Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (7): 38-49.DOI: 10.11686/cyxb2021202
Previous Articles Next Articles
Yuan-yuan LI1,2,3(), Ting-ting XU4, Zhe AI3, Zhao-na ZHOU3, Fei MA1,2()
Received:
2021-05-12
Revised:
2021-08-05
Online:
2022-07-20
Published:
2022-06-01
Contact:
Fei MA
Yuan-yuan LI, Ting-ting XU, Zhe AI, Zhao-na ZHOU, Fei MA. Relationship between plant functional traits and rhizosphere bacterial community structure of two Caragana species[J]. Acta Prataculturae Sinica, 2022, 31(7): 38-49.
采样点Sample site | 种名Name | 经度Longitude (° E) | 纬度Latitude (° N) | 海拔Altitude (m) |
---|---|---|---|---|
CL1 | 中间锦鸡儿C. liouana | 107.45 | 37.82 | 1431 |
CL2 | 中间锦鸡儿C. liouana | 107.69 | 38.18 | 1342 |
CL3 | 中间锦鸡儿C. liouana | 108.35 | 38.88 | 1369 |
CL4 | 中间锦鸡儿C. liouana | 108.75 | 38.60 | 1330 |
CL5 | 中间锦鸡儿C. liouana | 108.69 | 37.99 | 1223 |
CL6 | 中间锦鸡儿C. liouana | 110.24 | 38.78 | 1220 |
CL7 | 中间锦鸡儿C. liouana | 111.18 | 39.40 | 932 |
CL8 | 中间锦鸡儿C. liouana | 110.93 | 39.06 | 1035 |
CL9 | 中间锦鸡儿C. liouana | 110.28 | 39.33 | 1282 |
CL10 | 中间锦鸡儿C. liouana | 109.68 | 39.12 | 1278 |
CL11 | 中间锦鸡儿C. liouana | 108.81 | 38.54 | 1330 |
CM1 | 小叶锦鸡儿C.microphylla | 115.22 | 41.89 | 1527 |
CM2 | 小叶锦鸡儿C.microphylla | 116.23 | 42.24 | 1419 |
CM3 | 小叶锦鸡儿C.microphylla | 119.15 | 42.99 | 645 |
CM4 | 小叶锦鸡儿C.microphylla | 121.08 | 42.50 | 454 |
CM5 | 小叶锦鸡儿C.microphylla | 122.28 | 43.07 | 240 |
CM6 | 小叶锦鸡儿C.microphylla | 120.95 | 43.64 | 260 |
CM7 | 小叶锦鸡儿C.microphylla | 119.01 | 43.64 | 742 |
CM8 | 小叶锦鸡儿C.microphylla | 115.19 | 42.31 | 1390 |
CM9 | 小叶锦鸡儿C.microphylla | 114.74 | 40.87 | 961 |
CM10 | 小叶锦鸡儿C.microphylla | 112.12 | 41.24 | 1826 |
Table 1 Geographical information of each sampling site of C. liouana and C. microphylla
采样点Sample site | 种名Name | 经度Longitude (° E) | 纬度Latitude (° N) | 海拔Altitude (m) |
---|---|---|---|---|
CL1 | 中间锦鸡儿C. liouana | 107.45 | 37.82 | 1431 |
CL2 | 中间锦鸡儿C. liouana | 107.69 | 38.18 | 1342 |
CL3 | 中间锦鸡儿C. liouana | 108.35 | 38.88 | 1369 |
CL4 | 中间锦鸡儿C. liouana | 108.75 | 38.60 | 1330 |
CL5 | 中间锦鸡儿C. liouana | 108.69 | 37.99 | 1223 |
CL6 | 中间锦鸡儿C. liouana | 110.24 | 38.78 | 1220 |
CL7 | 中间锦鸡儿C. liouana | 111.18 | 39.40 | 932 |
CL8 | 中间锦鸡儿C. liouana | 110.93 | 39.06 | 1035 |
CL9 | 中间锦鸡儿C. liouana | 110.28 | 39.33 | 1282 |
CL10 | 中间锦鸡儿C. liouana | 109.68 | 39.12 | 1278 |
CL11 | 中间锦鸡儿C. liouana | 108.81 | 38.54 | 1330 |
CM1 | 小叶锦鸡儿C.microphylla | 115.22 | 41.89 | 1527 |
CM2 | 小叶锦鸡儿C.microphylla | 116.23 | 42.24 | 1419 |
CM3 | 小叶锦鸡儿C.microphylla | 119.15 | 42.99 | 645 |
CM4 | 小叶锦鸡儿C.microphylla | 121.08 | 42.50 | 454 |
CM5 | 小叶锦鸡儿C.microphylla | 122.28 | 43.07 | 240 |
CM6 | 小叶锦鸡儿C.microphylla | 120.95 | 43.64 | 260 |
CM7 | 小叶锦鸡儿C.microphylla | 119.01 | 43.64 | 742 |
CM8 | 小叶锦鸡儿C.microphylla | 115.19 | 42.31 | 1390 |
CM9 | 小叶锦鸡儿C.microphylla | 114.74 | 40.87 | 961 |
CM10 | 小叶锦鸡儿C.microphylla | 112.12 | 41.24 | 1826 |
植物功能性状 Functional trait | 中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||||
---|---|---|---|---|---|---|
均值±标准误差Mean±SE | F | P | 均值±标准误差Mean±SE | F | P | |
叶长LL (mm) | 10.54±0.85 | 9.81 | <0.001 | 9.01±0.58 | 3.70 | 0.007 |
叶宽LW (mm) | 5.41±0.50 | 5.75 | <0.001 | 5.52±0.54 | 5.73 | 0.001 |
叶厚度LT (mm) | 0.25±0.01 | 5.44 | <0.001 | 0.24±0.01 | 3.94 | 0.005 |
株高Pheight (cm) | 174.66±21.30 | 6.33 | <0.001 | 102.85±50.10 | 23.52 | <0.001 |
冠幅CW (cm2) | 247.42±26.44 | 3.98 | 0.003 | 237.77±59.56 | 11.15 | <0.001 |
比叶面积SLA (cm2·g-1) | 142.38±17.39 | 14.64 | <0.001 | 147.88±20.23 | 3.79 | 0.006 |
叶干物质含量LDMC (mg·g-1) | 0.29±0.04 | 27.21 | <0.001 | 0.32±0.03 | 5.50 | 0.001 |
叶片碳含量LC (mg·g-1) | 453.83±4.01 | 1.40 | 0.243 | 450.85±6.09 | 5.86 | <0.001 |
叶片氮含量LN (mg·g-1) | 39.92±4.33 | 10.13 | <0.001 | 40.63±7.01 | 14.02 | <0.001 |
叶片磷含量LP (mg·g-1) | 3.02±0.55 | 3.20 | 0.011 | 2.85±0.39 | 2.12 | 0.077 |
Table 2 The plant functional traits of C. liouana and C. microphylla across different geographical populations
植物功能性状 Functional trait | 中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||||
---|---|---|---|---|---|---|
均值±标准误差Mean±SE | F | P | 均值±标准误差Mean±SE | F | P | |
叶长LL (mm) | 10.54±0.85 | 9.81 | <0.001 | 9.01±0.58 | 3.70 | 0.007 |
叶宽LW (mm) | 5.41±0.50 | 5.75 | <0.001 | 5.52±0.54 | 5.73 | 0.001 |
叶厚度LT (mm) | 0.25±0.01 | 5.44 | <0.001 | 0.24±0.01 | 3.94 | 0.005 |
株高Pheight (cm) | 174.66±21.30 | 6.33 | <0.001 | 102.85±50.10 | 23.52 | <0.001 |
冠幅CW (cm2) | 247.42±26.44 | 3.98 | 0.003 | 237.77±59.56 | 11.15 | <0.001 |
比叶面积SLA (cm2·g-1) | 142.38±17.39 | 14.64 | <0.001 | 147.88±20.23 | 3.79 | 0.006 |
叶干物质含量LDMC (mg·g-1) | 0.29±0.04 | 27.21 | <0.001 | 0.32±0.03 | 5.50 | 0.001 |
叶片碳含量LC (mg·g-1) | 453.83±4.01 | 1.40 | 0.243 | 450.85±6.09 | 5.86 | <0.001 |
叶片氮含量LN (mg·g-1) | 39.92±4.33 | 10.13 | <0.001 | 40.63±7.01 | 14.02 | <0.001 |
叶片磷含量LP (mg·g-1) | 3.02±0.55 | 3.20 | 0.011 | 2.85±0.39 | 2.12 | 0.077 |
样本 Sample | 有效序列 Effective sequence | 优质序列 High quality sequence | 物种数 Observed OTUs | Chao 1 指数 Chao 1 index | ACE指数 ACE index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖度 Coverage(%) |
---|---|---|---|---|---|---|---|---|
中间锦鸡儿C. liouana | 80712±2948 | 68668±2697 | 1069±17 | 1193±15.88 | 1172±14.65 | 7.94±0.12 | 0.98±0.00 | 99.43±0.00 |
小叶锦鸡儿C. microphylla | 84053±3284 | 73043±3005 | 1048±28 | 1172±27.57 | 1152±25.73 | 8.10±0.18 | 0.98±0.00 | 99.45±0.00 |
Table 3 Sample sequence number statistics and diversity index in rhizosphere soil of C. liouana and C. microphylla
样本 Sample | 有效序列 Effective sequence | 优质序列 High quality sequence | 物种数 Observed OTUs | Chao 1 指数 Chao 1 index | ACE指数 ACE index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖度 Coverage(%) |
---|---|---|---|---|---|---|---|---|
中间锦鸡儿C. liouana | 80712±2948 | 68668±2697 | 1069±17 | 1193±15.88 | 1172±14.65 | 7.94±0.12 | 0.98±0.00 | 99.43±0.00 |
小叶锦鸡儿C. microphylla | 84053±3284 | 73043±3005 | 1048±28 | 1172±27.57 | 1152±25.73 | 8.10±0.18 | 0.98±0.00 | 99.45±0.00 |
门 Phyla | 属 Genera | 相对丰度Relative abundance (%) | |
---|---|---|---|
中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||
变形菌门Proteobacteria | 55.88±1.16** | 46.21±2.23 | |
根瘤菌属Rhizobium | 9.98±1.13** | 3.24±0.39 | |
鞘氨醇单胞菌属Sphingomonas | 5.38±0.28 | 6.65±0.42* | |
类固醇杆菌属Steroidobacter | 2.37±0.20 | 2.07±0.18 | |
中慢生根瘤菌属Mesorhizobium | 1.24±0.20 | 1.66±1.14 | |
溶杆菌属Lysobacter | 0.73±0.07* | 0.54±0.06 | |
酸杆菌门Acidobacteria | 12.51±0.65 | 20.56±1.71** | |
RB41 | 2.89±0.21 | 7.18±0.77** | |
拟杆菌门Bacteroidetes | 10.72±0.66** | 7.71±0.45 | |
放线菌门Actinobacteria | 6.78±0.32 | 9.88±0.56** | |
红色杆菌属Rubrobacter | 0.42±0.06 | 1.95±0.26** | |
链霉菌属Streptomyces | 0.86±0.07 | 1.28±0.15** | |
Patescibacteria | 4.49±0.40 | 3.29±0.55 | |
厚壁菌门Firmicutes | 3.31±0.33 | 4.19±0.49 | |
芽孢杆菌属Bacillus | 1.98±0.23 | 3.06±0.35* | |
芽单胞菌门 Gemmatimonadetes | 2.09±0.16 | 3.02±0.24** | |
芽单胞菌科未分类的属Unclassified_f_Gemmatimonadaceae | 1.66±0.13 | 2.59±0.21** | |
绿弯菌门Chloroflexi | 1.94±0.11 | 2.00±0.13 |
Table 4 Changes in relative bacterial abundance at phyla and genera levels in the rhizosphere soil of C. liouana and C. microphylla
门 Phyla | 属 Genera | 相对丰度Relative abundance (%) | |
---|---|---|---|
中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||
变形菌门Proteobacteria | 55.88±1.16** | 46.21±2.23 | |
根瘤菌属Rhizobium | 9.98±1.13** | 3.24±0.39 | |
鞘氨醇单胞菌属Sphingomonas | 5.38±0.28 | 6.65±0.42* | |
类固醇杆菌属Steroidobacter | 2.37±0.20 | 2.07±0.18 | |
中慢生根瘤菌属Mesorhizobium | 1.24±0.20 | 1.66±1.14 | |
溶杆菌属Lysobacter | 0.73±0.07* | 0.54±0.06 | |
酸杆菌门Acidobacteria | 12.51±0.65 | 20.56±1.71** | |
RB41 | 2.89±0.21 | 7.18±0.77** | |
拟杆菌门Bacteroidetes | 10.72±0.66** | 7.71±0.45 | |
放线菌门Actinobacteria | 6.78±0.32 | 9.88±0.56** | |
红色杆菌属Rubrobacter | 0.42±0.06 | 1.95±0.26** | |
链霉菌属Streptomyces | 0.86±0.07 | 1.28±0.15** | |
Patescibacteria | 4.49±0.40 | 3.29±0.55 | |
厚壁菌门Firmicutes | 3.31±0.33 | 4.19±0.49 | |
芽孢杆菌属Bacillus | 1.98±0.23 | 3.06±0.35* | |
芽单胞菌门 Gemmatimonadetes | 2.09±0.16 | 3.02±0.24** | |
芽单胞菌科未分类的属Unclassified_f_Gemmatimonadaceae | 1.66±0.13 | 2.59±0.21** | |
绿弯菌门Chloroflexi | 1.94±0.11 | 2.00±0.13 |
植物属性 Plant attribute | 株高 Pheight | 叶干物质含量 LDMC | 比叶面积 SLA | 叶厚度 LT | 叶长 LL | 叶片磷含量 LP | 冠幅 CW | 叶宽 LW | 叶片氮含量 LN | 叶片碳含量 LC |
---|---|---|---|---|---|---|---|---|---|---|
解释度 Explains (%) | 6.5 | 5.5 | 4.7 | 4.7 | 3.4 | 1.9 | 1.6 | 1.1 | 1.0 | 0.8 |
贡献率 Contribution (%) | 20.7 | 17.8 | 15.0 | 14.9 | 10.9 | 6.2 | 5.3 | 3.5 | 3.1 | 2.6 |
F | 4.2 | 3.8 | 3.3 | 3.4 | 2.6 | 1.5 | 1.3 | 0.8 | 0.7 | 0.6 |
P | 0.002 | 0.002 | 0.022 | 0.008 | 0.016 | 0.116 | 0.248 | 0.516 | 0.632 | 0.778 |
Table 5 Effects of plant functional traits on soil bacterial community composition
植物属性 Plant attribute | 株高 Pheight | 叶干物质含量 LDMC | 比叶面积 SLA | 叶厚度 LT | 叶长 LL | 叶片磷含量 LP | 冠幅 CW | 叶宽 LW | 叶片氮含量 LN | 叶片碳含量 LC |
---|---|---|---|---|---|---|---|---|---|---|
解释度 Explains (%) | 6.5 | 5.5 | 4.7 | 4.7 | 3.4 | 1.9 | 1.6 | 1.1 | 1.0 | 0.8 |
贡献率 Contribution (%) | 20.7 | 17.8 | 15.0 | 14.9 | 10.9 | 6.2 | 5.3 | 3.5 | 3.1 | 2.6 |
F | 4.2 | 3.8 | 3.3 | 3.4 | 2.6 | 1.5 | 1.3 | 0.8 | 0.7 | 0.6 |
P | 0.002 | 0.002 | 0.022 | 0.008 | 0.016 | 0.116 | 0.248 | 0.516 | 0.632 | 0.778 |
指标 Parameter | 叶长 LL | 叶宽 LW | 叶厚度LT | 株高 Pheight | 冠幅 CW | 比叶面积SLA | 叶干物质含量LDMC | 叶片碳含量LC | 叶片氮含量LN | 叶片磷含量LP |
---|---|---|---|---|---|---|---|---|---|---|
Chao1指数Chao1 index | -0.07 | 0.05 | 0.31* | -0.23 | -0.23 | 0.08 | -0.16 | -0.22 | 0.17 | -0.02 |
ACE指数ACE index | -0.05 | 0.06 | 0.31* | -0.24 | -0.25 | 0.08 | -0.15 | -0.25* | 0.17 | -0.02 |
香农指数Shannon index | -0.14 | 0.28* | 0.25* | -0.34** | -0.18 | 0.04 | 0.03 | -0.32* | 0.27* | -0.06 |
辛普森指数Simpson index | -0.04 | 0.21 | 0.26* | -0.24 | -0.15 | -0.02 | -0.01 | -0.18 | 0.22 | -0.10 |
变形菌门Proteobacteria | 0.38** | -0.36** | 0.04 | 0.61** | 0.23 | -0.16 | -0.12 | 0.35** | -0.37** | 0.12 |
酸杆菌门Acidobacteria | -0.50** | 0.33** | -0.10 | -0.69** | -0.43** | 0.19 | 0.10 | -0.36** | 0.30* | -0.15 |
拟杆菌门Bacteroidetes | 0.49** | -0.04 | 0.11 | 0.30* | 0.01 | -0.12 | -0.05 | 0.10 | 0.03 | 0.19 |
放线菌门Actinobacteria | -0.43** | 0.24 | -0.00 | -0.54** | -0.03 | 0.18 | 0.09 | -0.22 | 0.25* | -0.06 |
Patescibacteria | 0.25 | -0.13 | -0.03 | 0.32* | 0.23 | -0.02 | -0.02 | 0.00 | -0.10 | 0.10 |
厚壁菌门Firmicutes | -0.16 | 0.03 | 0.02 | -0.13 | 0.24 | 0.04 | -0.04 | 0.08 | 0.04 | -0.32* |
芽单胞菌门Gemmatimonadetes | -0.41** | 0.43** | -0.14 | -0.56** | -0.06 | 0.20 | 0.10 | -0.30* | 0.43** | -0.10 |
绿弯菌门Chloroflexi | -0.14 | 0.17 | 0.30* | -0.20 | -0.08 | 0.14 | -0.07 | -0.19 | 0.14 | 0.03 |
Table 6 Correlation of soil bacterial diversity indices and the relative abundance of dominant taxa with plant functional traits
指标 Parameter | 叶长 LL | 叶宽 LW | 叶厚度LT | 株高 Pheight | 冠幅 CW | 比叶面积SLA | 叶干物质含量LDMC | 叶片碳含量LC | 叶片氮含量LN | 叶片磷含量LP |
---|---|---|---|---|---|---|---|---|---|---|
Chao1指数Chao1 index | -0.07 | 0.05 | 0.31* | -0.23 | -0.23 | 0.08 | -0.16 | -0.22 | 0.17 | -0.02 |
ACE指数ACE index | -0.05 | 0.06 | 0.31* | -0.24 | -0.25 | 0.08 | -0.15 | -0.25* | 0.17 | -0.02 |
香农指数Shannon index | -0.14 | 0.28* | 0.25* | -0.34** | -0.18 | 0.04 | 0.03 | -0.32* | 0.27* | -0.06 |
辛普森指数Simpson index | -0.04 | 0.21 | 0.26* | -0.24 | -0.15 | -0.02 | -0.01 | -0.18 | 0.22 | -0.10 |
变形菌门Proteobacteria | 0.38** | -0.36** | 0.04 | 0.61** | 0.23 | -0.16 | -0.12 | 0.35** | -0.37** | 0.12 |
酸杆菌门Acidobacteria | -0.50** | 0.33** | -0.10 | -0.69** | -0.43** | 0.19 | 0.10 | -0.36** | 0.30* | -0.15 |
拟杆菌门Bacteroidetes | 0.49** | -0.04 | 0.11 | 0.30* | 0.01 | -0.12 | -0.05 | 0.10 | 0.03 | 0.19 |
放线菌门Actinobacteria | -0.43** | 0.24 | -0.00 | -0.54** | -0.03 | 0.18 | 0.09 | -0.22 | 0.25* | -0.06 |
Patescibacteria | 0.25 | -0.13 | -0.03 | 0.32* | 0.23 | -0.02 | -0.02 | 0.00 | -0.10 | 0.10 |
厚壁菌门Firmicutes | -0.16 | 0.03 | 0.02 | -0.13 | 0.24 | 0.04 | -0.04 | 0.08 | 0.04 | -0.32* |
芽单胞菌门Gemmatimonadetes | -0.41** | 0.43** | -0.14 | -0.56** | -0.06 | 0.20 | 0.10 | -0.30* | 0.43** | -0.10 |
绿弯菌门Chloroflexi | -0.14 | 0.17 | 0.30* | -0.20 | -0.08 | 0.14 | -0.07 | -0.19 | 0.14 | 0.03 |
1 | Wang W X, Li X W, Huang W G, et al. Correlations between the composition and diversity of bacterial communities and ecological factors in the rhizosphere of Ammopiptanthus mongolicus. Acta Ecologica Sinica, 2020, 40(23): 8660-8671. |
王文晓, 李小伟, 黄文广, 等. 蒙古沙冬青根际土壤细菌群落组成及多样性与生态因子相关性研究. 生态学报, 2020, 40(23): 8660-8671. | |
2 | Wilson G W, Hickman K R, Williamson M M. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza, 2012, 22(5): 327-336. |
3 | Khajeeyan R, Salehi A, Dehnavi M M, et al. Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes. Agricultural Water Management, 2019, 225: 105768. |
4 | Na X F, Xu T T, Li M, et al. Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients. Frontiers in Microbiology, 2018, 9: 709. |
5 | Ding X J, Jing R Y, Huang Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing. Scientia Silvae Sinicae, 2018, 54(1): 81-89. |
丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 2018, 54(1): 81-89. | |
6 | Tripathi B M, Moroenyane I, Sherman C, et al. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel. Microbial Ecology, 2017, 74(1): 168-176. |
7 | Cornelissen J H, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380. |
8 | Milla R, Reich P B. The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1622): 2109-2114. |
9 | Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 2002, 90(3): 534-543. |
10 | Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8(6): 636-642. |
11 | Lei L J, Kong D L, Li X M, et al. Plant functional traits, functional diversity, and ecosystem functioning: Current knowledge and perspectives. Biodiversity Science, 2016, 24(8): 922-931. |
雷羚洁, 孔德良, 李晓明, 等. 植物功能性状、功能多样性与生态系统功能:进展与展望. 生物多样性, 2016, 24(8): 922-931. | |
12 | Li S J, Wang H, Gou W, et al. Relationship between leaf functional traits of mixed desert plants and microbial diversity in rhizosphere. Ecology and Environmental Sciences, 2020, 29(9): 1713-1722. |
李善家, 王辉, 苟伟, 等. 混生荒漠植物叶片功能性状与其根际微生物多样性的关系. 生态环境学报, 2020, 29(9): 1713-1722. | |
13 | Delgado-Baquerizo M, Fry E L, Eldridge D J, et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist, 2018, 219(2): 574-587. |
14 | Wang J M, Wang Y, He N P, et al. Plant functional traits regulate soil bacterial diversity across temperate deserts. Science of the Total Environment, 2020, 715: 136976. |
15 | Leff J W, Bardgett R D, Wilkinson A, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal, 2018, 12: 1794-1805. |
16 | Li Q X, Wang Y S, Zhu Y J, et al. Effects of soil improvement of Caragana intermedia plantations in alpine sandy land on Tibet Plateau. Acta Ecologica Sinica, 2014, 34(2): 123-128. |
17 | Wang H C, Wang C G, He X, et al. The response of Caragana stenophylla pojark leaf anatomical structure to desert grassland deterioration gradient under the drought stress. Ecology and Environmental Sciences, 2016, 25(5): 744-751. |
王海超, 王春光, 贺晓, 等. 狭叶锦鸡儿叶片解剖结构对干旱胁迫下荒漠草原退化梯度的响应. 生态环境学报, 2016, 25(5): 744-751. | |
18 | Yang J Y, Yang J, Yang M B, et al. Genetic diversity of Caragana species of the Ordos Plateau in China. Plant Systematics and Evolution, 2012, 298(4): 801-809. |
19 | Na X F, Xu T T, Li M, et al. Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. Journal of Soils and Sediments, 2017, 17(1): 122-132. |
20 | Zhou Z N. Response of leaf traits of two closely related Caragana species to environmental changes. Yinchuan: Ningxia University, 2020. |
周兆娜. 锦鸡儿属2个近缘种叶片性状对环境的响应. 银川: 宁夏大学, 2020. | |
21 | Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(D1): D590-D596. |
22 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 2014, 111(14): 5266-5270. |
23 | Zhang J Z, Chen X R, Yang C D, et al. A study on the diversity of soil cultured fungi in the alpine grassland of Eastern Qilian Mountains. Acta Prataculturae Sinica, 2010, 19(2): 124-132. |
张俊忠, 陈秀蓉, 杨成德, 等. 东祁连山高寒草地土壤可培养真菌多样性分析. 草业学报, 2010, 19(2): 124-132. | |
24 | Wang P, Sheng L X, Yan H, et al. Plant functional traits influence soil carbon sequestration in wetland ecosystem. Acta Ecologica Sinica, 2010, 30(24): 6990-7000. |
王平, 盛连喜, 燕红, 等. 植物功能性状与湿地生态系统土壤碳汇功能. 生态学报, 2010, 30(24): 6990-7000. | |
25 | Ji Z J, Quan X K, Wang C K. Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes. Acta Ecologica Sinica, 2013, 33(21): 6967-6974. |
季子敬, 全先奎, 王传宽. 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性. 生态学报, 2013, 33(21): 6967-6974. | |
26 | Millard P, Singh B K. Does grassland vegetation drive soil microbial diversity? Nutrient Cycling Agroecosystems, 2010, 88(2):147-158. |
27 | Wen C, Yang Z J, Yang L, et al. Ecological stoichiometry characteristics of plants and soil under different vegetation in the semi-arid loess small watershed. Acta Ecologica Sinica, 2021, 41(5): 1824-1834. |
温晨, 杨智姣, 杨磊, 等. 半干旱黄土小流域不同植被类型植物与土壤生态化学计量特征. 生态学报, 2021, 41(5): 1824-1834. | |
28 | Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310. | |
29 | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827. |
30 | Liu F C, Xing S J, Ma H L, et al. Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought condition. Chinese Journal of Applied Ecology, 2014, 25(5): 1475-1482. |
刘方春, 邢尚军, 马海林, 等. 干旱生境中接种根际促生细菌对核桃根际土壤生物学特征的影响. 应用生态学报, 2014, 25(5): 1475-1482. | |
31 | Liu F C, Xing S J, Ma H L, et al. Effects of continuous drought on soil bacteria populations and community diversity in sweet cherry rhizosphere. Acta Ecologica Sinica, 2014, 34(3): 642-649. |
刘方春, 邢尚军, 马海林, 等. 持续干旱对樱桃根际土壤细菌数量及结构多样性影响. 生态学报, 2014, 34(3): 642-649. | |
32 | Henry A, Doucette W J, Norton J M, et al. Changes in crested wheat grass root exudation caused by flood, drought, and nutrient stress. Journal of Environmental Quality, 2007, 36(3): 904-912. |
33 | Zhang C, Liu G B, Xue S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology and Biochemistry, 2016, 97: 40-49. |
34 | Li Y, Lee C G, Watanabe T, et al. Identification of microbial communities that assimilate substrate from root cap cells in an aerobic soil using a DNA-SIP approach. Soil Biology and Biochemistry, 2011, 43: 1928-1935. |
35 | Ma F, Na X F, Xu T T. Drought responses of three closely related Caragana species: Implication for their vicarious distribution. Ecology and Evolution, 2016, 6(9): 2763-2773. |
36 | Li S F, Huang X B, Lang X D, et al. Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha river valley of Southwestern China. Forest Ecology and Management, 2020, 472: 118281. |
37 | Piao Z, Yang L Z, Zhao L P, et al. Actinobacterial community structure in soils receiving long-term organic and inorganic amendments. Applied and Environmental Microbiology, 2008, 74(2): 526-530. |
38 | Zhang K, Kang J M, Long R C, et al. Screening of highly-effective rhizobial strains in alfalfa (Medicago sativa L. cv. ‘Zhongmu No. 3’) under salinity and alkalinity stresses. Chinese Journal of Grassland, 2018, 40(1): 9-16. |
张昆, 康俊梅, 龙瑞才, 等. 盐碱胁迫条件下中苜3号紫花苜蓿高效共生根瘤菌筛选. 中国草地学报, 2018, 40(1): 9-16. | |
39 | Tajini F, Trabelsi M, Drevon J J, et al. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 2012, 19(2): 157-163. |
40 | Li M, Li Y, Chen W F, et al. Genetic diversity, community structure and distribution of rhizobia in the root nodules of Caragana spp. from arid and semi-arid alkaline deserts, in the North of China. Systematic and Applied Microbiology, 2012, 35(4):239-245. |
[1] | Xin MA, Zhu-zhu LUO, Yao-quan ZHANG, Jia-he LIU, Yi-ning NIU, Li-qun CAI. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67. |
[2] | Hong-jiao HU, Xin-ping LIU, Tong-hui ZHANG, Yu-hui HE, Ming-ming WANG, La-mei ZHANG, Shan-shan SUN, Li CHENG. Feed nutritional value and silage processing properties of Caragana microphylla [J]. Acta Prataculturae Sinica, 2021, 30(11): 181-190. |
[3] | JIA Hong-mei, FANG Qian, ZHANG Shu-hua, YAN Zhu-yun, LIU Min. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza [J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
[4] | LI Zhi-long, LUO Chao-yue, QIU Hui-zhen, FU Xiao, DENG De-lei, ZHANG Chun-hong, SHEN Qi-rong. Effects of continuous nitrogen application on bacterial community structure and denitrification in the rhizosphere of potato [J]. Acta Prataculturae Sinica, 2020, 29(6): 105-116. |
[5] | ZHOU Han-yang, SUN Peng-yue, YU Xin-rong, ZHOU Yu, ZHANG Zhi-wei, GAO Jin-zhu, ZHAO Dong-hao, LUO Yi-lan, HU Tian-ming, FU Juan-juan. Protective effects of Flavobacterium succinicans on perennial ryegrass under shade stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 137-143. |
[6] | MA Yuan, ZHANG De-gang. Regulation mechanisms of rhizosphere nutrient cycling processes in grassland: A review [J]. Acta Prataculturae Sinica, 2020, 29(11): 172-182. |
[7] | LIU Hong-mei, YANG Dian-lin, ZHANG Hai-fang, ZHAO Jian-ning, WANG Hui, ZHANG Nai-qin. Effects of nitrogen addition on the soil bacterial community structure of Stipa baicalensis steppe [J]. Acta Prataculturae Sinica, 2019, 28(9): 23-32. |
[8] | LIU Xue-er, MA Jin-feng, YANG Cheng-de, LI Tong-hua. Antifungal activity and identification of soil bacteria from the rhizosphere of Stipa plants in alpine grassland of Qinghai [J]. Acta Prataculturae Sinica, 2019, 28(8): 161-169. |
[9] | LI Hai-yun, YAO Tuo, MA Ya-chun, ZHANG Hui-rong, LU Xiao-wen, YANG Xiao-lei, XIA Dong-hui, ZHANG Jian-gui, GAO Ya-min. Soil bacterial community changes across a degradation gradient in alpine meadow grasslands in the central Qilian Mountains [J]. Acta Prataculturae Sinica, 2019, 28(8): 170-179. |
[10] | ZHANG Wen-wen, LIU Bing-ru, NIU Song-fang. Correlation between soil nutrient status and the bacterial community composition in alfalfa stands of different ages in the Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2019, 28(5): 46-54. |
[11] | SI Hua-zhe, LI Zhi-peng, NAN Wei-xiao, JIN Chun-ai, LI Guang-yu, LIU Han-lu. Effects of bacterial community composition on fermentation characteristics of Lactobacillus plantarum in low moisture content rice stalk silage [J]. Acta Prataculturae Sinica, 2019, 28(3): 184-192. |
[12] | XU Sheng-rong, ZHANG En-he, MA Rui-li, WANG Qi, LIU Qing-lin, HUANG Yu-fang. Effects of mulching on soil environment and water utilization by roots of Lycium barbarum [J]. Acta Prataculturae Sinica, 2019, 28(2): 12-22. |
[13] | ZHANG Yi-Fan, CHEN Lin, LI Xue-Bin, LI Yue-Fei, YANG Xin-Guo. Soil nutrients and carbon management indexes in the rhizosphere versus non-rhizosphere area of different plant species in desert grassland [J]. Acta Prataculturae Sinica, 2017, 26(8): 24-34. |
[14] | WANG Peng-Fei, JIA Lu-Ting, DU Jun-Jie, ZHANG Jian-Cheng, MU Xiao-Peng, DING Wei. Improvement of soil quality by Chinese dwarf cherry cultivation in the Loess Plateau steep hill region [J]. Acta Prataculturae Sinica, 2017, 26(3): 65-74. |
[15] | ZENG Qing-Fei, WANG Qian, LU Rui-Xia, LIU Zheng-Shu, WU Jia-Hai, WANG Xiao-Li. Identification of soybean growth-promoting rhizobacteria and their effects on the growth and quality of Glycine max and Lotus corniculatus [J]. Acta Prataculturae Sinica, 2017, 26(1): 99-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||