Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (11): 158-171.DOI: 10.11686/cyxb2021350
Previous Articles Next Articles
Yuan-bo JIANG(), Yan-xia KANG, Guang-ping QI(), Min-hua YIN, Yan-lin MA, Jing-hai WANG, Qiong JIA, Yao KANG, Hong-bin ZHANG, Zhong-xia TANG, Ai-xia WANG
Received:
2021-09-22
Revised:
2021-11-03
Online:
2022-11-20
Published:
2022-10-01
Contact:
Guang-ping QI
Yuan-bo JIANG, Yan-xia KANG, Guang-ping QI, Min-hua YIN, Yan-lin MA, Jing-hai WANG, Qiong JIA, Yao KANG, Hong-bin ZHANG, Zhong-xia TANG, Ai-xia WANG. Irrigation scheduling based on yield and quality in Bromus inermis[J]. Acta Prataculturae Sinica, 2022, 31(11): 158-171.
水分调控模式 Water regulation mode | 处理 Treatment | 水分处理Moisture treatment | ||
---|---|---|---|---|
建植期/返青期Planting stage/greening stage | 拔节期Jointing stage | 抽穗期Tasseling stage | ||
分生育期调亏灌溉 Regulated deficit irrigation at different growth stages (I1) | CK | 75~85 | 75~85 | 75~85 |
F1 | 75~85 | 65~85 | 65~85 | |
F2 | 75~85 | 55~85 | 55~85 | |
F3 | 75~85 | 45~85 | 45~85 | |
全生育期调亏灌溉 Regulated deficit irrigation in whole growth period (I2) | CK | 75~85 | 75~85 | 75~85 |
Q1 | 65~75 | 65~75 | 65~75 | |
Q2 | 55~65 | 55~65 | 55~65 | |
Q3 | 45~55 | 45~55 | 45~55 |
Table 1 Upper and lower limits of irrigation for B. inermis moisture regulation trial (%)
水分调控模式 Water regulation mode | 处理 Treatment | 水分处理Moisture treatment | ||
---|---|---|---|---|
建植期/返青期Planting stage/greening stage | 拔节期Jointing stage | 抽穗期Tasseling stage | ||
分生育期调亏灌溉 Regulated deficit irrigation at different growth stages (I1) | CK | 75~85 | 75~85 | 75~85 |
F1 | 75~85 | 65~85 | 65~85 | |
F2 | 75~85 | 55~85 | 55~85 | |
F3 | 75~85 | 45~85 | 45~85 | |
全生育期调亏灌溉 Regulated deficit irrigation in whole growth period (I2) | CK | 75~85 | 75~85 | 75~85 |
Q1 | 65~75 | 65~75 | 65~75 | |
Q2 | 55~65 | 55~65 | 55~65 | |
Q3 | 45~55 | 45~55 | 45~55 |
指标 Index | 主成分Principal components | |
---|---|---|
1 | 2 | |
产量Y | -0.740 | 0.385 |
水分利用效率WUE | 0.883 | -0.022 |
灌溉水利用效率IWUE | 0.961 | -0.189 |
粗蛋白CP | 0.960 | -0.212 |
酸性洗涤纤维ADF | 0.341 | 0.916 |
中性洗涤纤维NDF | 0.436 | 0.865 |
特征值Eigenvalue | 3.480 | 1.817 |
方差贡献率Variance contribution rate (%) | 58.005 | 30.275 |
累计方差贡献率Cumulative variance contribution rate (%) | 58.005 | 88.280 |
Table 2 Principal component analysis of each index of B. inermis with different irrigation treatments
指标 Index | 主成分Principal components | |
---|---|---|
1 | 2 | |
产量Y | -0.740 | 0.385 |
水分利用效率WUE | 0.883 | -0.022 |
灌溉水利用效率IWUE | 0.961 | -0.189 |
粗蛋白CP | 0.960 | -0.212 |
酸性洗涤纤维ADF | 0.341 | 0.916 |
中性洗涤纤维NDF | 0.436 | 0.865 |
特征值Eigenvalue | 3.480 | 1.817 |
方差贡献率Variance contribution rate (%) | 58.005 | 30.275 |
累计方差贡献率Cumulative variance contribution rate (%) | 58.005 | 88.280 |
处理Treatment | 综合得分Overall score | 排序Sorting | 处理Treatment | 综合得分Overall score | 排序Sorting |
---|---|---|---|---|---|
I1CK | -0.3212 | 7 | I2CK | -0.6052 | 8 |
I1F1 | 0.7016 | 1 | I2Q1 | -0.1331 | 4 |
I1F2 | 0.3436 | 3 | I2Q2 | -0.1671 | 5 |
I1F3 | 0.3904 | 2 | I2Q3 | -0.2090 | 6 |
Table 3 Overall score of B. inermis with different irrigation treatments
处理Treatment | 综合得分Overall score | 排序Sorting | 处理Treatment | 综合得分Overall score | 排序Sorting |
---|---|---|---|---|---|
I1CK | -0.3212 | 7 | I2CK | -0.6052 | 8 |
I1F1 | 0.7016 | 1 | I2Q1 | -0.1331 | 4 |
I1F2 | 0.3436 | 3 | I2Q2 | -0.1671 | 5 |
I1F3 | 0.3904 | 2 | I2Q3 | -0.2090 | 6 |
品质指标 Quality index | 信息熵值 Information entropy value (E j ) | 信息效用值 Information utility value (D j ) | 权重系数 Weight coefficient (W j ) |
---|---|---|---|
酸性洗涤纤维含量ADF content | 85.79 | 14.21 | 20.84 |
中性洗涤纤维含量NDF content | 86.29 | 13.71 | 20.12 |
粗蛋白含量CP content | 59.76 | 40.24 | 59.04 |
Table 4 Summary of calculation results of entropy method (%)
品质指标 Quality index | 信息熵值 Information entropy value (E j ) | 信息效用值 Information utility value (D j ) | 权重系数 Weight coefficient (W j ) |
---|---|---|---|
酸性洗涤纤维含量ADF content | 85.79 | 14.21 | 20.84 |
中性洗涤纤维含量NDF content | 86.29 | 13.71 | 20.12 |
粗蛋白含量CP content | 59.76 | 40.24 | 59.04 |
处理 Treatment | 茬次 Cut | 真实值 Real value (mm) | 预测值 Predicted value (mm) | 相对误差 Relative error (%) | 平均相对误差MRE (%) | 决定系数R2 | 均方根误差RMSE (mm) | 标准均方根误差 nRMSE (%) |
---|---|---|---|---|---|---|---|---|
充分灌溉CK | 第1茬The first cut | 222.40 | 195.568 | -12.06 | 13.84 | 0.985 | 24.56 | 13.58 |
第2茬The second cut | 139.56 | 161.882 | 15.99 | |||||
第3茬The third cut | 180.63 | 156.306 | -13.47 |
Table 5 Real and predicted values of irrigation amount
处理 Treatment | 茬次 Cut | 真实值 Real value (mm) | 预测值 Predicted value (mm) | 相对误差 Relative error (%) | 平均相对误差MRE (%) | 决定系数R2 | 均方根误差RMSE (mm) | 标准均方根误差 nRMSE (%) |
---|---|---|---|---|---|---|---|---|
充分灌溉CK | 第1茬The first cut | 222.40 | 195.568 | -12.06 | 13.84 | 0.985 | 24.56 | 13.58 |
第2茬The second cut | 139.56 | 161.882 | 15.99 | |||||
第3茬The third cut | 180.63 | 156.306 | -13.47 |
日期Date (月-日Month-day) | 逐旬参照作物蒸散量 Reference crop evapotranspiration by decade (mm) | 日期Date (月-日Month-day) | 逐旬参照作物蒸散量 Reference crop evapotranspiration by decade (mm) |
---|---|---|---|
04-11-04-20 | 46.03 | 07-01-07-10 | 65.21 |
04-21-04-30 | 46.60 | 07-11-07-20 | 53.41 |
05-01-05-10 | 50.25 | 07-21-07-31 | 59.62 |
05-11-05-20 | 49.02 | 08-01-08-10 | 60.91 |
05-21-05-31 | 60.40 | 08-11-08-20 | 54.88 |
06-01-06-10 | 64.64 | 08-21-08-31 | 44.56 |
06-11-06-20 | 59.29 | 09-01-09-10 | 43.68 |
06-21-06-30 | 63.85 |
Table 6 Reference crop evapotranspiration by decade in a typical dry year
日期Date (月-日Month-day) | 逐旬参照作物蒸散量 Reference crop evapotranspiration by decade (mm) | 日期Date (月-日Month-day) | 逐旬参照作物蒸散量 Reference crop evapotranspiration by decade (mm) |
---|---|---|---|
04-11-04-20 | 46.03 | 07-01-07-10 | 65.21 |
04-21-04-30 | 46.60 | 07-11-07-20 | 53.41 |
05-01-05-10 | 50.25 | 07-21-07-31 | 59.62 |
05-11-05-20 | 49.02 | 08-01-08-10 | 60.91 |
05-21-05-31 | 60.40 | 08-11-08-20 | 54.88 |
06-01-06-10 | 64.64 | 08-21-08-31 | 44.56 |
06-11-06-20 | 59.29 | 09-01-09-10 | 43.68 |
06-21-06-30 | 63.85 |
模拟情景 Simulation scenarios | 灌水设计Irrigation design (%) | ||
---|---|---|---|
返青期 Greening stage | 拔节期 Jointing stage | 抽穗期 Tasseling stage | |
DCK | 75 | 75 | 75 |
DF1 | 75 | 65 | 65 |
DF2 | 75 | 55 | 55 |
DF3 | 75 | 45 | 45 |
Table 7 Simulation scenarios of irrigation scheduling
模拟情景 Simulation scenarios | 灌水设计Irrigation design (%) | ||
---|---|---|---|
返青期 Greening stage | 拔节期 Jointing stage | 抽穗期 Tasseling stage | |
DCK | 75 | 75 | 75 |
DF1 | 75 | 65 | 65 |
DF2 | 75 | 55 | 55 |
DF3 | 75 | 45 | 45 |
模拟情景 Simulation scenarios | 项目 Item | 灌溉制度 Irrigation scheduling | TIA (mm) | IWUE (kg·m-3) | APDA (%) | RCP (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DCK | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 601.49 | 1.61 | 0 | 0 |
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 22.17 | 21.73 | 21.72 | 23.08 | 23.38 | 21.29 | 22.91 | 22.03 | 22.48 | 20.51 | |||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 04-29 | 05-06 | 05-14 | 05-20 | 05-25 | 05-31 | 06-04 | 06-21 | 06-26 | 06-30 | |||||
灌水次序Number of irrigations | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | WI | ||||||||
灌水定额Irrigation quota (mm) | 22.38 | 24.65 | 22.96 | 23.37 | 20.92 | 21.81 | 20.43 | 22.57 | 70.00 | ||||||||
灌水日期Irrigation date (Month-day) | 07-04 | 07-09 | 07-14 | 07-20 | 07-28 | 08-13 | 08-21 | 08-28 | - | ||||||||
DF1 | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | WI | 521.76 | 1.71 | 7.88 | 3.03 |
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 45.91 | 30.52 | 23.27 | 46.83 | 44.83 | 45.05 | 21.14 | 20.58 | 42.53 | 70.00 | |||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 05-21 | 05-29 | 06-04 | 06-26 | 07-05 | 07-15 | 07-21 | 08-02 | 08-25 | - | |||||
DF2 | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | 5 | 6 | 7 | WI | 463.53 | 1.77 | 15.12 | 6.24 | |||
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 61.38 | 26.54 | 21.55 | 63.49 | 66.37 | 23.10 | 70.00 | ||||||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 05-26 | 06-01 | 06-07 | 07-01 | 07-20 | 07-28 | - | ||||||||
DF3 | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | WI | 405.20 | 1.87 | 21.88 | 8.89 | ||||||
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 58.09 | 82.41 | 63.60 | 70.00 | |||||||||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 05-29 | 07-04 | 07-21 | - |
Table 8 Simulation of irrigation scheduling for B. inermis in a typical dry water year
模拟情景 Simulation scenarios | 项目 Item | 灌溉制度 Irrigation scheduling | TIA (mm) | IWUE (kg·m-3) | APDA (%) | RCP (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DCK | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 601.49 | 1.61 | 0 | 0 |
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 22.17 | 21.73 | 21.72 | 23.08 | 23.38 | 21.29 | 22.91 | 22.03 | 22.48 | 20.51 | |||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 04-29 | 05-06 | 05-14 | 05-20 | 05-25 | 05-31 | 06-04 | 06-21 | 06-26 | 06-30 | |||||
灌水次序Number of irrigations | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | WI | ||||||||
灌水定额Irrigation quota (mm) | 22.38 | 24.65 | 22.96 | 23.37 | 20.92 | 21.81 | 20.43 | 22.57 | 70.00 | ||||||||
灌水日期Irrigation date (Month-day) | 07-04 | 07-09 | 07-14 | 07-20 | 07-28 | 08-13 | 08-21 | 08-28 | - | ||||||||
DF1 | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | WI | 521.76 | 1.71 | 7.88 | 3.03 |
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 45.91 | 30.52 | 23.27 | 46.83 | 44.83 | 45.05 | 21.14 | 20.58 | 42.53 | 70.00 | |||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 05-21 | 05-29 | 06-04 | 06-26 | 07-05 | 07-15 | 07-21 | 08-02 | 08-25 | - | |||||
DF2 | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | 5 | 6 | 7 | WI | 463.53 | 1.77 | 15.12 | 6.24 | |||
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 61.38 | 26.54 | 21.55 | 63.49 | 66.37 | 23.10 | 70.00 | ||||||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 05-26 | 06-01 | 06-07 | 07-01 | 07-20 | 07-28 | - | ||||||||
DF3 | 灌水次序Number of irrigations | SI | 1 | 2 | 3 | 4 | WI | 405.20 | 1.87 | 21.88 | 8.89 | ||||||
灌水定额Irrigation quota (mm) | 70.00 | 61.10 | 58.09 | 82.41 | 63.60 | 70.00 | |||||||||||
灌水日期Irrigation date (Month-day) | - | 04-12 | 05-29 | 07-04 | 07-21 | - |
1 | Chen R, Chen H B. Current situation and countermeasures of grassland resource utilization in Sunan County. China Animal Industry, 2019(17): 50-52. |
陈荣, 陈怀斌. 肃南县草地资源利用现状及对策. 中国畜牧业, 2019(17): 50-52. | |
2 | Niu S L, Jiang G M. Function of artificial grassland in restoration of degraded natural grassland and its research advance. Chinese Journal of Applied Ecology, 2004, 15(9): 1662-1666. |
牛书丽, 蒋高明. 人工草地在退化草地恢复中的作用及其研究现状. 应用生态学报, 2004, 15(9): 1662-1666. | |
3 | Wu Z L, Jia W X, Zhao Z, et al. Spatial-temporal variations of vegetation and its correlation with climatic factors in Qilian Mountains from 2000 to 2012. Arid Land Geography, 2015, 38(6): 1241-1252. |
武正丽, 贾文雄, 赵珍, 等. 2000-2012年祁连山植被覆盖变化及其与气候因子的相关性. 干旱区地理, 2015, 38(6): 1241-1252. | |
4 | Xu R G, Ren J Z, Nan Z B, et al. Strategies and policies for the ecological and food security of China’s grassland. Strategic Study of CAE, 2016, 18(1): 8-16. |
旭日干, 任继周, 南志标, 等. 保障我国草地生态与食物安全的战略和政策. 中国工程科学, 2016, 18(1): 8-16. | |
5 | Ren J Z, Hou F J. System coupling of mountain-oasis-desert plays a key role in the protection of water resource in Qilian mountains. Pratacultural Science, 2010, 27(2): 4-7. |
任继周, 侯扶江. 山地-绿洲-荒漠的系统耦合是祁连山水资源保护的关键措施. 草业科学, 2010, 27(2): 4-7. | |
6 | Dang Z Q, Huang Z, Tian F P, et al. Five-year soil moisture response of typical cultivated grasslands in a semiarid area: Implications for vegetation restoration. Land Degradation and Development, 2020, 31(9): 1078-1085. |
7 | Pang X M, Kang S Z, Wang M X. Theory and technology research development and prospect of regulated deficit irrigation on crops. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(6): 141-146. |
庞秀明, 康绍忠, 王密侠. 作物调亏灌溉理论与技术研究动态及其展望. 西北农林科技大学学报(自然科学版), 2005, 33(6): 141-146. | |
8 | Shahrabian E, Soleymani A. Response of forage maize hybrids to different regimes of irrigation. Research on Crops, 2011, 12(1): 53-59. |
9 | Wang Y D, Kou D, Muneer M A, et al. The effects of irrigation regimes on soil moisture dynamics, yield and quality of lucerne under subsurface drip irrigation. Applied Ecology and Environmental Research, 2020, 18(3): 4179-4194. |
10 | Jia S X. Forage plants of China (the First Volume). Beijing: Agricultural Press, 1987: 53-54. |
贾慎修. 中国饲用植物志(第一卷). 北京: 农业出版社, 1987: 53-54. | |
11 | Gong K, Jin G L, Sui X Q, et al. Analysis on the distribution, breeding and utilization of Bromus inermis germplasm resources in China. Heilongjiang Animal Science and Veterinary Medicine, 2019(21): 29-32, 36. |
宫珂, 靳瑰丽, 隋晓青, 等. 我国无芒雀麦种质资源分布、育种及利用现状分析. 黑龙江畜牧兽医, 2019(21): 29-32, 36. | |
12 | Zhang J, Li S H, Song H Y, et al. Growth and photosynthetic physiological responses of Lolium perenne L. to water stress in the simulated karst soil habitats. Acta Ecologica Sinica, 2020, 40(4): 1240-1248. |
张静, 李素慧, 宋海燕, 等. 模拟喀斯特不同土壤生境下黑麦草对水分胁迫的生长和光合生理响应. 生态学报, 2020, 40(4): 1240-1248. | |
13 | Zhu Y Q, Peng D D, Peng Y, et al. Physiological response and comparison of Sorghum sudanense and S. bicolor×S. sudanense seedlings under drought stress. Pratacultural Science, 2019, 36(5): 1361-1370. |
朱永群, 彭丹丹, 彭燕, 等. 苏丹草及高丹草幼苗对干旱胁迫的生理响应与抗旱性比较. 草业科学, 2019, 36(5): 1361-1370. | |
14 | Zhang J G, Tian F P, Miao H T, et al. Expressions of morphological and physiological features of 4 forage species under water stress and re-watering process. Arid Zone Research, 2020, 37(1): 193-201. |
张静鸽, 田福平, 苗海涛, 等. 水分胁迫及复水过程4种牧草形态及其生理特征表达. 干旱区研究, 2020, 37(1): 193-201. | |
15 | Lu J Y, Xiong J B, Zhang H S, et al. Effects of water stress on yield, quality and trace element composition of alfalfa. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
陆姣云, 熊军波, 张鹤山, 等. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133. | |
16 | Zhang H B, Qi G P, Kang Y X, et al. Effects of water regulation on yield, quality and water use of mixed artificial grassland. Water Resources Planning and Design, 2021, 34(4): 63-69. |
张宏斌, 齐广平, 康燕霞, 等. 水分调控对混播人工草地产量、品质与水分利用的影响. 水利规划与设计, 2021, 34(4): 63-69. | |
17 | Ni Y, Guo Y J, Lv J, et al. Physiological-biological changes of legumes under drought stress. Chinese Journal of Soil Science, 2004, 35(3): 275-278. |
倪郁, 郭彦军, 吕俊, 等. 水分胁迫下豆科牧草的生理生化变化. 土壤通报, 2004, 35(3): 275-278. | |
18 | Huang W. Study on drought resistance of four gramineae herbage varieties at seedling stage. South China Agriculture, 2015, 9(33): 246-248. |
黄顽. 四个禾本科牧草品种的苗期抗旱性能研究. 南方农业, 2015, 9(33): 246-248. | |
19 | Wang H Q, Tian Y H, Huang W L, et al. Analyzing the impact of irrigation quantity on biomass and water use efficiency of main grasses in artificial grassland in Inner Mongolia. Acta Ecologica Sinica, 2015, 35(10): 3225-3232. |
王海青, 田育红, 黄薇霖, 等. 不同灌溉量对内蒙古人工草地主要牧草产量和水分利用效率的影响. 生态学报, 2015, 35(10): 3225-3232. | |
20 | Dong G F, Cheng Z Y, Zhang Z H, et al. Effects of regulated deficit irrigation on water use efficiency and quality of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2006, 35(5): 201-203. |
董国锋, 成自勇, 张自和, 等. 调亏灌溉对苜蓿水分利用效率和品质的影响. 农业工程学报, 2006, 35(5): 201-203. | |
21 | Chen C F, Liu S H, Guo D X, et al. Growth simulation and optimization of irrigation scheme for summer maize using AquaCrop model. Agricultural Research in the Arid Areas, 2019, 37(3): 72-82. |
陈超飞, 柳双环, 郭大辛, 等. 基于AquaCrop模型的夏玉米生长模拟及灌溉制度优化. 干旱地区农业研究, 2019, 37(3): 72-82. | |
22 | Shang S H. Simulation-optimization method for crop irrigation scheduling with limited water supplies. Journal of Tsinghua University (Science and Technology), 2005, 45(9): 1179-1183. |
尚松浩. 作物非充分灌溉制度的模拟优化方法. 清华大学学报(自然科学版), 2005, 45(9): 1179-1183. | |
23 | Huang H W, Cheng J L, Wang M D, et al. Optimization method of irrigation schedule for paddy field in southern large-scale irrigation districts. Journal of Irrigation and Drainage, 2019, 38(S1): 51-56. |
黄慧雯, 程吉林, 王明东, 等. 南方大型灌区水稻田灌溉制度实时优化方法研究. 灌溉排水学报, 2019, 38(S1): 51-56. | |
24 | Qu W. Study on the dynamic water production function and the optimal irrigation schedule of artificial glassland in the west of Jilin Province. Changchun: Jilin University, 2011. |
曲武. 吉林省西部人工草地动态水分生产函数及优化灌溉制度研究. 长春: 吉林大学, 2011. | |
25 | Wang Z Q. A study on simulating approach for water requirement of grass and on irrigation schedule of grass planted by man in the Otinday Sandy area. Hohhot: Inner Mongolia Agricultural University, 2006. |
王志强. 浑善达克沙地牧草需水量的模拟计算方法及人工牧草灌溉制度研究. 呼和浩特: 内蒙古农业大学, 2006. | |
26 | Liu L F, Huang G H, He J P, et al. Simulation of irrigation requirements of typical cool season turfgrass in Beijing area. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 64-68. |
刘丽芳, 黄冠华, 何建平, 等. 北京地区典型冷季型草坪草灌水量模拟. 农业工程学报, 2009, 25(1): 64-68. | |
27 | Wang Y D. Effects of different the amount of water on the evapotranspiration and turf quality of three cool-season turfgrass. Lanzhou: Gansu Agricultural University, 2010. |
王跃栋. 不同灌水量对三种冷型草坪草蒸散量和草坪质量的影响研究. 兰州: 甘肃农业大学, 2010. | |
28 | Wang J H, Li G, Yu X X, et al. Effects of regulated deficit micro-sprinkler irrigation on the yield, quality and water utilization of artificial grassland in alpine desert area. Journal of Soil and Water Conservation, 2021, 35(4): 200-207, 216. |
汪精海, 李广, 余晓雄, 等. 调亏微喷灌对高寒荒漠区人工草地产量、品质及水分利用的影响. 水土保持学报, 2021, 35(4): 200-207, 216. | |
29 | Shi H B, Tian J C, Liu Q H, et al. Irrigation and drainage engineering. Beijing: China Water and Power Press, 2006: 47-53. |
史海滨, 田军仓, 刘庆华, 等. 灌溉排水工程学. 北京: 中国水利水电出版社, 2006: 47-53. | |
30 | Liu Y, Fernando R M, Pereira L S. Water balance simulation with ISAREG considering water table interactions//World congress of computers in agriculture and natural resources. Brazil: ASAE Publication, 2002: 857-863. |
31 | Wang H Z, Zhang X P. Advances in crop water ecology and physiology under regulated deficit irrigation. Irrigation and Drainage, 2001, 20(4): 73-75. |
王和洲, 张晓萍. 调亏灌溉条件下的作物水分生态生理研究进展. 灌溉排水, 2001, 20(4): 73-75. | |
32 | Xi Y Z, Li G, Chen G P, et al. Impact of water regulation on growth process of spring wheat. Journal of Gansu Agricultural University, 2019, 54(2): 73-80, 88. |
席元章, 李广, 陈国鹏, 等. 水分调控对春小麦生长过程的影响. 甘肃农业大学学报, 2019, 54(2): 73-80, 88. | |
33 | Cao C Y, Dang H K, Zheng C L, et al. Effects of different irrigation regime on yield, water consumption and water use efficiency of winter wheat. Acta Agriculturae Boreali-Sinica, 2016, 31(S1): 17-24. |
曹彩云, 党红凯, 郑春莲, 等. 不同灌溉模式对小麦产量、耗水及水分利用效率的影响. 华北农学报, 2016, 31(S1): 17-24. | |
34 | Feng F X, Mu P, Zhao G Q, et al. Water consumption characteristics and yields of fodder oat under different irrigation and nitrogen fertilization regimes in the northwest oasis irrigation area. Acta Prataculturae Sinica, 2017, 26(8): 74-84. |
冯福学, 慕平, 赵桂琴, 等. 西北绿洲灌区饲用燕麦耗水特性及产量变化对水氮耦合的响应. 草业学报, 2017, 26(8): 74-84. | |
35 | Ayijiang H B, Ma Y J, Hong M, et al. Experimental study of the water consumption of alfalfa subsurface drip irrigation. Xinjiang Agricultural Sciences, 2012, 49(7): 1301-1306. |
阿依江·哈比, 马英杰, 洪明, 等. 地下滴灌条件下紫花苜蓿耗水规律试验研究. 新疆农业科学, 2012, 49(7): 1301-1306. | |
36 | Ren R, Lv Z Y, Guo K Z, et al. Application of regulated deficit irrigation in pasture planting. Inner Mongolia Water Resources, 2011, 32(2): 58-59. |
任蓉, 吕志远, 郭克贞, 等. 调亏灌溉在牧草种植中的应用. 内蒙古水利, 2011, 32(2): 58-59. | |
37 | Yu X X, Qi G P, Kang Y X, et al. Effect of irrigation mode on the yield and water consumption of mixed artificial grassland in alpine desert area. Water Resources Planning and Design, 2020, 33(3): 130-134, 178. |
余晓雄, 齐广平, 康燕霞, 等. 灌水模式对高寒荒漠区混播人工草地产量及耗水特性的影响. 水利规划与设计, 2020, 33(3): 130-134, 178. | |
38 | Wang J R, Liu W X, Chen Y L, et al. Regulatory effect of different irrigation regimes on grain yield and water use efficiency of winter wheat. Journal of Triticeae Crops, 2018, 38(10): 1229-1236. |
王家瑞, 刘卫星, 陈雨露, 等. 不同灌水模式对冬小麦产量及水分利用的调控效应. 麦类作物学报, 2018, 38(10): 1229-1236. | |
39 | Wang J, Li G, Nie Z G, et al. Simulation study of response of spring wheat yield to drought stress in the Loess Plateau of central Gansu. Arid Land Geography, 2021, 44(2): 494-506. |
王钧, 李广, 聂志刚, 等. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究. 干旱区地理, 2021, 44(2): 494-506. | |
40 | Liu M, Gong J R, Wang Y H, et al. Effects of legume-grass mixed sowing on forage grass yield and quality in artificial grassland. Arid Zone Research, 2016, 33(1): 179-185. |
刘敏, 龚吉蕊, 王忆慧, 等. 豆禾混播建植人工草地对牧草产量和草质的影响. 干旱区研究, 2016, 33(1): 179-185. | |
41 | Li W J, Wang J F, Gao X D, et al. Effects of nitrogen and phosphorus addition on the hay yield and quality of Leymus chinensis under drought conditions. Acta Agrestia Sinica, 2021, 29(4): 743-748. |
李文晶, 王俊锋, 高晓荻, 等. 干旱条件下氮磷添加对羊草干草产量及饲用品质的影响. 草地学报, 2021, 29(4): 743-748. | |
42 | Fariaszewska A, Aper J, Van Huylenbroeck J, et al. Mild drought stress-induced changes in yield, physiological processes and chemical composition in Festuca, Lolium and Festulolium. Journal of Agronomy and Crop Science, 2016, 203(2): 103-116. |
43 | Olszewska M. Response of cultivars of meadow fescue (Festuca pratensis) and timothy (Phleum prantense L.) grown on organic soil to moisture deficiency. Acta Scientiarum Polonorum-Agricultura, 2009, 8(1): 37-46. |
44 | Jin J Y, Zhang W H, Yuan L. Physiological responses of three forages to drought stress and evaluation of their drought resistance. Acta Prataculturae Sinica, 2015, 24(10): 157-165. |
靳军英, 张卫华, 袁玲. 三种牧草对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2015, 24(10): 157-165. | |
45 | Ma Q H, Zhang X M, Wang Z K, et al. Optimizing oat irrigation schedules in an alpine region using APSIM. Acta Prataculturae Sinica, 2020, 29(7): 1-10. |
马千虎, 张学梅, 王自奎, 等. 基于APSIM模型的高寒地区燕麦灌溉制度优化. 草业学报, 2020, 29(7): 1-10. | |
46 | Xu B, Tang P C, Li Q, et al. Research on optimal irrigation schedule of oats by CROPWAT in Lhasa of Tibet. Agricultural Research in the Arid Areas, 2015, 33(6): 35-39, 183. |
徐冰, 汤鹏程, 李奇, 等. 基于CROPWAT模型的拉萨地区燕麦优化灌溉制度研究. 干旱地区农业研究, 2015, 33(6): 35-39, 183. |
[1] | Ying-xia CHEN, Yu DU, Yu-xiang WANG, Bo ZHANG, Abduriherman ADILE. Young spike differentiation and reproductive pattern of Bromus inermis in different habitats [J]. Acta Prataculturae Sinica, 2023, 32(1): 112-121. |
[2] | Shan-shan WANG, Hai-tao GU, Hui-fang XIE, Shao-dong HE, Chang-bo GAN, Xiao-yong WEI, Guang-chao KONG. Evaluation of forage yield and quality traits of 113 forage hexaploid triticale germplasm lines [J]. Acta Prataculturae Sinica, 2023, 32(1): 192-202. |
[3] | Rui-qiang LI, Yu-xiang WANG, Yu-lan SUN, Lei ZHANG, Ai-ping CHEN. Effects of salt stress on the growth, physiology, and biochemistry of five Bromus inermis varieties [J]. Acta Prataculturae Sinica, 2023, 32(1): 99-111. |
[4] | Yao ZHANG, Xiao-yun HUANG, Xin-zhu CHEN, Qin-lou HUANG, Xiu-sheng HUANG, Hai-dong HAN. Effects of fermented Hypsizygus marmoreus mushroom residue on slaughter performance and mutton quality of goats [J]. Acta Prataculturae Sinica, 2022, 31(9): 195-205. |
[5] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[6] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[7] | Xing WANG, Wei HUANG, Shu-yan YU, Xiao-yun LI, Xue-qin GAO, Bing-zhe FU. Effect of water and fertilizer coupling on seed yield and composition of alfalfa grown with underground drip irrigation in Ningxia [J]. Acta Prataculturae Sinica, 2022, 31(9): 76-85. |
[8] | Dong-qing FU, Chun-ying JIA, Li ZHANG, Fan-fan ZHANG, Chun-hui MA. Agronomic traits and fermentation quality of maize silage harvested at different grain-development stages in irrigated drought areas of southern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 111-125. |
[9] | Ying-zheng LI, Yu-lin CHENG, Lu-lu XU, Wan-song LI, Xu YAN, Xiao-feng LI, Ru-yu HE, Yang ZHOU, Jun-jun ZHENG, Xing-yu WANG, De-long ZHANG, Ming-jun CHENG, Yun-hong XIA, Jian-mei HE, Qi-lin TANG. A comparative study of silage quality characteristics of whole-plant, whole-ear and whole-straw silage of different maize varieties (lines) [J]. Acta Prataculturae Sinica, 2022, 31(8): 144-156. |
[10] | Yong-jie WU, Hao DING, Tao SHAO, Jie ZHAO, Dong DONG, Tong-tong DAI, Xue-jing YIN, Cheng ZONG, Jun-feng LI. Effects of enzyme additives on fermentation quality and in vitro digestion characteristics of rice straw silage [J]. Acta Prataculturae Sinica, 2022, 31(8): 167-177. |
[11] | Jian-zhen GE, Wen-hui FU, Lu ZHANG, Bao-jun LIN, Shuai ZHAO, Ma-ga-weng BAI, Jian-cun KOU. Degradation of carbendazim in orchard white clover silage and its effect on the microbial fermentative community [J]. Acta Prataculturae Sinica, 2022, 31(7): 64-75. |
[12] | Jun-feng LI, Jie ZHAO, Xiao-yue TANG, Tong-tong DAI, Dong DONG, Cheng ZONG, Tao SHAO. Effect of a rumen cellulolytic microbial consortium on the degradation of structural carbohydrate in sterile rice straw silage [J]. Acta Prataculturae Sinica, 2022, 31(7): 85-95. |
[13] | Duo ZHANG, Lan-tao LI, Di LIN, Long-hui ZHENG, Sai-nan GENG, Wen-xuan SHI, Kai SHENG, Yu-hong MIAO, Yi-lun WANG. Effects of P fertilization rate on tuber yield, quality, plant physiological attributes and P use efficiency of Helianthus tuberosus [J]. Acta Prataculturae Sinica, 2022, 31(6): 139-149. |
[14] | Xiang GUO, Shuo WU, Ming-yang ZHENG, De-kui CHEN, Xuan ZOU, Xiao-yang CHEN, Wei ZHOU, Qing ZHANG. Effects of addition of Neolamarckia cadamba leaves and chitosan oligosaccharides on fermentation quality and aerobic stability of sugarcane top silage [J]. Acta Prataculturae Sinica, 2022, 31(6): 202-210. |
[15] | You-shun JIN, Fu-jiang HOU. Determination of the nutrient digestibility of herbage consumed by grazing animals [J]. Acta Prataculturae Sinica, 2022, 31(5): 200-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||