrass in Henan Province [J]. Acta Prataculturae Sinica, 2022, 31(3): 60-70. |
[2] | Cai-cai SUN, Quan-min DONG, Wen-ting LIU, Bin FENG, Guang SHI, Yu-zhen LIU, Yang YU, Chun-ping ZHANG, Xiao-fang ZHANG, Cai-di LI, Zeng-zeng YANG, Xiao-xia YANG. Effects of grazing modes on the community structure and diversity of soil arthropod in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 62-75. |
[3] | Xiao-fan YIN, Na WEI, Shu-wen ZHENG, Wen-xian LIU. Genome-wide development and utilization of LTR retrotransposon-based IRAP markers in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 131-144. |
[4] | Xin-tong ZHAO, Xiao-dong CHEN, Zi-ji LI, Ju-ming ZHANG, Tian-zeng LIU. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass [J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. |
[5] | Xin-lei XU, Yan-tao SONG, Jing-dong ZHAO, Yun-na WU. Changes in forage quality and its relationship with plant diversity under fertilization and mowing in Hulun Buir meadow steppe [J]. Acta Prataculturae Sinica, 2021, 30(7): 1-10. |
[6] | Cui-cui TIAN, Shu-hai BU, Duo-liang ZHOU, Jian-quan LIU, Yong-xiang ZHOU, Xue-li ZHENG. A study of rodent community structure in the Annanba wild camel national nature reserve [J]. Acta Prataculturae Sinica, 2021, 30(7): 62-71. |
[7] | Hui JI, Jiu-qiang GUAN, Hui WANG, Jian-xu ZHOU, Nong-ga A, Zong-wei HE, Zhen-xiang FAN, Long-kang QIU, Shi-xiao CAO, Tian-wu AN, Qin BAI, Jin-cheng ZHONG, Xiao-lin LUO. Genetic structure and diversity of Yading yak and Larima yak populations [J]. Acta Prataculturae Sinica, 2021, 30(5): 134-145. |
[8] | Qiao-yu LUO, Yan-long WANG, Lei DU, Nian LIU, Li LI, Yu-shou MA. Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in the source region of the Yellow River [J]. Acta Prataculturae Sinica, 2021, 30(4): 80-89. |
[9] | Xiang JIANG, Jian-xia MA. The impact of different factors on the outcomes of grassland ecological restoration to in China: A Meta-analysis [J]. Acta Prataculturae Sinica, 2021, 30(2): 14-31. |
[10] | Guo-bao HE. Distribution characteristics and plant community diversity on the north slopes of the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 194-201. |
[11] | Zheng-yu YANG, Zhong-jie LU, Mao ZHANG, Rui DONG. A digital image analysis of seed phenotypic traits of 132 Lespedeza accessions [J]. Acta Prataculturae Sinica, 2021, 30(11): 87-97. |
[12] | Ying-ying NIE, Jin-qiang CHEN, Xiao-ping XIN, Li-jun XU, Gui-xia YANG, Xu WANG. Responses of niche characteristics and species diversity of main plant populations to duration of enclosure in the Hulun Buir meadow steppe [J]. Acta Prataculturae Sinica, 2021, 30(10): 15-25. |
[13] | Wan-di LIU, Xiao-wei LI, Wen-guang HUANG, Hui-cheng MA, Hong-ying MA, Wen-xiao WANG. Community diversity, patterns of productivity, and factors influencing them in Stipa in Ningxia grassland [J]. Acta Prataculturae Sinica, 2021, 30(1): 12-23. |
[14] | Fu-gui HAN, Duo-qing MAN, Qing-zhong ZHENG, Yan-li ZHAO, Yu-nian ZHANG, Bin XIAO, Gui-quan FU, Juan DU. Species diversity and soil nutrient changes of a Nitraria tangutorum shrub community in Qingtu Lake wetland [J]. Acta Prataculturae Sinica, 2021, 30(1): 36-45. |
[15] | CONG Yi-ming, GAO Xiao-ye, HOU Fu-jiang. Energy balance analysis of farm production systems in the transitional zone between the Loess Plateau and the Qinghai Tibet Plateau, China——A case study of the Tongwei-Weiyuan-Xiahe transect [J]. Acta Prataculturae Sinica, 2020, 29(9): 5-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||